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ABSTRACT
The process of creating modern Web media experiences is chal-
lenged by the need to adapt the content and presentation choices
to dynamic real-time fluctuations of user interest across multiple
audiences. We introduce FAME – a Framework for Agile Media
Experiences – which addresses this scalability problem. FAME al-
lows media creators to define abstract page models that are sub-
sequently transformed into real experiences through algorithmic
experimentation. FAME’s page models are hierarchically com-
posed of simple building blocks, mirroring the structure of most
Web pages. They are resolved into concrete page instances by
pluggable algorithms which optimize the pages for specific busi-
ness goals. Our framework allows retrieving dynamic content from
multiple sources, defining the experimentation’s degrees of free-
dom, and constraining the algorithmic choices. It offers an ef-
fective separation of concerns in the media creation process, en-
abling multiple stakeholders with profoundly different skills to ap-
ply their crafts and perform their duties independently, composing
and reusing each other’s work in modular ways.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Preparation

Keywords
Web page optimization framework, multivariate testing

1. INTRODUCTION
Digital media websites have mainly grown out of traditional me-

dia outlets, e.g. TV and printed press. Accordingly, such sites
produce their pages in a process resembling traditional media, i.e.
through an editorial board that decides on the various aspects of
the page – its layout, which content items (including ads) to place
where in the layout, and how to render (or format) the content. Edi-
tors of printed and broadcast media are typically senior journalists,
who mostly apply human judgment, intuition and experience in cre-
ating their editions. However, two gating factors limit their ability
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to optimize, in a methodological manner, the product they put in
front of their audience.

First, print editors have no way of tracking (other than through,
perhaps, small focus groups) how their product was consumed and
how it “performed”, i.e. which stories, sections or ads resonated
well with the readership/viewership and which didn’t. Circulation
and ratings trends take many weeks to develop, and are difficult to
attribute to any specific decisions made by the editors. In contrast,
through proper instrumentation, digital media editors can get im-
mediate feedback on the consumption of their product. It is easy
to track in real-time the number of times each story (or ad) was
clicked, each video played, and each survey answered. Tracking
unique visitors and repeat visitors in an accurate manner over any
time period is also possible. Unlike their counterparts from the
press, editors of online media have no lack of data – on the con-
trary, they perhaps have too much data to humanly reason about.

A second major difference between traditional and online media
revolves around the concept of an “edition”. Printed media outputs
editions at fixed intervals, e.g. daily or weekly, and prints a limited
number of different versions per edition (e.g. editions may vary
slightly between locales). Television programs are also produced
at a regular pace, with minor variability. In contrast, online media
isn’t bound to the concept of editions, and content can rotate in and
out of a Web page in real time. Lifetimes of content items vary,
i.e. some items can remain served much longer than others. Fur-
thermore, the number of different served versions of a page may,
theoretically, equal the number of users to whom it was served.

Obviously, editorial attention does not scale to support the shift
from a small discrete space of editions to a large continuum. Hu-
man analysis of complex instrumentation is also not scalable. With
proper automation, however, online media can tap the ability to
produce a continuum of editions to experiment with a huge vari-
ety of generated pages. The power of interaction instrumentation
and the resulting usage statistics can then be leveraged to optimize
the media experience - namely, choose the settings that produce the
most favorable experience at every point in time.

In recent years, reinforcement learning has been applied in vari-
ous contexts to optimize digital media in the sense described above,
mainly by tapping click-through rates. Examples include optimiz-
ing search results ranking [12, 14] and main story optimization [1,
2]. Whereas the above works mainly revolved around optimizing
content, other efforts leveraged user interactions to optimize pre-
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sentation, e.g. layout of content on mobile devices [9]. These ef-
forts demonstrated that algorithmic optimization of media can out-
perform editorial decisions and intuitions.

We envision that editors of future media sites will oversee their
product at a high level, delegating many functions to algorithmic
machinery, to keep up with scalability challenges. They will lever-
age experience and intuition to define the desired experiences in ab-
stract terms, through logical page models. Rather than fully speci-
fying the page, these models will include degrees of freedom on its
layout, content and formatting, constraints on how those degrees
of freedom may be jointly resolved, and the target function to pur-
sue. For example, degrees of freedom may include specifying a
large content pool from which several stories are to be selected,
choosing from among several layouts, and choosing formatting or
algorithmic configuration parameters. Constraints may be imposed
on the joint resolutions of the degrees of freedom, thus introducing
dependencies between those resolutions. Target functions may fac-
tor in user engagement (click-through rates, repeat visits, etc.) as
well as monetization aspects. The actual optimization of the page,
within the parameters defined by the editors, will be algorithmic.

This paper introduces FAME – a Framework for Agile Media
Experiences. We present the vision and prototype of the system,
parts of which are already in production at Yahoo!. FAME defines
a hierarchical logical model for describing complex self-optimizing
web pages, that allows a fine-grained interplay between algorithmic
decisions and editorial control. FAME allows independent plug-ins
to optimize various decisions on the page, and orchestrates those
plug-ins so that their joint output will satisfy the constraints while
performing well in the target function. Essentially, the FAME ex-
ecution engine explores the space of possible page instantiations,
attempting to converge to the best performing one.

Our architecture emphasizes the decoupling and composability
of all artifacts – dynamic data sources, degrees of freedom, con-
straints and optimization plug-ins – across multiple pages. Thus,
the different stakeholders that participate in the media creation pro-
cess can perform their roles in a mostly independent and repeatable
fashion, while utilizing profoundly different skill sets. To the best
of our knowledge, no existing page optimization system achieves
this level of separation-of-concerns, while capturing the complex
structure of modern Web pages as well as accommodating state-of-
the-art optimization algorithms.

The rest of this paper is organized as follows. Section 2 describes
the ecosystem of online media creation, and explains how the the
FAME framework combines the efforts of the various stakehold-
ers in agile creation of optimized media pages. Section 3 surveys
related work, and emphasizes our contributions. Section 4 defines
our logical page model, and specifies how degrees of freedom for
experimentation are injected into the pages. Section 5 extends the
page model by adding constraints that enforce editorial validity of
the result. Section 6 introduces the model execution engine, where
FAME applies algorithmic plug-ins to optimize the page within
the aforementioned degrees of freedom, subject to the given con-
straints. Section 7 describes FAME’s infrastructure for collecting
and harnessing real-time user feedback. We conclude in Section 8.

2. AGILE MEDIA CREATION
The process of creating new media experiences revolves around

two resource pools: the raw content pool (articles, images, video
clips, blog posts, tweets, ads, etc.), and the much smaller user expe-
rience design (UED) pool (web pages’ layouts, navigational bars,
functional widgets, image carousels, etc.). The first pool comes
from a variety of sources (news and social feeds, multimedia repos-
itories, etc.), whereas the second one is typically created by the

Figure 1: The FAME experimentation and optimization ecosys-
tem.

media product’s UED specialists. The Web page ultimately served
to the user is optimized for multiple goals, usually striking some
balance between user satisfaction and business objectives.

FAME is a framework for systematic experimentation with com-
binations of content and design while optimizing for the desired
goals. It offers a separation of concerns that allows people with
very different skill sets to address different aspects of media expe-
rience creation independently. The three pillars around which these
aspects can be depicted are shown in Figure 1:

Degrees-of-Freedom Management. A product owner in charge
of a particular experience creates a logical page model that defines
the eventual impression, subject to the desired level of experimen-
tation. For example, a media site’s front page owner may use a
fixed layout, allocating one slot to an ad, and two other slots to
any combination of news, sports and entertainment items. Alter-
natively, one might use a fixed set of data sources, and experiment
with two possible layouts – e.g., varying the ads’ locations.

Constraint Definition. Media editors responsible for maintain-
ing semantic consistency of an experience may cast a set of con-
straints that mandate (or conversely, rule out) certain content and
graphic design combinations. For example, a website’s content ed-
itor may require that only hard-core news items become the center-
piece of its main page, or demand that no two rich media spots are
rendered next to each other. Moreover, the editor may enforce the
same constraints uniformly across all pages.

Content and Business Optimization. Optimization experts ta-
ckle the problems of optimizing the media and layout selection sub-
ject to various goals (user interaction, monetization, etc), which are
typically set by business owners. For example, one team may fo-
cus on the problem of choosing and ranking stories to populate a
list of story links, while a different team may solve an ad-slotting
problem. Their deliverables are software building blocks that can
be composed on demand in optimizing experiences. Eventually, a
relatively small toolkit of optimization algorithms will be applica-
ble to be reused in many different media experiences that differ by
layouts, content pools, target functions, etc.

Manifesting the aspects above in separate, composable and reus-
able software and configuration artifacts allows isolating the busi-
ness processes behind them, resulting in the agile rollout of opti-
mized experiences. The framework allows all players above to vir-
tually act together for a particular page impression, where in prac-
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tice the various players may have never met, never tailored their
decisions to the common context, and without them even knowing
how their artifacts interact. Thus, product owners are able to embed
degrees of freedom in their pages – and algorithms that reconcile
them – without having to engage with optimization experts. The
algorithms that are used in the page may have never been used to-
gether before. The editorial policies can be enforced centrally, and
independently of ongoing evolution in UED. Thus, new pages can
be optimized by reusing and composing building blocks of previ-
ous optimization efforts, without the need to have all stakeholders
actually meet and discuss the specifics of any given experience.

This agility comes at a price – inevitably, a tailored optimiza-
tion process for each media experience might lead to a better result
than an automatic integration of generic components. However, tai-
lored approaches do not scale with the explosive number and rate
of pages served by present-day sites. FAME’s modular approach,
which follows best practices in architecting complex software sys-
tems [6], provides a solid methodology for this scalability problem.

3. RELATED WORK
Over a decade ago, Etzioni and Perkowitz coined the term Adap-

tive Web Sites to denote sites that automatically improve their orga-
nization and presentation by observing usage patterns [13]. Since
then, a significant amount of research has been invested in improv-
ing Web experiences in light of metrics derived from usage pat-
terns, most notably click through rates (CTR). The literature covers
works that iteratively improve upon their metrics given usage feed-
back, as well as testing methodologies where a site experiments
with multiple parameters (display options, algorithm versions, etc.)
in parallel so as to choose a well performing setting.

Fiala [5] suggested a concern-oriented framework for adaptive
web applications and defined a language for modular web page de-
scription with rules for adapting to user profiles. However, it does
not deal with dynamic experimentation or constraint validation.

Kohavi et al. [11] published a survey on controlled experiments
on the Web, ranging from A/B testing to multi-variable tests. They
concluded that having the appropriate infrastructure for testing is
key to achieving speedy and agile innovation. They stress the im-
portance of being able to test many ideas quickly, and to have the
unsuccessful ones “fail fast”. A follow-up by some of the same
authors [4] focuses on Web-specific pitfalls one should avoid when
performing such experiments, giving many real-life examples.

Tang et al. [18] describe Google’s framework for scaling the ex-
perimentation capacity of their Search site. They describe how
multiple parameters are partitioned into layers, where experiments
can modify one parameter per layer per domain (segment of traffic).
The manually partitioned layers guarantee that potentially conflict-
ing parameter settings are never simultaneously tweaked.

In a deviation from standard A/B testing methodology, Radlinski
et al. [14] compare search algorithms by interpreting CTR on an
interleaved list of the results returned from both algorithms. Moon
et al. [12] suggest utilizing user feedback in the form of clicks for
online learning tasks, such as re-ranking of top search results in
temporally sensitive queries.

Many reinforcement learning works in recent years applied the
well-known Multi-Armed Bandit problem [8] in optimizing Web
experiences. Agarwal et al. [2, 1] discuss explore-exploit algo-
rithms that tap user clicks on stories to optimize content on Ya-
hoo.com. Their approach is a natural candidate to be plugged into
our framework. Chakrabarti et al. [3] apply optimization to items
(e.g. ads) whose performance degrades over time, therefore requir-
ing constant vigilance (manifested in increased exploration) to en-
sure sustained performance. Syed et al. [17] tackled queries whose

prevalent meaning varies in time, and used an event classifier to es-
sentially reset the bandit algorithm once they detect an event that
causes the prevalent interpretation of the query to change.

In addition to the papers above, several commercial systems -
both proprietary and open source - enable Web masters to easily set
up multivariate experiments on their sites and either track metrics
or automatically tune the sites’ performance.

The Genetify open-source project1 uses genetic algorithms to op-
timize Web pages. Web masters define groups of elements, where
within each group, the various elements are display alternatives.
Various rewards can be associated with clicks on the outcome, and a
genetic algorithm [10] is applied to explore user interactions across
multiple versions of the page, converging (hopefully) to the in-
stance of maximum reward. Some of Genetify’s developers later
applied similar technologies at SnapAds2, a product for optimizing
the performance of display ads. Advertisers create variations on
ad elements, and the software generates the cross-product of those
variations as a space of candidate ads. Those candidates are pruned
manually by the advertiser, and a genetic algorithm searches for the
allowed instance that generates the best CTR.

Maxymiser3 applies multivariate testing for content optimization
and Web site personalization. Web masters define multiple variants
of disjoint content areas, and the system explores the cross-product
space of those variants to find the best-performing combinations.
User segmentation is also applied, to discover different versions of
the site that appeal to different populations. Autonomy’s Optimost
service4 applies multivariate testing for content, layout and presen-
tation optimization of landing pages as well as ads. In addition to
the experience improving based on usage, they provide extensive
dashboards and analytic tools that allow Web masters to understand
the ripple effect of changes in one page on the funnel of down-
stream pages users flow to within the site. User segmentation is also
accounted for. The Google Website Optimizer5 uses Javascript in-
jection to perform multivariate testing on pages. Success is tracked
by the fraction of users who interact with the test page and ulti-
mately visit a (typically different) conversion page. Adobe’s Test &
Target6 product suite offers multivariate testing, user segmentation
and personalization at the single-user level, while having conve-
nient integration with Adobe’s user session tracking and logging
product (SiteCatalyst). Both Verster7 and Webtrends Optimize8

disclose using full as well as fractional factorial test designs to op-
timize campaign landing pages.

FAME improves upon the systems above in several aspects:

• Most aforementioned systems enable defining several sets
of disjoint and independent options on the page, and run-
ning tests over the cross-product space where each page in-
stance selects one option per set. Hence, the entire cross-
product space is eligible for serving. As observed in [18],
serving the entire cross-product space is a serious limitation
due to unwanted interactions between combinations of op-
tions. Whereas [18] introduced the concept of layers, FAME
uses a mechanism of constraints (see Section 5) that avoids
serving page instances with conflicting attributes.

1https://github.com/gregdingle/genetify/wiki/
2http://www.snapads.com/
3http://www.maxymiser.com/
4http://promote.autonomy.com/
5https://www.google.com/analytics/siteopt/splash
6http://www.omniture.com/en/products/conversion/testandtarget
7http://www.vertster.com/
8http://www.webtrends.com/Products/Optimize
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Figure 2: The Yahoo! front page. (a) Physical representation; (b) Schematic representation.

• The algorithms that search the cross-product space and per-
form the optimization in the systems above are monolithic,
proprietary and non-extensible. In contrast, FAME is an open
platform that defines interfaces and extension points that al-
low multiple optimization algorithms (written by various par-
ties) to be plugged in, each “resolving” specific portions of
the page (see Section 6).

• The optimization processes in the surveyed systems do not
leverage the hierarchical nature of Web pages. For exam-
ple, they cannot readily postpone the resolution of degrees of
freedom until content has been retrieved and/or other certain
decisions have been made. FAME, in contrast, is designed
for hierarchical optimization of the page (Sections 4 & 6).

4. LOGICAL PAGE MODEL
It is convenient to describe complex web pages in hierarchical

modular fashion. Such pages are typically partitioned into a set
of rectangular regions, in which content presentation entities that
we call modules are embedded. For example, the snapshot of the
Yahoo! front page depicted in Figure 2(a) is composed of eight
regions, that host a header module and seven body modules. Fo-
cusing on the body’s black-framed regions (see Figure 2(b)), the
embedded modules are Yahoo! sites on the left, Today as the center-
piece, Trending Now at the top-right, and a Yahoo! Vertical module
(currently showing content from Yahoo! Autos) at the bottom right
corner. The hierarchical nature of the page is further manifested by
the Today module, which includes five sub-regions, each depicting
a news item with an image and some textual description.

Consider a concise representation of the Today module portion
in XML format that natively captures the hierarchy (Figure 3(a)).
This logical page description is genuinely separate from the physi-
cal aspects of Web pages (namely, the exact rendering and precise
placement of the page elements) which constitute the final outcome
(or product) of Web media servers. We assume that the XML con-
tains enough information for the logical-to-physical transformation

to occur. For example, in Figure 3(a), the logical page description
(1) indicates that the MainPage physical layout must be applied, (2)
associates the Today module with a region label, and (3) instructs
to use the Design7 design to render the experience. As this ex-
ample is for illustrative purposes only, we do not concretely define
the semantics of the tags, instead relying on their names and label
attributes to convey their meaning. For ease of presentation, from
this point on we forego the explicit XML representation, and in-
stead exemplify our pages using the equivalent tree representation
(nodes are XML tags, and edges correspond to direct nesting of one
tag in another), as depicted in Figure 3(b).

The machinery which transforms logical page descriptions into
actual browser-ready Web pages is built into front-end systems and
is beyond the scope of this paper. For our purposes, it suffices to
consider that a front-end system will receive users’ HTTP requests
for page generation, and will call FAME - a back-end system - to
produce the logical page descriptions for responding to those re-
quests. Logical page descriptions in XML are therefore FAME’s
output, for front-end consumption.

FAME’s input, as passed from the front-end system, is a more
abstract logical page model, also in XML. Logical page models
capture the ecosystem discussed in Section 2. They allow exper-
imentation with degrees of freedom, optimization for user expe-
rience and business goals, and validation of editorial constraints.
Syntactically, a logical page model is a logical page description into
which platform-specific FAME tags are embedded. Each of these
tags, which we call operators, has well-defined semantics and is
associated with a unit of execution. That unit of execution, with the
exact business logic it encapsulates for a specific operator instance,
is pluggable into the model.

During execution (see Section 6), the logical page model (FAME’s
input) will gradually morph back into a logical page description
(FAME’s output) by a series of transformations defined by the op-
erators. Concretely, the scope of an operator is the set of its sub-
trees (this reflects the hierarchical nature of the page composition
process). Each operator evaluates to an XML tree free of further
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Figure 3: The Today module’s portion of the logical page description. (a) XML representation. (b) Equivalent tree representation.

FAME constructs, which in turn is accessible to its parent oper-
ator(s). An operator can produce an empty result if it cannot be
evaluated for some reason (e.g. there is no content for display, or
there is no legitimate way to render two modules). Handling this
situation is the consuming operator’s responsibility – the latter can
either rectify the problem, or itself return an empty result.

In what follows, we describe the FAME operator classes and
their high-level semantics.

4.1 Fetching Dynamic Content
Consider again the page depicted in Figure 2. Some of its ele-

ments are static (most notably, the header), while the others – e.g.,
the news stories in the Today module and the topics in Trending
Now module – change dynamically in real time. In order to ac-
commodate for such dynamic elements, FAME provides a fetch
operator that fetches at runtime a certain number of elements from
some content source, subject to configured latency constraints. The
content sources may be databases, content management systems,
search engines, or any other service that is queryable at runtime.
The operator evaluates to an XML subtree that encodes the result
set, which in turn may be processed by some consuming operator.
In order to compose consuming operators over result sets from spe-
cific sources, FAME allows XSLT plug-ins that perform schema
transformations. For example, Figure 4 depicts the Today module
as invoking a news fetcher, which at page generation time populates
the logical page description with the actual news stories. XSLT
then transforms the result set of news stories into the Today schema.

4.2 Optimization with Degrees of Freedom
One of the pillars of FAME is the ability to declaratively incor-

porate degrees of freedom into the logical page description, thereby
describing not a single page but rather a space of potential page in-
stances. The resolver operators operate on multiple child subtrees,
and produce a result that optimizes, exactly or approximately, some
target function (user engagement, monetization etc.). Syntactically,

Figure 5: Choice - Selecting one out of three Yahoo! verticals
(a) Choice operator and; (b) Resolved tree.

they can be embedded at any point of the tree. The framework sup-
ports two types of such multivariate resolvers – choice and map.

The choice operator encompasses multiple alternative subtrees,
and selects at runtime to instantiate one of them, effectively pruning
the other alternatives from the document. Choice operators may be
applied to user-visible elements of the page (e.g., populate region
X with one of modules A, B or C) and also to configuration op-
tions (e.g. govern the ranking logic by parameter sets D or E).
Figure 5 shows the sub-tree corresponding to the Yahoo! Vertical
region, with a degree of freedom allowing that region to be pop-
ulated by an Autos, Real Estate or Travel module, and how that
sub-tree is resolved when Autos is chosen.

The map operator is a generalization of choice, enabling to map
k out of n (n ≥ k) items to k positions. The main use of map
is to test permutations of page elements – permute modules within
regions, or items within a module. Building on the example from
Figure 4, the news items fetched for the Today module may not
necessarily be fetched in optimal order, and the number of poten-
tial stories fetched may certainly exceed four. Figure 6(a) shows
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Figure 4: Fetching dynamic content. (a) Fetcher; (b) Fetched content; and (c) XSLT transformation.

Figure 6: Map - Mapping four out of thirty news items to four positions. (a) Fetcher; (b) Fetching content; (c) Map XSLT transfor-
mation; and (d) News mapping (for XSLT transformation see Figure 4(c)).

how four placeholders are defined to act as map positions (for the
four teaser stories), with the fetcher also embedded in the map.
At runtime, the fetcher is executed (Figure 6(b)), its result set is
transformed (by the XSLT associated with the map) into map items
(Figure 6(c)), and the operator maps four of them into the place-
holders, resulting in Figure 6(d). At that point, the situation is
similar to what was depicted in Figure 4(b), thus completing the
operator’s evaluation. Note that the Today module XSLT is placing
News item 1 also in the Main Story region (see Figure 2(a)).

The combination of the map and choice operators exemplified
above describes a space of 3

(
n
4

)
pages, where n is the number of

news stories fetched. In practice (see Section 6.1), each resolver
typically only considers a small number of viable outcomes per
each user page request, making its computational overhead prac-
tically fixed. The entire space of possible pages is explored over
many page requests over time.

We reiterate that resolver operators can be inserted anywhere in
the logical page model. Accordingly, degrees of freedom can be
defined over any aspect of the page: its content (What is shown),
rendering format (How is it shown), and layout (Where is it shown).
Furthermore, resolvers may be composed by nesting one operator

in another. The example above showed a fetcher nested in a map,
and similar compositions of choice and map operators are allowed.

5. CONSTRAINING PAGE MODELS
Product owners and editors may wish to impose constraints on

the space of page instances, to ensure that only pages that satisfy
them will be generated. Such constraints are particularly useful in
the following cases:

1. Inter-operator constraint: Certain combinations of choices
and mappings may not mesh well together. These combina-
tions may be deterministic (“never choose X in this operator
if Y was chosen by that operator”), or may depend on the dy-
namics of the fetched content (e.g. to ensure deduplication
or diversity of content). For instance, consider the predicate
“The Trending Now module may not show a trend which ap-
pears in the headline of the Today module’s main story”.

2. Intra-operator constraint: Some attributes of the dynamic
content may disqualify choices that are valid a-priori. For
example, consider a constraint like “no more than 2 sports
news items can appear in the Today module”.
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Figure 7: A logical page model with embedded constraints operators.

3. User constraint: Some choices may be undesirable for cer-
tain individuals. For example, items that a user has already
consumed – or has repeatedly chosen to not consume – may
no longer be valid for that user.

To support such a restriction mechanism, FAME includes a con-
straints operator. Any number of individual constraint predicates
may be embedded within this operator. The overall semantics of
constraints are that it returns an XML subtree for which all pred-
icates are true. If no valid subtree can be found, the logical page
model is not satisfied, and an empty result is generated9. Note that
the semantics of constraints are purely declarative – e.g., an inter-
operator constraint (see example above) does not imply order on
the child operator’s evaluation.

To make the expressiveness of constraints as general as possible
while avoiding the definition of a proprietary syntax, the constraint
predicates are functions written in a high-level programming lan-
guage (in our implementation, JavaScript). A constraint function is
a boolean method that returns true if the constraint is satisfied and
false otherwise. Each constraint function has access (e.g., through
XPath expressions) to the XML subtree rooted at the constraints

9Handling empty results is up to the parent operators – see Sec-
tion 4.

tag. Thus, each constraint can access all elements of the subtree,
and validate the predicate it represents.

Figure 7 depicts a partial tree representation of the Yahoo! front
page, with intra- and inter-operator constraints operators marked in
bold. Note how the inter-operator page-level constraint spans over
the subtrees of both the Today and Trending Now modules, where
each module includes a map resolver.

Constraints, like any other operator, can be inserted into the log-
ical page model at any point of the XML tree. For performance
reasons that will be detailed in Section 6, the best practice is to
insert them at the deepest portion of the tree possible, i.e. as the
least common ancestor of all the elements that any of the constraint
functions refer to. In other words, at the immediate scope to which
they apply. This will allow to validate decisions of nested operators
– and to resolve any conflicts – as quickly as possible.

To conclude, we note that the theoretical foundation of finding a
feasible page instance given degrees of freedom and constraints is
a generalization of the prototypical NP-hard satisfiability problem
(SAT, [7]). Hence, there is no known worst-case polynomial-time
algorithm for valid page generation. In practice, however, we typi-
cally expect many feasible page instances to exist, and that finding
a valid solution will not be computationally hard. We assume that
the difficult task would be choosing the “best” solution out of the
numerous feasible ones (for more details see Section 6).
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6. MODEL EXECUTION
Model execution is the process of resolving all FAME tags, which

produces a plain XML that is ready for rendering (Section 4). This
process translates to a sequence of operator evaluations.

Each fetch, map and choice operator in a page model defines
an execution extension point. The model’s designer must asso-
ciate each such operator with an implementation plug-in, which
we call handler. Handlers perform the actual fetching and opti-
mization work – they retrieve data from sources, select news items,
map content modules to page slots, etc. FAME provides Java APIs
for handler implementations, and readily supports the sharing and
reuse of handlers among multiple models10. The built-in separation
of concerns (Section 2) allows isolating handler development from
the XML model design and Javascript constraint programming11.

The framework controls the order of handler execution. Individ-
ual handlers are unaware of the global execution flow – they only
need to implement operator semantics. For example, a map handler
must implement an API that assigns items to positions. It does not
require any environmental information – e.g., the operator’s loca-
tion in the hierarchy, or whether its parameters are fixed or dynam-
ically computed in the course of execution. The system mediates
all communication between the handlers. This design principle is
common to many data-flow architectures, e.g., database manage-
ment systems [15].

The hierarchical page composition process confines the scope
of each FAME operator to its XML subtree (Section 4). In other
words, each operator must be evaluated before its output is re-
quired by its ancestors. This requirement is naturally fulfilled by
the bottom-up execution order – i.e., each handler runs after all its
dependencies are resolved, and produces a subtree that is free of
FAME tags. The page model’s XML (tree) structure therefore im-
plicitly defines a workflow among its operators. For example, as
depicted in Figures 6 and 7, a map handler that operates on a set of
dynamic results is executed after the fetch handler for that source.
Likewise, constraints on this subtree can be validated only after the
items are fetched and mapped. In reality, the execution machinery
is more involved, due to the need for constraint satisfaction. Since
constraint operators can only return solutions (XML subtrees) that
satisfy the constraint predicates, their descendant operators should
be capable of producing more than one solution instance. In order
to address this, FAME expects map and choice resolvers to expose
their solution space for exploration at runtime, enabling the plat-
form to modify subtrees whose top-level constraints fail.

6.1 Handler Iterators and Constraints
The API of map and choice resolvers has them exposing an itera-

tor API. Instead of returning a single solution (subtree), they expose
their solution space for traversal via the next() method. Handlers of
those resolvers are expected to traverse the space in preference of
instantiation order, namely to first step through the solutions they
most prefer to instantiate in the current page generation request.
Typically those would be the best performing solutions, but at times
they can be solutions whose performance needs to be assessed in
explore/exploit experimentation schemes [8]. Thus, the iteration
order of the same handlers may change between successive page
requests of the same logical page.

The platform uses the iterators exposed by map and choice han-
dlers to search for valid sub-trees rooted at each constraints opera-

10We use an open-source OSGi container implementation as a
framework for flexible software component management.

11Recall that these activities require profoundly different skill sets,
and hence are separate by design.

Figure 8: Dynamic interaction between the handlers of a re-
solver operator and a constraint operator on top of it. The
FAME platform orchestrates the execution order and propa-
gates the constraint notifications to the resolver, indicating in
which direction to explore the search space.

tor. As FAME allows operators of all types to be composed hierar-
chically in the page model, constraint satisfaction translates to the
orchestration of movements of embedded iterators. This is remi-
niscent of how search engines manipulate postings iterators over
simple and complex query terms over an inverted index. The liter-
ature offers a wealth of methods for enumerating large combinato-
rial spaces – from simple Backtracking, through Branch and Bound
techniques, to heuristics such as Beam Search and Simulated An-
nealing, and more [16]. Most of these enumeration algorithms are
suited for the iterators’ enumeration of solutions in decreasing pref-
erence of instantiation12. The platform instantiates the page once it
finds a positioning of all iterators that satisfies all constraints.

Since operator handlers are unaware of the constraints imposed
on the solutions they propose, their iteration order over a large so-
lution space might require many steps till yielding a valid solution.
To address this issue, we introduce a constraint notification mech-
anism and protocol. The idea is to indicate, in the constraint func-
tion, which predicate(s) could not be satisfied, in order to restrict
the solution search when the embedded iterators get re-invoked.
The feedback is propagated by the framework downstream, and
passed to the descendant iterator’s next() method as a parameter.

There are two types of constraint notifications – hints and con-
flicts. Hints are positive feedback – they indicate what must be done
in order to obtain a valid solution. For example, a hint reported to a
map operator might instruct to populate a particular position from a
restricted set of items. Conflicts are negative feedback – i.e., what
must not be done. For instance, a conflict reported to a choice op-
erator might say that its selected item may not be chosen in this
context (typically due to an inter-operator constraint). Iterators re-
ceiving hints and conflicts are expected to fast-forward to the first-
next solution in their iteration order that respects the notification.

Figure 8 illustrates the interaction between two FAME operators
– a resolver R embedded within a constraints operator C – and the
platform’s mediation in this process. R’s handler gets invoked first
(on some problem instance), and returns an iterator I over its so-
lution space. The platform invokes next() on this iterator, retrieves
a concrete solution, and passes it to C. The latter applies its em-
bedded predicate function, which returns false with some hint or

12Some algorithms further require the iterators to return a fitness
score at each step.
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Figure 9: An end-to-end architecture spanning a front-end and
a FAME back-end. FAME has two façades: one for logical page
generation, and another for RTUF processing.

conflict notification. The platform then re-invokes I.next(), which
receives the notification as a parameter and outputs another poten-
tial solution. This process continues until C’s predicate holds.

Since constraints result in some (partial) enumeration over the it-
erators of embedded resolvers, FAME model designers should min-
imize computations by placing constraint operators as deep as pos-
sible in the model’s tree, to cover precisely their immediate scope
(Section 5). In mature database systems, such execution plan trans-
formations are done automatically [15]. However, the potential of
doing so in FAME is limited, since a general-purpose programming
language is used for constraint functions and automatic determina-
tion of the constraints’ minimal scope is difficult.

To summarize this discussion, we repeat our expectation of re-
alistic page models having many valid instantiations (i.e. being
very far from difficult SAT instances). Therefore, reasonable enu-
meration algorithms over the cross-product of resolvers’ iterators,
coupled with the mechanism of constraint notification and with
each iterator’s preference of instantiation order, typically converge
quickly to valid and well-performing page instances.

7. HARNESSING USER FEEDBACK
Learning from real-time user feedback (RTUF) proved to be suc-

cessful in multiple areas, such as content recommendation [2, 1, 3]
and ranking of search results [12]. For example, in the news rec-
ommendation setting, multi-armed bandit explore-exploit schemes
have been used to learn from user clicks on suggested stories and
adapt to the audience interests online. In order to enable such
optimization experiments, it is imperative for a FAME resolver
(map/choice) to match user feedback to the decision that has se-
lected or presented the content in some particular way.

Enabling this feedback loop requires close collaboration between
the front-end, where user feedback is physically collected, and the
resolver handler that conducts the optimization experiment. While
the resolver is building its part of the logical page description, it
must instrument the page for user feedback collection, i.e., em-
bed into it all the context required for future feedback processing.
The front-end, which renders this description, must respect the in-

Figure 10: A fragment of a logical page description instru-
mented with RTUF tags. The RTUF impression tag denotes the
ids of the chosen news items, while the RTUF item tags encap-
sulate items for which user click feedback should be tracked.

strumentation directives, intercept the user actions (typing, clicks,
mouse movements, etc.) that the resolver asked for, and propagate
the collected data to the FAME back-end platform which serves
as a dispatch mechanism that pushes the incoming feedback to the
appropriate resolver.

Figure 9 depicts the end-to-end flow of information in a two-
tiered system with a FAME back-end. FAME therefore presents
two façades – one for regular logical page requests, and another for
RTUF processing. The former invokes the model execution ma-
chinery described in Section 6, which runs decision-making logic
that uses the data learned from user feedback. The latter routes the
feedback data stream to the learning algorithms that update the data
repository in the background.

FAME optimization resolvers mirror the system’s façades by hav-
ing two interfaces – one for request handling, and another for RTUF
processing. The framework offers a subscription API to plug into
the feedback routing infrastructure, and an instrumentation API to
decorate the operator’s output with specifically designed tags. The
instrumentation API enables a resolver to embed any instrumen-
tation content in any format while keeping the actual information
opaque to both the front-end and to the FAME platform. The plat-
form is merely a pipe that delivers the feedback data, sent from the
front-end, to its consuming plug-in.

There are three types of RTUF tags:

1. Impression tags record the optimization decisions. For ex-
ample, a map handler may record the items that it has chosen
for each position as well as the items it has rejected, in order
to provide context for both positive and negative feedback.

2. Item tags designate the semantic items to be tracked (e.g., a
link, image or module), in the context of a given impression.

3. Action tags designate the user actions to be tracked (e.g. clicks)
in the context of a given (impression, item) pair.

Figure 10 depicts an output subtree with instrumentation directives
for the entire impression (news module) as well as a click over each
news story. The front-end processes them as follows. First, when
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the physical page is served, it logs the impression tag with the page
instance id. Next, upon each click-through, it logs the item tag in
conjunction with the same id. These records are all streamed to the
FAME back-end, where they are routed to the appropriate handler.

8. CONCLUSIONS
This work presented FAME, a framework for creating agile Web

media experiences through algorithmic experimentation and opti-
mization. The input to FAME are page instantiation requests ex-
pressed by logical page models, which define (1) dynamic data to
be fetched, (2) degrees of freedom to algorithmically experiment
with, subject to (3) editorial constraints, toward optimization of the
page for user experience and business goals. During page instan-
tiation, FAME’s execution engine orchestrates various algorithmic
plug-ins, which collectively morph the logical page model into a
concrete page by resolving the model’s degrees of freedom.

FAME improves upon existing systems that perform multivari-
ate optimization of Web pages in several aspects. It incorporates
fetchers which import dynamic content into its page models in real
time. It is further designed for hierarchical optimization of the
page, meaning that it implicitly defines a workflow of decisions
to be made and content to be fetched. In particular, this allows
pages to be optimized given the attributes of the content that is
available at page instantiation time. While FAME, like previous
systems, defines multiple degrees of freedom to be resolved on its
pages, it differs from those systems in that it uses a mechanism of
constraints that avoids serving page instances with conflicting res-
olutions. Finally, FAME is an open platform, and defines interfaces
and extension points that allow multiple optimization algorithms to
be plugged in, each resolving specific portions of the page13. An
important consequence of FAME’s architecture is that the build-
ing blocks of its page models - hierarchical structure, fetchers, re-
solvers and constraints - naturally map to the responsibilities of
different stakeholders in the online media serving pipeline. The ar-
chitectural modularity enables a separation of concerns that allows
people of different roles and skill sets – UED specialists, media
editors, product owners and optimization experts – to work inde-
pendently and then compose their artifacts in an agile manner.
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