
CloudSpeller: Query Spelling Correction by Using a
Unified Hidden Markov Model with Web-scale Resources

Yanen Li, Huizhong Duan, ChengXiang Zhai
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801

{yanenli2, duan9, czhai}@illinois.edu

ABSTRACT
Query spelling correction is an important component of modern
search engines that can help users to express an information need
more accurately and thus improve search quality. In this work we
proposed and implemented an end-to-end speller correction sys-
tem, namely CloudSpeller. The CloudSpeller system uses a Hidden
Markov Model to effectively model major types of spelling errors
in a unified framework, in which we integrate a large-scale lexicon
constructed using Wikipedia, an error model trained from high con-
fidence correction pairs, and the Microsoft Web N-gram service.
Our system achieves excellent performance on two search query
spelling correction datasets, reaching 0.960 and 0.937 F1 scores on
the TREC dataset and the MSN dataset respectively.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Query Alteration

General Terms
Algorithms, Performance, Experimentation

Keywords
Query Spelling Correction, CloudSpeller

1 Introduction
Search engine users make all kinds of spelling errors frequently,
including simple cases such as single character substitution/del/ins,
or more complex cases like multiple word concatenation and split-
ting. Although there are plenty of spelling correction algorithms in
the research literature [2, 3, 5], no existing approaches successfully
correct all major types of errors mentioned above. While industrial
systems such as Google can handle this problem well, it’s unclear
what they have done, especially what resources they have employed
in order to solve the challenges.

In this paper we describe an efficient end-to-end speller sys-
tem (called CloudSpeller) that can correct all the major types of
spelling errors with high precision and recall. CloudSpeller uses a
novel Hidden Markov Model to model all major types of spelling
errors in a unified framework. An efficient search algorithm for
finding top-K paths is designed to search a small number of final
corrections directly. The unified HMM takes into account two ma-
jor types of features, one from the error model, the other from the
n-gram language model. We train the error model with a set of
query correction pairs from the web. And a web-scale language

Copyright is held by the author/owner(s).
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

model is obtained by leveraging the Microsoft Web N-gram ser-
vice. We demonstrate that these two types of features are crucial
for building an accurate and efficient speller for web queries. Such
a system has an advantage in computing a more complete search
space in the first stage than other two-stage query spelling correc-
tion methods [4], thus it can also serve as a pre-processing com-
ponent of a more complex system that employs tens of features for
re-ranking. Another component of CloudSpeller that contributes
to improvement of performance is a large and reliable lexicon ex-
tracted from Wikipedia. The CloudSpeller system is publicly avail-
able at http://www.cloudspeller.com.

2 The CloudSpeller Architecture
The CloudSpeller system accepts a search query as input, and out-
puts a ranked list of possible corrections. Such ranked list of most
likely corrections is generated by a unified HMM model. Other
critical components include the large-scale trusted lexicon, the er-
ror model and web-scale n-gram language model.

2.1 The Unified HMM Model
We adopt a generative model for spelling correction where a possi-
bly mis-spelled query from a user is assumed to be generated from
a correctly spelled query using a Hidden Markov Model. The gen-
erative process follows a word-by-word process. At the beginning,
the user has a word in its correct form in mind. We would then as-
sume that the word is somehow transformed through a noisy chan-
nel and becomes potentially misspelled. In this process, it is not
only possible to misspell the given word into another word, but
also sometimes possible to split the word into several words, or
even combine the two types of misspellings. When the user has a
second word in mind, he or she may have similar misspellings as
the previous word, but may also incorrectly attach the word (or part
of it) to the previous word. Note that this HMM is more general
than the existing HMMs used for spelling correction [5] because it
can model many different kinds of spelling errors.

Formally, let θ = {A,B, π} be the model parameters of the
HMM, including the transition probability A, emission probability
B and initial state probability π. Given a list of query words (ob-
tained by splitting empty spaces), the states in a state sequence are
one-to-one corresponding to the query words except for the merg-
ing state. Each state is represented by a phrase. Theoretically the
phrase in a state can be chosen arbitrarily, however for the sake of
efficiency we reduce the state space by only choosing a phrase in
a lexicon such that dist(s, qi) ≤ δ (δ = 3 in this work), where
dist(s, qi) is the edit distance between the state phrase s and word
qi in the query. Each state also has the type t; indicating whether
the state is a substitution, merging, splitting or NULL state (rep-
resented by an empty string, and it doesn’t emit any phrase). In
order to reduce the search space of model parameters A,B, π as

WWW 2012 – Poster Presentation April 16–20, 2012, Lyon, France

567



well as to accommodate additional features, we formulate the uni-
fied HMM by a set of feature functions. In this formulation, the
log-probability of a state sequence s with its type t is represented
by the linear combination of these feature functions:

G(s, t) =

nX
i=1

dX
j=1

λjφj(si−1, ti−1, si, ti)+

nX
i=1

d′X
k=1

µkfk(si, ti, q[1:n])

(1)
where feature function φj(si−1, ti−1, si, ti) and fk(si, ti, q[1:n])

can be calculated by the bigram language model and error model
probability respectively. And the coefficients λj and µk are esti-
mated by a discriminative training algorithm on a set of labeled
<query, correction> examples. Finally, the best state sequence,
which is equivalent to the most likely correction can be found by:

s∗t∗ = arg max
s,t

G(s, t) (2)

Now we describe the specific ways we instantiate the unified
HMM model using web-scale resources as follows:

(1) A large-scale trusted lexicon for generating the state space
for HMM. We find that a large and clean lexicon will significantly
improve the performance of spelling correction while keeping the
candidate state space small. Our lexicon is from the Wikipedia
data. Particularly, we select the top 2 million words from Wikipedia
by their word frequencies, and automatically curate the obtained
words by removing those frequent but illegitimate words from the
vocabulary. This curate process involves checking if the word ap-
pears in the title of a Wikipedia article, comparing the bigram prob-
ability of other words etc. Finally we obtained 1.2 million highly
reliable words in the vocabulary.

(2) Error Model. The feature function fk() depends on an error
model, which measures the probability that one word is misspelled
into another. Here we adopt the Weighted Edit Distance (WED) to
estimate the error model. More specifically, we first compute the
best character-level alignment of two words, and the WED between
these two words is the summation of the WED of all aligned char-
acter pairs. We model the character-level WED as the character
transformation probability. In order to compute such a probability,
a large set of query-correction pairs is obtained by leveraging the
spelling services from Google and Bing; and then this probability is
estimated as the expected number of transformation from one char-
acter to another in these aligned pairs. The training queries are from
the MSN search query log released by the Microsoft Live Labs in
2006 (6.5 million queries). They are submitted to the spelling ser-
vices, and the corrections are recorded once consensus is reached.

(3) Web N-gram Model. The feature function φj() is estimated
by a n-gram language model, which represents the probability of
a state sequence being correct. In this work we make use of the
Web n-gram service provided by Microsoft [1]. Web n-gram model
intends to model the n-gram probability of English phrases with
the parameters estimated from the entire Web data. Despite trained
with the Web data, Web n-gram model may also suffer from data
sparseness in higher order models. To avoid this issue, we make
use of the bigram model in building our spelling system.

3 Evaluation
In order to evaluate the performance of CloudSpeller, we have tested
it on two query spelling correction datasets. One is the TREC
dataset based on the publicly available TREC queries (2008 Mil-
lion Query Track). This dataset contains 5892 queries and correc-
tions annotated by the Speller Challenge organizers. There could
be more than one plausible corrections for a query. In this dataset
only 5.3% of queries are judged as misspelled. We also annotated
another dataset containing 4926 MSN queries. For each query there

is at most only one correction. About 13% of queries are judged as
misspelled in this dataset. We divide the TREC and MSN datasets
into training and test sets evenly. CloudSpeller is trained on the
training sets and finally evaluated on the TREC test set containing
2947 queries and MSN test set containing 2421 queries.

We evaluate our system based on the evaluation metrics proposed
in Microsoft Speller Challenge [1], including expected precision,
expected recall and expected F1 measure. Results on TREC and
MSN datasets are reported in Table 1 at top 10 corrections as out-
put. The results indicate that CloudSpeller is of very high precision
and recall in TREC dataset. In the MSN dataset which is consid-
ered harder since it has more misspelled queries, CloudSpeller also
achieves high precision of 0.910 and recall of 0.965. This suggests
CloudSpeller is very effective for handling spelling errors in search
queries overall. We also break down the results in Table 2 by er-
ror types to examine how well our system addresses each type of
errors. The breakdown results show that most queries are in the
group of “no error", which are easier to correct than the other three
types. As a result, the overall excellent performance contributes to
the high precision and recall on the “no error" group. On the other
hand, the system has relatively lower precision on the queries with
the other three types of errors. The splitting errors seem to be the
hardest to correct, followed by the concatenation errors, and the
substitution errors seem to be relatively easier.

Table 1: Results on TREC and MSN dataset
dataset #queries precision recall F1
TREC 2947 0.955 0.965 0.960
MSN 2421 0.910 0.965 0.937

Table 2: Results by Spelling Error Type
dataset error type % queries precision recall F1

no error 94.7 0.983 0.986 0.984
TREC substitution 3.9 0.391 0.970 0.557

concatenation 0.8 0.352 0.929 0.510
splitting 0.6 0.301 0.945 0.457
no error 87.0 0.971 0.973 0.972

MSN substitution 10.1 0.475 0.904 0.623
concatenation 1.6 0.328 0.886 0.479
splitting 1.3 0.304 0.866 0.450

4 Conclusions
The key novelty of our system lies in the unified Hidden Markov
model that successfully models all major types of spelling errors
in web queries, which is under addressed by previous works. The
large and clean lexicon, error model and n-gram model are also
critical to our system. In the future, we want to improve the system
by adding more effective features, while ensuring efficient search
and evaluation of the whole set of candidates.

5 References
[1] http://research.microsoft.com/en-

us/collaboration/focus/cs/web-ngram.aspx.
[2] E. Brill and R. Moore. An improved error model for noisy

channel spelling correction. In ACL 2000
[3] Q. Chen, M. Li, and M. Zhou. Improving query spelling

correction using web search results. In EMNLP 2007.
[4] J. Gao, X. Li, D. Micol, C. Quirk, and X. Sun. A large scale

ranker-based system for search query spelling correction. In
COLING 2010.

[5] S. Cucerzan and E. Brill. Spelling correction as an iterative
process that exploits the collective knowledge of web users.
In EMNLP, 2004.

WWW 2012 – Poster Presentation April 16–20, 2012, Lyon, France

568




