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ABSTRACT
The structure of a social network contains information useful
for predicting its evolution. We show that structural infor-
mation also helps predict activity. People who are “close” in
some sense in a social network are more likely to perform
similar actions than more distant people. We use network
proximity to capture the degree to which people are “close”
to each other. In addition to standard proximity metrics
used in the link prediction task, such as neighborhood over-
lap, we introduce new metrics that model different types of
interactions that take place between people. We study this
claim empirically using data about URL forwarding activity
on the social media sites Digg and Twitter. We show that
structural proximity of two users in the follower graph is
related to similarity of their activity, i.e., how many URLs
they both forward. We also show that given friends’ ac-
tivity, knowing their proximity to the user can help better
predict which URLs the user will forward. We compare the
performance of different proximity metrics on the activity
prediction task and find that metrics that take into account
the attention-limited nature of interactions in social media
lead to substantially better predictions.
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1. INTRODUCTION
The structure of complex networks contains valuable in-

formation that can be used to identify missing links and
predict which new links between existing nodes are likely
to be observed in the near future [3, 2, 4]. Given a pair
of unconnected nodes, link prediction algorithm calculates
a graph-based proximity score between them. Graph prox-
imity measures how readily information can be exchanged
by nodes in a network even in the absence of a direct link
between them. However, the degree to which node is reach-
able depends not only on network topology, but also on the
nature of interaction between the nodes [1]. One-to-one in-
teractions such as web surfing or phone conversations, can be
described as a random walkbut in social media, rather than
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pick one neighbor to whom to transmit a message, users
broadcast it to all neighbors. Also, since users’ capacity
to respond to incoming messages from network neighbors is
limited by their finite attention, this may further change the
nature of interactions in social media.

We propose proximity metrics that take into account the
one-to-many and attention-limited interactions between nodes.
We show that structural proximity can help predict URL
forwarding activity in social media. When a user tweets a
URL, it is is broadcast to all the user’s followers, who may
in turn retweet it. We investigate how well follower graph-
based proximity metrics predict which URLs the user will
retweet. We find that metrics that take into account the one-
to-many and attention-limited nature of interactions lead to
better predictions.

2. INTERACTIONS AND PROXIMITY

Table 1: Some of the proximity metrics used for net-
work analysis, including four proposed in this paper
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Intuitively, network proximity measures the likelihood a
message starting at node u will reach another node v, regard-
less of whether an edge exists between them. The greater the
number of paths connecting them, the more likely they are
to share information, and the closer they are in the network.
Proximity metrics used in previous studies [3, 4] include
the number of common neighbors (CN), fraction of common
neighbors, or Jaccard (JC) coefficient, and the Adamic-Adar
(AA) score, which weighs each common neighbor by the in-
verse of the log of its degree. Table 1 gives their definition us-
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ing directed neighborhoods of u and v: ∆ = Γout(u)∩Γin(v)
and ∆′ = Γin(u) ∩ Γout(v). Here, Γout(u), represents the
set of out-neighbors of node u, which in social media corre-
sponds to the set of followers of u. Similarly, Γin(u) repre-
sents the set of in-neighbors (friends) of u. The out-degree
of u is dout(u) = |Γout(u)| and in-degree is din(u).

The likelihood a message will reach v from u depends,
however, not only on the number of paths, but also on the
nature of the dynamic process by which messages spread
on the network [1]. Different dynamic processes will lead
to different notions of proximity, even in the same network.
Consider first a random walk, or what we call a conservative
process. Koren et al. [2] introduced cycle-free effective con-
ductance as a measure of proximity. This is a global metric
computes the probability a random walk starting at u will
reach v through any path in the graph. In most cases we are
interested in local measures, that depend only on the neigh-
borhoods of u and v. They are not only easier to compute,
but also do not require knowledge of the full graph, e.g.,
the entire Twitter follower graph. To go from u to v, the
random walker first needs to pick an edge that will take it
u to a common neighbor z it shares with v (which it will do
with probability 1/dout(u)), then it has to pick an edge that
will take it to v (which it will do with probability 1/dout(z)).
Symmetrizing, we obtain metric CS in Table 1. This mea-
sure is almost identical to the metric shown by Zhou et al. [5]
to perform best on the missing link prediction task in the
electric power grid, router-level Internet graph, and US air
transportation networks, all of which have conservative in-
teractions.

People have finite attention, which limits their capacity
to respond to incoming stimuli. Social media users divide
their attention among all friends, which limits their ability
to respond to a specific friend (for simplicity, we assume that
attention is evenly divided among friends). This alters the
interactions. Now, in order for a message to get from u to
a common neighbor z, it must not only go over the correct
out-link from u, but z must also pay attention to the in-
link, which it will do with probability 1/din(z). This leads
to attention-limited conservative metric CS AL in Table 1.

Now imagine that messages flow via one-to-many broad-
casts. For a message to get from u to v, first u broadcasts
it to its neighbors, including z, and then z broadcasts it.
Probability of getting the message to v is one; therefore,
non-conservative proximity NC simply counts the neigh-
borhood overlap. Finite attention can also play a role in
non-conservative interactions. Following the logic above,
we derive attention-limited version NC AL. In undirected
graphs, it is identical to conservative metric.

3. ACTIVITY PREDICTION
Social media users tend to be similar to their friends,

which means that they tend to vote for URLs their friends
vote for on Digg or retweet on Twitter, and so on. While
friends’ activity can be a useful predictor of user’s actions,
we claim that knowing the local structure of the follower
graph can enhance predictive power. In other words, while
social media users tend to act like their friends, they are
more likely to act like their closer friends.

We evaluate this claim by predicting URL forwarding on
Digg and Twitter. The task can be stated as follows: given
the follower graph and the URLs that a user’s friends for-
ward (retweet), predict which stories the user retweets. We

Table 2: Evaluation of predictions by different met-
rics in the Digg and Twitter data sets. Lift is defined
as % change over baseline.

base CN, NC JA AA CS CS AL NC AL

(a) Digg
precision 0.032 0.027 0.033 0.027 0.028 0.039 0.034
recall 0.172 0.248 0.174 0.250 0.272 0.195 0.174
pr lift % 0 -15.0 3.3 -14.7 -11.1 22.1 7.7
re lift % 0 44.2 1.1 45.5 57.9 13.3 1.3

(b) Twitter
precision 0.105 0.091 0.120 0.093 0.094 0.133 0.125
recall 0.094 0.090 0.102 0.091 0.097 0.113 0.106
pr lift % 0 -14.1 14.1 -12.0 -10.7 25.9 18.5
re lift % 0 -4.8 8.4 -3.4 2.8 19.7 12.3

construct a prediction vector p for a user, whose values
represent probability a user’s friends retweet the ith URL,
weighted by each friend’s proximity. To compute precision
and recall of prediction, we construct a vector of URLs the
user actually retweeted. We compare proximity-based pre-
diction to baseline that weighs friends’ activity uniformly,
without regard to proximity to user. We measure perfor-
mance as improvement over baseline (lift).

We used the Digg data set,1 which contains voting records
of 139K users on 3.5K stories. The Digg follower graph has
70K nodes and more than 1.7 million edges. Our Twitter
data set contains retweeting histories of 4K URLs that have
been tweeted by 542K users. The Twitter follower graph
has almost 700K nodes and over 36 million edges.

Table 2 compares prediction performance of different prox-
imity metrics. Attention-limited versions of proximity met-
rics result in the greatest lift both in precision and recall.
This is because they account for the nature of communica-
tion in social media.
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