WWW 2012 — Poster Presentation

April 16-20, 2012, Lyon, France

Efficient Multi-View Maintenance
in the Social Semantic Web

Matthias Brocheler

University of Maryland

A.V. Williams Building
College Park, MD 20742, USA

matthias@cs.umd.edu

ABSTRACT

The Social Semantic Web (SSW) refers to the mix of RDF
data in web content, and social network data associated with
those who posted that content. Applications to monitor the
SSW are becoming increasingly popular. For instance, mar-
keters want to look for semantic patterns relating to the
content of tweets and Facebook posts relating to their prod-
ucts. Such applications allow multiple users to specify pat-
terns of interest, and monitor them in real-time as new data
gets added to the web or to a social network. In this paper,
we develop the concept of SSW view servers in which all of
these types of applications can be simultaneously monitored
from such servers. The patterns of interest are views. We
show that a given set of views can be compiled in multiple
possible ways to take advantage of common substructures,
and define the concept of an optimal merge. We develop a
very fast MultiView algorithm that scalably and efficiently
maintains multiple subgraph views. We show that our al-
gorithm is correct, study its complexity, and experimentally
demonstrate that our algorithm can scalably handle updates
to hundreds of views on real-world SSW databases with up
to 540M edges.

Categories and Subject Descriptors

H.3.0 [Information Systems]: Storage and Retrieval

Keywords
RDF, Graph Database, View Maintenance

1. INTRODUCTION

Graph data is proliferating today. The W3C’s RDF (“Re-
source Description Framework”) is an ideal framework to
represent the semantic content of documents (including web
pages, blogs, tweets and Facebook posts). At the same time,
social network researchers have developed detailed methods
to study relationships amongst members of a social network
(e.g. friend, follow, relationships). We refer to the combina-
tion of the two as the “social semantic web” (SSW) consisting
of both kinds of links. In this paper, we are interested in de-
veloping the techniques needed to support SSW wview servers
that simultaneously monitor large numbers of diverse views
over large SSWs.

Subgraph matching has been studied extensively in both

Copyright is held by the author/owner(s).
WWW 2012 Companion, April 16-20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

Andrea Pugliese
Universita della Calabria
Via P. Bucci, 41/C
Rende, Italy

apugliese@deis.unical.it

467

V.S. Subrahmanian

University of Maryland

A.V. Williams Building
College Park, MD 20742, USA

vs@umiacs.umd.edu

the Semantic Web community [1, 2] and the database and so-
cial network communities [3, 4]. Recent results have shown
sub-second processing times for complex queries on real
world data sets with over a billion edges [4]. Views and
view maintenance have also been studied in the context of
graph and/or RDF databases [5, 6, 7, 8].

associated

Zexpert @

Figure 1: Example query Q1

In this paper, we build upon this past work on view main-
tenance in graph data to solve a different problem: suppose
an SSW database S; (at time t) is stored on a view server
with a set Q = {Q1,...,Qr} of registered views that need
to be tracked over time. Furthermore, suppose we know the
answer to each view ); at time t. Suppose now that some
updates occur at time t — how can the view server incre-
mentally compute the answer to the views in Q so that at
time (t 4 1), they represent the correct answer w.r.t. the
database Si41 that results after the updates? This problem
is extremely important because, e.g., over 60M tweets are
posted daily — we would like to incrementally compute these
results rather than computing them from scratch.

publish
@ & @ .
comments J:r%, \opic
& .
i X __topic ~Health
Care

Figure 2: Example query Q2

As a motivating example, consider a SSW similar to
the facebook social graph whose nodes represent individ-
uals, companies, articles, messages, and topics. The links
represent relationships between nodes such as employee-
employer relationships, reference relations, publish relations,
and tweet /retweet relationships.

A recruiter might want to find individuals with expertise
in health care and business analytics using query Q1 shown
in Figure 1. The person of interest is denoted by the ver-
tex labeled ?person (question marks denote variables). The



WWW 2012 — Poster Presentation

query considers having published an article on the topic of
health care which is referenced by an expert on the subject
as an indication of knowledge (left part of the query graph).

Subgraph matching can also be used by an analyst for
knowledge discovery. Query Q2 in Figure 2 searches for
all authors and articles on the topic of Health Care which
have been commented on by an individual who publishes on
the subject and which has been referenced by an expert on
health care.

2. MULTI-VIEW MAINTENANCE

To date, there is no approach to the problem of simulta-
neous view updates of multiple views — past work only deals
with one view at a time. Updating multiple views simulta-
neously can result in database performance improvements,
because the subgraphs that are shared among view graphs
only need to be answered once. For our simple example, the
shared subgraphs between query Q1 and Q2 are indicated
by bold arcs.

However, before we can exploit common subgraph struc-
tures during view updates we need to identify it. For this
purpose, we develop the concept of a merged view that lever-
ages common subgraphs amongst the views in Q to identify
a “center” edge that view maintenance will focus on. The
core idea is to overlay all views in Q into a single merged
view for each possible center edge. At view update time, we
then only need to evaluate the merged view where the cen-
ter edge type corresponds to the inserted edge type. There
can be many possible merged views and we therefore define
the concept of an optimal merged view where optimality is
defined in terms of degree of overlap between views. In-
tuitively, the higher the overlap the less processing has to
be done during view updates. Figure 3 shows the optimal
merged view of Q1 and Q2 on the “tweet” center edge where
different edge strokes indicate different overlaps as explained
in the legend.

topic comments
i mP'C Business topic
Analytics /T~ P!
<.

associated |

éVerences H .
: publish

Edges mapped by

61, ¢and ¢;
Edges mapped

Ipublish
1

Figure 3: Optimal merged view of {Q1,Q2} for the
tweet edge.

_______ only by o,
Edges mapped
only by ¢
Edges mapped
only by d;

Finding an optimal view is NP-hard, however, we devel-
oped merged-view search algorithm that can be transformed
into a heuristic version that is significantly faster while pro-
ducing near optimal results.

At view update time, we only need to process a single
merged view since all affected views are contained therein.
However, evaluating merged views is significantly different
from answering standard subgraph matching queries since
we have to take the degree of overlap of individuals edges

468

April 16-20, 2012, Lyon, France

into account when evaluating query plans and need to keep
track of the status for each contained view. Our merged-
view answering algorithm, MultiView, achieves these goals
by using incrementally updated data structures for efficient
processing.

3. RESULTS

We thoroughly evaluated the multi-view maintenance al-
gorithm on 6 distinct real-world SSW datasets of varying size
and density, the largest of which has over 540M edges and
11M vertices. We automatically generated sets of queries
of varying complexity (i.e. number of edges and vertices in
the query) and overlap to be maintained as views for each
dataset. We generated 12,000 queries in total, with 4 to 11
vertices and 4 to 16 edges.

We compared the performance of our MultiView algorithm
against the state-of-the-art view maintenance approach of
updating each view individually.

We conducted 750 individual experimental trials for all
6 datasets where each trial measured the performance of
adding 10,000 edges while updating a randomly chosen set of
views of different size. In 94.4% of all trials, MultiView out-
performed the baseline, by 477% on average. Figure 4 shows
those statistics for each of the 6 SSW datasets. The grey dot
indicates the percentage of trials on which the MultiView al-
gorithm outperformed baseline (right vertical axis). The
bar shows the average performance improvement of Mul-
tiView comapared against the baseline (left vertical axis).
We observe that MultiView performed exceptionally well on
the Flickr dataset with an average 9-fold improvement on
almost 100% of all trials. Interestingly, the MultiView al-
gorithm performed worst on the smallest dataset where it
outperformed the baseline only 85% of all trials.

Multi View Maintenance Performance

© O
O
O I I
s @

e N
~ & <& S
N < S
&

900%
800%
700%
600%
500%
400%
300%
200%
100%

0%

100.0%
95.0%
90.0%
85.0%
80.0%

Improvement
Outperforming

75.0%
70.0%

o
N
S
&

&

Figure 4: Performance of MultiView compared to
baseline for each dataset

ﬂ]’ AQEEEREHE&E§ Hogan, and S. Decker, “YARS2: A

federated repository for querying graph structured data from the
web,” in ISWC, 2007, pp. 211-224.

T. Neumann and G. Weikum, “Scalable join processing on very
large RDF graphs,” in SIGMOD, 2009.

M. Brocheler, A. Pugliese, and V. S. Subrahmanian, “COSI:
cloud oriented subgraph identification in massive social
networks,” in ASONAM, 2010.

——, “A Budget-Based algorithm for efficient subgraph
matching on huge networks,” in ICDE Workshops, 2011.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining
views incrementally,” in ACM SIGMOD Record, vol. 22, 1993.
Y. Zhuge and H. Garcia-Molina, “Graph structured views and
their incremental maintenance,” in ICDE, 1998.

R. Volz, S. Staab, and B. Motik, “Incremental maintenance of
materialized ontologies,” in CoopIS/DOA/ODBASE, 2003.

E. Hung, Y. Deng, and V. S. Subrahmanian, “RDF aggregate
queries and views,” in ICDE, 2005.





