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ABSTRACT 
In current social networking service (SNS) such as Facebook, there 
are diverse kinds of interactions between entity types. One 
commonly-used activity of SNS users is to track and observe the 
representative social and temporal behaviors of other individuals. 
This inspires us to propose a new problem of Temporal Social 
Behavior Search (TSBS) from social interactions in an information 
network: given a structural query with associated temporal labels, 
how to find the subgraph instances satisfying the query structure and 
temporal requirements? In TSBS, a query can be (a) a topological 
structure, (b) the partially-assigned individuals on nodes, and/or (c) 
the temporal sequential labels on edges. The TSBS method consists 
of two parts: offline miningand online matching. to the former mines 
the temporal subgraph patterns for retrieving representative 
structures that match the query. Then based on the given query, we 
perform the online structural matching on the mined patterns and 
return the top-k resulting subgraphs. Experiments on academic 
datasets demonstrate the effectiveness of TSBS. 

Categories and Subject Descriptors 
H.3.3 [Information Systems]: Information Search and Retrieval.  
General Terms 
Algorithms, Performance, Design. 
Keywords 
Structural matching, Temporal subgraph pattern mining, Social 
search. 

1. INTRODUCTION 
With the popularity of a social network, nowadays numerous social 
interactions do occur between individuals. Faced with such 
complicated and overwhelming social behaviors in an information 
network, it is critical to be able to efficiently track an individual’s 
representative behavior or discover certain specified social topology 
from it.  
For example, in bibliography collections, an author usually involves 
in the co-author social behaviors with publication activities over time. 
Consider the co-authorships in Figure 1, we can find the author, A1, 
co-works with his colleagues and students for different venues at 
distinct timestamps. The time interval associated on “co-author-of” 
edges indicates the submission and notification time of the papers. 

 
 

 
 

In this work, we propose the Temporal Social Behavior Search 
(TSBS) problem, which aims to answer structural queries with a 
temporal order in an information network. The expected results are 
subgraph satisfying both the query topological shape and the 
specified temporal order on edges. The TSBS problem is related to 
graph matching [2][3] and graph mining[1][4][6]. However, existing 
methods on these works consider no temporal factors in both 
definitions and solutions.  
We propose a two-step method, the offline and online steps, to tackle 
the proposed TSBS problem. In the offline step, we devise an 
unsupervised mechanism to identify the representative interactions, 
represented as frequent temporal subgraph patterns. The online step 
processes the user-given structural-temporal query by performing 
searching and matching over the discovered patterns. 
From the system perspective, the proposed TSBS allow three kinds 
of query for tracking temporal social behaviors between individuals. 
The first kind is the pure structural query such as Figure 2(a) and 
2(d). The second kind enables users to decide whether or not to 
specify the id of individuals on nodes in the query structure, Figure 
2(b) and 2(e) for example. The third kind further allows users to 
associate the temporal order on edges of the structure query. Take 
Figure 2(c) and 2(f) for example, the user specifies the left edge 
should occur before the bottom one, and the right edge should be the 
latest to occur To the best of our knowledge, the proposed TSBS 
framework is the first attempt to answer the temporal social 
behaviors for the structure matching problem. 

2. METHODOLOGY 
Offline Mining. We regard the social activities in a certain time 
period as a temporal snapshot. By collecting networks in a series of 
periods, we can construct a transaction database of networks, in 
which each heterogeneous network stands for a graph recording 
social interactions in a certain period. Copyright is held by the author/owner(s). 
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Figure 1: A co-author relationship example. 

Figure 2. Different query types and their corresponding results.  
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In each transaction, a relationship c between individual A and B 
during timestamp [1, 2] is represented by (A, c, B, 1, 2). We sort the 
edges by the associated timestamps and transform the graph into an 
edge sequence. For example, the graph g1 in Figure 3 can be 
represented as an edge sequence {(A, c, B, 0, 2) (B, c, D, 1, 2) (A, b, 
D, 2, 3) (B, a, D, 3, 4) (A, c, B, 4, 6) (A, b, C, 7, 9)}. The edges are 
sorted by their start time intervals and then by their end time 
intervals. The temporal subgraph pattern, is defined as {(u1, l1, v1, ts1, 
te1) (u2, l2, v2, ts2, te2) … (uh, lh, vh, tsh, teh)}, where ts1=0, and all the 
edges in the pattern are sorted in increasing order. To measure the 
importance of a pattern, the strength of a pattern is calculated by 
counting its support, which is defined as the number of graphs 
containing P in the heterogeneous network database. A pattern P is 
frequent if its support is not less than minsup, where minsup is a 
user-specified minimum support threshold. During mining social 
patterns from database, we build projected databases to help we 
discover more frequent patterns. For example, if we have a pattern 
P=(A, c, B, 0, 2), the corresponding projected database in g1 is {(B, c, 
D, 1, 2) (A, b, D, 2, 3) (B, a, D, 3, 4) (A, c, B, 4, 6) (A, b, C, 7, 9)}. 
By scanning different projected databases from all transactions 
contain P, we can find a local pattern e, say, {(B, c, D, 1, 1)}. We 
concatenate P and e to form a new pattern {(A, c, B, 0, 2) (B, c, D, 1, 
1)}. The concatenations are recursively performed in a depth-first 
search manner until no more closed frequent patterns can be found. 
During the mining process, we use the closure checking and pruning 
strategies to reduce unnecessary candidates. The first strategy is 
Same projected database removal. If P1 is a super-pattern of P2 and 
both share the same projected database, P2 is not needed to be grown 
because the patterns generate from P2 will be not closed patterns. The 
second strategy is Forward checking scheme. A pattern P is not 
closed if there exists a frequent pattern e in P’s projected database, 
whose support is equal to P’s support. The third strategy is Backward 
checking scheme. A pattern P is not needed to be grown if there 
exists a frequent pattern e before P, whose support is equal to P’s 
support. Thus, every pattern generated from P is contained by the 
pattern generated from concatenating P and e and both patterns have 
the same support. By applying these strategies, the closed frequent 
social patterns can be efficiently mined. 
Online Matching. In the online part, our system will return patterns 
by the following property: A query {(qu1, ql1, qv1) (qu2, ql2, qv2) … 
(qum, qlm, qvm)} is contained by a pattern {(pu1, pl1, pv1, pts1, pte1) 
(pu2, pl2, pv2, pts2, pte2) … (pun, pln, pvn, ptsn, pten)} if there exists a 
sequence of integers j1<j2<…<jn so that qui=puji, qli=plji, qvi=pvji, i= 
1, 2,…, n. We can use this property to check query existence no 
matter whether users assign individuals or not.  If a user gives a 
structural query with at least one individuals and sequence order, it is 
still quite easy to check because edges in patterns are sorted with 
increasing order. Another advantage of our model is that it does not 
have to do the isomorphism checking during the mining process due 
to the sequential property of edges concatenation. Besides, the TSBS 
framework can return the top-k support results if a user does not want 
to return the overwhelming numbers of results. 

  

3. EXPERIMENTAL RESULTS 
We conduct the experiments using real academic datasets to show 
the efficiency of our framework. We modify the Apriori algorithm [5] 
and compare its execution time with ours. The dataset is extracted 
from the DBLP bibliography data, which contains multi-type “co-
author-of” relationships in the conferences of data mining and 
database from 1970 to 2010, including SIGMOD, VLDB, ICDE, 
KDD, ICDM, and PAKDD. Figure 4 shows the runtime where the 
minsup varies from 5% to 25%. The TSBS’s method runs faster than 
the modified Apriori. When the minsup is getting lower, the modified 
Apriori generates a large amount of candidates, and thus the support 
counting procedure is time-consuming. Moreover, the TSBS’s 
method requires only one database scan and removes unnecessary 
candidates in the projected databases. Therefore, our method can 
outperform the modified Apriori in efficiency. 
Here we demonstrate several structural queries as well as the 
corresponding search results in Figure 5. The following structural 
queries contain linear, triangle, tree, tree plus linear and double 
triangles.  
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Figure 5. The test queries and corresponding results. 

4. CONCLUSION 
This paper presents a novel temporal social behavior search (TSBS) 
in an information network. The TSBS framework offline mine the 
temporal subgraph patterns as representative user behaviors, and then 
online search and match the structural query over such mined 
patterns. Experimental results and case studies show the efficiency 
and effectiveness of our TSBS framework. We believe TSBS can not 
only allow performing advanced social network analysis but also 
help people manage social circles in social networking platforms. 
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Figure 3. The graph g1. 
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