
Ad-hoc Ride Sharing Application using Continuous
SPARQL Queries

Debnath Mukherjee
TCS Innovation Labs

Kolkata, India

debnath.mukherjee@tcs.com

Snehasis Banerjee
TCS Innovation Labs

Kolkata, India

snehasis.banerjee@tcs.com

Prateep Misra
TCS Innovation Labs

Kolkata, India

prateep.misra@tcs.com

ABSTRACT

In the existing ride sharing scenario, the ride taker has to cope

with uncertainties since the ride giver may be delayed or may not

show up due to some exigencies. A solution to this problem is

discussed in this paper. The solution framework is based on

gathering information from multiple streams such as traffic status

on the ride giver's routes and the ride giver's GPS coordinates.

Also, it maintains a list of alternative ride givers so as to almost

guarantee a ride for the ride taker. This solution uses a SPARQL-

based continuous query framework that is capable of sensing fast-

changing real-time situation. It also has reasoning capabilities for

handling ride taker's preferences. The paper introduces the

concept of user-managed windows that is shown to be required

for this solution. Finally we show that the performance of the

application is enhanced by designing the application with short

incremental queries.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Performance, Design

Keywords

Ad-hoc ride sharing, stream reasoning, SPARQL

1. INTRODUCTION
In ad-hoc ride sharing, there are essentially two types of users: the

ride taker who needs a ride, and the ride giver who offers a ride.

So the essential requirement for a ride sharing application is

matching the ride giver's route with the ride taker's start and

destination locations. However, this problem is complicated by

two facts: firstly, the ride giver may be delayed by traffic and may

not meet his commitment, and, secondly, the ride giver may not

show up at all due to some exigency. The solution described in

this paper attempts to mitigate these issues by keeping track of the

real time traffic situation and the ride giver's GPS position; and by

maintaining a list of alternative ride givers who will be able to

offer a ride. This dynamic ad-hoc ride sharing is a non-trivial

problem: real time streams of traffic status and ride giver's

positions have to be combined and alternative ride givers have to

be maintained for each ride taker to ensure the best possible

experience for the ride taker.

Some existing ride sharing solutions are: PickupPal1 and Zim-

ride2. A full-fledged ride sharing system has been designed in [1].

[2] emphasizes on delivering optimal rides with incomplete

spatial and temporal knowledge. [3] views the problem as an

optimization problem: minimizing total miles travelled,

minimizing total time spent, and maximizing the number of

rideshare participants, for all the rides. The current paper mainly

focuses on improving user experience through reducing

uncertainties and keeping track of alternative ride givers. This is

not fully addressed in the cited works.

2. APPROACH TO THE SOLUTION
The solution clearly requires continuous monitoring of the real

time situation including incoming streams of traffic status, ride

taker and ride giver information. Also, these streams need to be

combined with spatial knowledge about routes and places. Also,

the user's preferences have to be matched with the available

options. If a ride taker wants to ride a SUV, and a ride giver has a

Ford Explorer, then the system should be able to reason that since

Ford Explorer is an SUV, the ride giver qualifies to give the ride.

Based on the above observations, stream reasoning seemed to be a

good fit for the problem since there is a combination of streaming

information with background knowledge and reasoning is needed.

Background knowledge about the spatial domain is maintained in

an ontology, where the following are maintained: “route

segments" and “places" as entities, the relation “near" as a relation

between place entities, and the relation “on" as a relation between

a place and a route segment. It is assumed that there is a traffic

reporting application which reports traffic events as the triple

< r, s, t > where r is a route segment, s is a status such as

“isCongestedAt" and t is a timestamp. The solution architecture is

depicted in Figure 1.

Figure 1. Solution Architecture

The ride giver and ride taker submit their requests to the

application which forwards them to the stream reasoner (SR) as a

set of RDF triples called knowledge packets (KP). All events sent

to the SR have an associated KP. A KP represents a request to the

1 http://www.pickuppal.com

2 http://public.zimride.com

Copyright is held by the author/owner(s).

WWW 2012 Companion, April 16–20, 2012, Lyon, France.

ACM 978-1-4503-1230-1/12/04.

WWW 2012 – Poster Presentation April 16–20, 2012, Lyon, France

579

SR. An example of a KP is the ride giver KP which contains the

route segments the ride giver will traverse, the order in which

these segments will be traversed and the car type. On receipt of a

KP, the Event Manager of the SR adds the triples to the working

memory (called Memory Area) and invokes the SPARQL queries

(via the Query Executor) that are registered (in the Registry) for

the particular KP (in this case the “ride giver KP"). When the

triples are added, reasoners (such as rule-based reasoners) act

upon them to produce additional facts. The results produced by

running the queries are sent to the Result Processor which invokes

listeners registered by the client applications. Note that the

working memory also contains the facts from the spatial domain.

Also, the KP concept simplifies application programming by

disallowing partial requests to be sent to the SR, as requests in

this application need to be completely specified. A KP can be of

two types: “insert" and “delete" where the former is used in

requests to the SR and the latter to remove a request (to

implement user managed windows discussed later). Continuous

SPARQL queries are triggered by the arrival of a KP. Each query

can be triggered by multiple KPs. One way to design the

application would be to run the All Rides Query (ARQ) which

considers all possible events (ride giver, ride taker and traffic) and

finds all pairs of matching ride givers and ride takers. It can be

seen that this is a computationally intensive operation. Instead our

approach is to build the state of the application incrementally

using incremental queries by considering the impact of each event

separately. The state of the application consists of a list of ride

takers and their corresponding feasible ride givers. The impact of

a ride taker who has arrived in the system is calculated by the

incremental ride taker query (IncRTQ), which has the following

code fragment:

…

?rideGiver rg:hasRoute ?route.
?route rg:hasSegment ?routeSeg1.
?route rg:hasSegment ?routeSeg2.
(?1) s:on ?routeSeg1. (?2) s:on ?routeSeg2.
...

where rg is the IRI prefix of ride giver domain, s is the IRI prefix

of spatial domain. Our implementation of SPARQL allows

parameters similar to parameters in SQL statements. (?1) is a

parameter representing the ride taker's start point and (?2)

represents the ride taker's end point. This query outputs the ride

givers for this newly arriving ride taker. These ride givers are

updated in the application state. Similarly, the incremental ride

giver query (IncRGQ) outputs the feasible ride takers for a newly

arriving ride giver, the incremental traffic query (IncTQ) outputs

the ride givers who are stuck in traffic and the incremental traffic

clear query outputs the ride givers which have come out of a

traffic situation and are ready to offer rides again. We assume that

the ride giver’s mobile device would be able to send an event to

the application when the ride giver changes route segments, based

on GPS. A continuous query, triggered by a route segment change

by the ride giver, checks whether the current route segment is one

of the route segments declared by the ride giver at the start of the

ride and if not, flags the ride giver as having changed routes.

Another point to note is the need for user managed windows. In

this application it can be seen that ride takers and ride givers leave

the system at will and there is no fixed lifetime for a ride giver or

ride taker request. While previous stream reasoners [4,5] have

used time-based or count-based windows, these are not optimal

for this application. There needs to be a mechanism to delete a

ride giver request when the ride giver finishes the ride (similarly

for ride takers). In our solution, when the user finishes the ride,

the ride giver sends the request KP back as a “delete request", and

the triples corresponding to the request KP are deleted. Request

KP may also be deleted on expiry of a specified time period.

3. RESULTS AND CONCLUSION
To simulate a real life ride sharing scenario, we used the Google

Maps Places API3 to fetch data about locations and its nearby

establishments. The locations on the route from Washington to

New York were used to generate the data. In the simulation, a ride

taker randomly provided start and end points, and it was matched

with randomly generated routes of the ride givers.

Figure 2: Comparison of incremental queries with ARQ

The comparison of the average times taken by each type of query

is shown in Figure 2. It is seen that the All Rides Query is more

than an order of magnitude slower than the incremental ones.

In this paper, we have shown the design of an ad-hoc ride sharing

application that reduces the uncertainties of the ride. Instead of

considering all event types in the continuous query, we show that

building the application state incrementally using a single event

type boosts performance significantly. We have also introduced

the important concepts of knowledge packets and user managed

windows. We have shown the architecture of a stream reasoner

framework that we have designed. Further work on improving

performance of the stream reasoner is planned.

4. REFERENCES
[1] Shao, J. and Greenhalgh, C. 2010. DC2S: a dynamic car

sharing system. In Proceedings of LBSN-2010, 51-59.

 [2] Winter, S. and Nittel, S. Ad-hoc Shared-ride Trip Planning by

Mobile Geosensor Networks. 2006. International Journal Of

Gegraphical Information Science, volume 20, 899-916.

[3] Agatz, N., Erera, A., Savelsbergh, M., Wang, X. 2010.

Sustainable Passenger Transportation: Dynamic Ride-Sharing.

Technical Report. ERIM Report Series, Research in Management.

 [4] Barbieri D, Braga D., Ceri S., Valle E. and Grossniklaus M.

2009. C-SPARQL: SPARQL for continuous querying. In

Proceedings of WWW-2009, 1061-1062.

[5] Anicic D., Fodor P., Rudolph S. and Stojanovic N. 2011. EP-

SPARQL: A unified language for event processing and stream

reasoning. In Proceedings of the WWW-2011, 635-644.

3 http://code.google.com/apis/maps/

WWW 2012 – Poster Presentation April 16–20, 2012, Lyon, France

580

