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ABSTRACT 

In the existing ride sharing scenario, the ride taker has to cope 

with uncertainties since the ride giver may be delayed or may not 

show up due to some exigencies. A solution to this problem is 

discussed in this paper. The solution framework is based on 

gathering information from multiple streams such as traffic status 

on the ride giver's routes and the ride giver's GPS coordinates. 

Also, it maintains a list of alternative ride givers so as to almost 

guarantee a ride for the ride taker. This solution uses a SPARQL-

based continuous query framework that is capable of sensing fast-

changing real-time situation. It also has reasoning capabilities for 

handling ride taker's preferences. The paper introduces the 

concept of user-managed windows that is shown to be required 

for this solution. Finally we show that the performance of the 

application is enhanced by designing the application with short 

incremental queries.   
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1. INTRODUCTION 
In ad-hoc ride sharing, there are essentially two types of users: the 

ride taker who needs a ride, and the ride giver who offers a ride. 

So the essential requirement for a ride sharing application is 

matching the ride giver's route with the ride taker's start and 

destination locations. However, this problem is complicated by 

two facts: firstly, the ride giver may be delayed by traffic and may 

not meet his commitment, and, secondly, the ride giver may not 

show up at all due to some exigency. The solution described in 

this paper attempts to mitigate these issues by keeping track of the 

real time traffic situation and the ride giver's GPS position; and by 

maintaining a list of alternative ride givers who will be able to 

offer a ride. This dynamic ad-hoc ride sharing is a non-trivial 

problem: real time streams of traffic status and ride giver's 

positions have to be combined and alternative ride givers have to 

be maintained for each ride taker to ensure the best possible 

experience for the ride taker. 

Some existing ride sharing solutions are: PickupPal1 and Zim-

ride2. A full-fledged ride sharing system has been designed in [1]. 

[2] emphasizes on delivering optimal rides with incomplete 

spatial and temporal knowledge. [3] views the problem as an 

optimization problem: minimizing total miles travelled, 

minimizing total time spent, and maximizing the number of 

rideshare participants, for all the rides. The current paper mainly 

focuses on improving user experience through reducing 

uncertainties and keeping track of alternative ride givers. This is 

not fully addressed in the cited works. 

2. APPROACH TO THE SOLUTION 
The solution clearly requires continuous monitoring of the real 

time situation including incoming streams of traffic status, ride 

taker and ride giver information. Also, these streams need to be 

combined with spatial knowledge about routes and places. Also, 

the user's preferences have to be matched with the available 

options. If a ride taker wants to ride a SUV, and a ride giver has a 

Ford Explorer, then the system should be able to reason that since 

Ford Explorer is an SUV, the ride giver qualifies to give the ride. 

Based on the above observations, stream reasoning seemed to be a 

good fit for the problem since there is a combination of streaming 

information with background knowledge and reasoning is needed. 

Background knowledge about the spatial domain is maintained in 

an ontology, where the following are maintained: “route 

segments" and “places" as entities, the relation “near" as a relation 

between place entities, and the relation “on" as a relation between 

a place and a route segment. It is assumed that there is a traffic 

reporting application which reports traffic events as the triple       

< r, s, t > where r is a route segment, s is a status such as 

“isCongestedAt" and t is a timestamp. The solution architecture is 

depicted in Figure 1. 

 

Figure 1. Solution Architecture 

The ride giver and ride taker submit their requests to the 

application which forwards them to the stream reasoner (SR) as a 

set of RDF triples called knowledge packets (KP). All events sent 

to the SR have an associated KP. A KP represents a request to the 

                                                                 

1 http://www.pickuppal.com 

2 http://public.zimride.com 
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SR. An example of a KP is the ride giver KP which contains the 

route segments the ride giver will traverse, the order in which 

these segments will be traversed and the car type. On receipt of a 

KP, the Event Manager of the SR adds the triples to the working 

memory (called Memory Area) and invokes the SPARQL queries 

(via the Query Executor) that are registered (in the Registry) for 

the particular KP (in this case the “ride giver KP"). When the 

triples are added, reasoners (such as rule-based reasoners) act 

upon them to produce additional facts. The results produced by 

running the queries are sent to the Result Processor which invokes 

listeners registered by the client applications. Note that the 

working memory also contains the facts from the spatial domain. 

Also, the KP concept simplifies application programming by 

disallowing partial requests to be sent to the SR, as requests in 

this application need to be completely specified. A KP can be of 

two types: “insert" and “delete" where the former is used in 

requests to the SR and the latter to remove a request (to 

implement user managed windows discussed later). Continuous 

SPARQL queries are triggered by the arrival of a KP. Each query 

can be triggered by multiple KPs. One way to design the 

application would be to run the All Rides Query (ARQ) which 

considers all possible events (ride giver, ride taker and traffic) and 

finds all pairs of matching ride givers and ride takers. It can be 

seen that this is a computationally intensive operation. Instead our 

approach is to build the state of the application incrementally 

using incremental queries by considering the impact of each event 

separately. The state of the application consists of a list of ride 

takers and their corresponding feasible ride givers. The impact of 

a ride taker who has arrived in the system is calculated by the 

incremental ride taker query (IncRTQ), which has the following 

code fragment: 

… 

?rideGiver rg:hasRoute ?route.                                        
?route rg:hasSegment ?routeSeg1.                               
?route rg:hasSegment ?routeSeg2.                                   
(?1) s:on ?routeSeg1. (?2) s:on ?routeSeg2.                        
... 

where rg is the IRI prefix of ride giver domain, s is the IRI prefix 

of spatial domain. Our implementation of SPARQL allows 

parameters similar to parameters in SQL statements. (?1) is a 

parameter representing the ride taker's start point and (?2) 

represents the ride taker's end point. This query outputs the ride 

givers for this newly arriving ride taker. These ride givers are 

updated in the application state. Similarly, the incremental ride 

giver query (IncRGQ) outputs the feasible ride takers for a newly 

arriving ride giver, the incremental traffic query (IncTQ) outputs 

the ride givers who are stuck in traffic and the incremental traffic 

clear query outputs the ride givers which have come out of a 

traffic situation and are ready to offer rides again. We assume that 

the ride giver’s mobile device would be able to send an event to 

the application when the ride giver changes route segments, based 

on GPS. A continuous query, triggered by a route segment change 

by the ride giver, checks whether the current route segment is one 

of the route segments declared by the ride giver at the start of the 

ride and if not, flags the ride giver as having changed routes. 

Another point to note is the need for user managed windows. In 

this application it can be seen that ride takers and ride givers leave 

the system at will and there is no fixed lifetime for a ride giver or 

ride taker request. While previous stream reasoners [4,5] have 

used time-based or count-based windows, these are not optimal 

for this application. There needs to be a mechanism to delete a 

ride giver request when the ride giver finishes the ride (similarly 

for ride takers). In our solution, when the user finishes the ride, 

the ride giver sends the request KP back as a “delete request", and 

the triples corresponding to the request KP are deleted. Request 

KP may also be deleted on expiry of a specified time period.  

3. RESULTS AND CONCLUSION 
To simulate a real life ride sharing scenario, we used the Google 

Maps Places API3 to fetch data about locations and its nearby 

establishments. The locations on the route from Washington to 

New York were used to generate the data. In the simulation, a ride 

taker randomly provided start and end points, and it was matched 

with randomly generated routes of the ride givers. 

 

Figure 2: Comparison of incremental queries with ARQ  

The comparison of the average times taken by each type of query 

is shown in Figure 2. It is seen that the All Rides Query is more 

than an order of magnitude slower than the incremental ones. 

In this paper, we have shown the design of an ad-hoc ride sharing 

application that reduces the uncertainties of the ride. Instead of 

considering all event types in the continuous query, we show that 

building the application state incrementally using a single event 

type boosts performance significantly. We have also introduced 

the important concepts of knowledge packets and user managed 

windows. We have shown the architecture of a stream reasoner 

framework that we have designed. Further work on improving 

performance of the stream reasoner is planned. 
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