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ABSTRACT
Conventional search engines such as Bing and Google pro-
vide a user with a short answer to some queries as well as a
ranked list of documents, in order to better meet her infor-
mation needs. In this paper we study a class of such queries
that we call math. Calculations (e.g. “ 12% of 24$ ”, “square
root of 120”), unit conversions (e.g. “convert 10 meter to
feet”), and symbolic computations (e.g. “plot xˆ2+x+1”) are
examples of math queries. Among the queries that should
be answered, math queries are special because of the infi-
nite combinations of numbers and symbols, and rather few
keywords that form them. Answering math queries must be
done through real time computations rather than keyword
searches or database look ups.

The lack of a formal definition for the entire range of math
queries makes it hard to automatically identify them all.
We propose a novel approach for recognizing and classifying
math queries using large scale search logs, and investigate
its accuracy through empirical experiments and statistical
analysis. It allows us to discover classes of math queries
even if we do not know their structures in advance. It also
helps to identify queries that are not math even though they
might look like math queries.

We also evaluate the usefulness of math answers based
on the implicit feedback from users. Traditional approaches
for evaluating the quality of search results mostly rely on
the click information and interpret a click on a link as a
sign of satisfaction. Answers to math queries do not contain
links, therefore such metrics are not applicable to them. In
this paper we describe two evaluation metrics that can be
applied for math queries, and present the results on a large
collection of math queries taken from Bing’s search logs.

Categories and Subject Descriptors
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1. INTRODUCTION
Systems that return a ranked list of pages containing the

keywords of a given query are mature and powerful. Con-
ventional search systems such as Bing and Google also give
a short answer to some queries as well as a list of documents.
It helps the user to find her information needs directly in the
result page. For example if the query is “what is the current
weather in Seattle”, by showing the weather information di-
rectly in the result page, we save the user from browsing
through a list of weather forecast pages to find the current
weather. There are many classes of queries for which a short
answer is desirable. Examples include travel, news, sports,
weather, currency, reference, and time zone. Many of such
queries are currently answered in Bing and Google.

For a class of queries, that we call math, an answer should
be calculated rather than being looked up in a database.
Arithmetic calculation (e.g. “what is the square root of
123?”), unit conversion (e.g. “10 meters into feet”), symbolic
computation (e.g. “solve xˆ2 + x + 1 = 0”), geometry (e.g.
“the volume of a sphere with radius 10”), percentage calcu-
lation (e.g. “what is 3% of 20,000 dollars?”), or a mixture of
them (e.g. “what is 7% of 20 kg in pound?”) are examples of
math queries. Math queries contain numbers and symbols
with an infinite possible combinations. Obviously, precom-
puting and storing the results in a database is not feasible.
It makes math queries a special class of queries, and arises
new problems to be answered, that is the focus of this paper.

Currently, major search engines such as Bing and Google
answer some groups of math queries. A number of examples
are shown in Figures 1 and 2. To identify and process a
math query, a set of context-free grammars is manually cre-
ated. If one of the grammars parses a given query, a math
answer is shown in the result page. The goal of this study
is to evaluate and enhance a search engine in terms of its
ability in answering math queries. This involves automat-
ically discovering classes of math queries to identify what
fraction of them is answered by the engine, and evaluating
the quality of triggered answers. Because answering math
queries is a recent feature, the result of this study provides
valuable information for enhancing a search engine in this
respect. To the best of our knowledge, this problem has not
been previously studied.
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Figure 1: Snapshots of Bing’s result page for (a) “solve xˆ2+x+1=0”, (b) “120 km/h to mph”, (c) “10 square
meters to square feet”, (d) “sin(pi/2)/cos(pi)”, (e) “plot xˆ2+x”, and (f) “12 percent of 132”.

Although we intuitively defined math queries as a class
of queries that should be calculated to produce an answer,
a formal definition that allows automatic identification of
such queries is still missing. A formal definition should con-
sist of a set of grammars that describe the entire range of
math queries. Such a comprehensive set of grammars is un-
available, but it is necessary to identify math queries and
distinguish them from non-math queries that are submit-
ted to an engine. It is required to indicate the fraction of
math queries that an engine can process and answer as a key
evaluation metric, and also to determinine classes of math
queries that are not answered, in order to develop modules
for processing them and enhancing the engine.

The lack of a comprehensive set of grammars implies that
the structure of some math queries are unknown to us. More-
over, math queries typically consist of very few words, and
many math symbols, letters, and numbers instead. There-
fore, many queries exist that are not math even though they
look like math, hence they are difficult to distinguish from

math queries. For example model and part numbers (e.g. “lg
120” and “123a-5”), phone numbers (e.g. “800-123-1234”),
dates (e.g. “10/1990”), and other special queries (e.g. “u2”
and “f(x)”, the musical bands) are very popular non-math
queries that are hard to differentiate from math queries.
Hence, determining math queries among a collection of ar-
bitrary queries is not an easy task, and relying only on the
structure of queries does not completely address it.

In this paper, we propose a novel approach to address the
problem of identifying math queries among a collection of
arbitrary queries submitted to a general-purpose search en-
gine. Instead of relying on the structure of queries, we use
information in the search logs to recognize classes of math
queries. Using this technique, we can determine how likely
a collection of similar queries is math, regardless of their
structures.

We also study the effect of answering math queries on
the behaviour of users, and determine how well such an-
swers meet their information needs. As we mentioned ear-
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Figure 2: Google’s result page for (a)“convert 10 meters to feet”, and (b) “sin(pi/3)ˆ2”

lier, some queries might be mistakenly identified as math
queries, and hence a math answer to such queries is nor-
mally not useful. Moreover, some math queries are ambigu-
ous and answers to them might be different from what the
user expects. For example “20ˆ1/2” could be interpreted as
“20ˆ(1/2)” or “(20ˆ1)/2”, and “20 K” can be interpreted as
“20 Kelvin”, “20 thousand”, or “20 * Boltzmann constant”.
Therefore, it is still necessary to evaluate the usefulness of
answers. Math answers do not contain links, therefore such
evaluation is different from the traditional evaluation prob-
lem where the search result is assumed to contain links that
could be clicked on. In this paper we describe two metrics
that, as implicit feedback from users, can reflect the useful-
ness of results.

The rest of this paper is organized as follows. We overview
the related work in Section 2. In Section 3 we propose an
algorithm for clustering and recognizing math queries, and
evaluate it through empirical and statistical analysis. We
study the behaviour of users when math answers are shown
in the result page, and describe metrics for evaluating the
quality of such answers in Section 4. We finally conclude the
paper.

2. RELATED WORK
Chilton et al. [4] study various types of queries that could

be directly answered in the result page, and propose vari-
ous parameters that can be used as implicit feedback from
users to evaluate the quality of results. To define some of
the parameters, it is assumed that answers contain links.
For example an answer to a query about flights between two
cities contains prices and dates, and links to travel agency
websites. Math answers do not contain links, and the only
parameters that can be applied are the number of times a
user issues queries of the same type, and the decrease in the
number of clicks on ranked documents (if a list of documents
in addition to an answer is shown in the result page). The
former is based on interpreting the repeat triggering of an
answer by the same user as a sign of satisfaction, and the
latter on interpreting clicks on links outside an answer as a
sign of dissatisfaction with the answer. A study by Castillo
et al. [3] also confirms that short answers reduce the aver-
age click rate. Stamou et al. [14, 15] study users satisfac-
tion when they do not click on any link for a keyword query.
They propose metrics such as the time spent on a result page
combined with the scrolling information and terminological
overlap between consecutive queries. Typically, scrolling in-
formation is not available to a search engine. Also because

math queries tend to contain none or very few words, their
terminological overlap is not as indicative as in the case
of keyword queries. Hassan et al [5] propose an approach
for evaluating search engines that is based on modelling se-
quences of users interactions with the engine.

Mathematics retrieval is an area of research where a query
is assumed to be a mathematical expression, and the prob-
lem is to retrieve documents, or other units of data, that
contain similar expressions to the query [7, 9]. This problem
is inherently different from the problem that we address in
this paper. We assume answering math queries rather than
matching mathematical expressions to the query and retriev-
ing documents accordingly, and we focus on issues such as
recognizing math queries from other queries and evaluating
the usefulness of answers.

The problem of identifying classes of math queries is re-
lated to the problems of query similarity and query cluster-
ing. There are many proposals for calculating the similarity
of web queries and clustering them. Shen et al. [13] propose
an algorithm for web query classification based on enriching
queries using search snippets and also click-through data in
the search logs. Wen et al. [18] propose a query clustering
algorithm using query logs. In this approach, the similarity
of two queries is defined based on the common documents
that users selected for them. In the case of math queries,
there is no link to click on and no search snippet, so these
approaches are not applicable. Bordino et al. [2] propose
an algorithm for calculating the similarity of queries using
query logs. They construct a graph with each query as a
node. There is a weighted link between every two nodes that
represent the number of sessions that contain both queries.
Next, the graph is projected to a Euclidean space and cosine
similarity between queries is calculated. Math queries tend
to contain many numbers and symbols that do not signifi-
cantly contribute in the semantics of the query. This affects
the usefulness of this approach for math queries because for
example changing the value of a number results in adding a
new node to the graph.

3. RECOGNIZING MATH QUERIES
In this section we propose an algorithm for automatically

identifying math queries among a collection of arbitrary
queries taken from the search logs. It allows us to deter-
mine what fraction of math queries are correctly recognized
and answered by a search engine, and what fraction of the
queries recognized as math are actually math queries. It
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also allows discovering classes of math queries that are not
handled by the engine,and enhancing it by developing ap-
propriate modules to recognize and process them.

In many cases, the intention of a user cannot be inferred
by merely looking at the query [5]. For example while a user
might mean “log(100)” from “lg 100”, another user might is-
sue this query to search for LG-100 cellphones. Also, as
we mentioned earlier, a complete set of grammars that de-
scribes the structures of the entire range of math queries is
not available. Hence, we need extra information to correctly
recognize math queries.

Search logs contain valuable information that could re-
flect the intention of a user from issuing a query. If queries
in a cluster are mostly asked by users who tend to ask math
queries, it is a sign that they are probably math queries.
Therefore, we present an algorithm to predict if a user tends
to ask math queries within a search session.

According to the search logs, we observe that when a user
asks math queries in a session, she usually tends to ask more
math queries within the same session. We also observe that
the majority of math queries contain numbers, math sym-
bols, or math keywords. It allows us to easily identify queries
that are potentially math. Note that many queries that are
potentially math are actually not math queries, but almost
all math queries are potentially math. The last two obser-
vations imply that sessions within which a user tends to ask
math queries, should contain a rather large fraction of po-
tentially math queries. After identifying such sessions, we
can identify clusters of queries that are mostly asked when
a user tends to ask math queries. In Section 3.3 we explain
details of this algorithm, and prove its correctness.

Because numbers and symbols are common in math queries
and their values contribute less in the semantics of them,
identifying classes of math queries rather than individual
math queries is more useful. Therefore, a clustering algo-
rithm that groups similar queries together is necessary. Ac-
cordingly, our algorithm consists of two main parts: cluster-
ing queries, and recognizing clusters that mainly consist of
math queries.

3.1 Marking potentially math queries
We first mark queries as potentially math queries, or non-

math queries. Ideally, all math queries are marked as po-
tentially math, but there might exist some, or many, po-
tentially math queries that are not math. To ensure most
math queries are marked as potentially math, we apply the
following simple heuristic. Any query that consists of num-
bers, alphabetic symbols (i.e. a string of length at most
2), non-alphanumeric symbols, or a predefined set of math
keywords is marked as potentially math. Among the set of
queries that are marked this way, many queries such as part
numbers, phone numbers, and dates are not math queries.

We apply the clustering algorithm described in the next
section only on potentially math queries, and in the remain-
der of this section, by a query we mean a potentially math
query.

3.2 Clustering queries
Unlike many text queries, two similar math queries might

share very few symbols in common. For example“12*120+20”
and “33*47+9” are very similar queries even though only ‘*’
and ‘+’ are in common between them. As we mentioned
earlier, math queries are typically short, and numbers, al-
phabetical characters, and math symbols appear frequently
within them. Although numbers and variables are common
in math queries, their values usually do not significantly af-
fect their meanings (e.g. “12y+1 = 0” and “150x+10 = 4”
are similar).

In order to compare queries, we first transform them into
canonical forms by performing various normalizations. We
replace numbers and characters representing variables with
special strings, “NUM”and“VAR”. For example“12 y + 1 =
0” is transformed into “NUM VAR + NUM = NUM”. Plus
and minus operators are mathematically similar, therefore
we replace both with “PLMN” (“12 - 2 + 4” is transformed
into “NUM PLMN NUM PLMN NUM”). In our implemen-
tation we also take into account the type of a number (e.g.
floating point or integer), and also distinguish large and
small integer numbers, but for the ease of explanation we
do not get into such details . We replace other parts of a
query such as units, operators and geometry objects with
their equivalent canonical forms (e.g. “10 m to ft” and “10
meter to foot” are both transformed into “NUM UNITS to
UNITS” and “calculate the area of a 22x34 rectangle” into
“calculate the GFUNC of GOBJ”).

There are some words that appear in many math queries,
that similar to stop words in keyword queries, do not affect
the results (e.g. “calculate” in “calculate 12*120+20”). We
remove such words from a query.

After doing similar transformations, we next consider re-
peating patterns within a query. In some math queries, a
part of the query can repeat arbitrarily often without chang-
ing the meaning of the query. For example “12+3+27+39”
and “12+2” are similar queries. There are various proposals
for inferring regular expressions from a sample [8] or find-
ing repeating patterns within a sequence of items [8, 11].
We choose the algorithm explained in [11] to recognize such
repeating patterns, and replace them with a single occur-
rence of them (e.g “NUM+NUM+NUM” is transformed into
“NUM+NUM”).

Finally, we remove all space and separator symbols.

Next, we compare two queries in canonical forms using
3-grams and cosine similarity [17] as follows. Each query is
transformed into a vector of 3-grams. Assume Q1 and Q2

are two queries in canonical forms represented as vectors of
3-grams:

Sim(Q1, Q2) = Q1.Q2
|Q1||Q2|

.

Even though the above similarity function treats expres-
sions as plain strings which causes some math semantics to
be lost, it can be calculated efficiently and according to our
experiments it works well in practice in most cases. As a
part of our future work we consider defining a more sophisti-
cated similarity function that better captures the semantics
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of math expressions.

Based on this similarity function, we use hierarchical ag-
glomerative clustering [6] to form clusters that contain sim-
ilar queries. The clustering algorithm starts by forming a
cluster for each query. It then iteratively merges clusters
whose similarity is greater than a threshold, θ. The similar-
ity of two clusters is defined as follows:

sim(C1, C2) = min{sim(a, b)|a ∈ C1, b ∈ C2}.

The granularity of clusters can be controlled by adjusting
the value of θ.

3.3 Identifying math clusters
So far, we explained how to mark queries that are poten-

tially math. We also described a clustering algorithm that
groups similar queries together. In this section we propose
an algorithm to distinguish clusters that contain actually
math queries from the ones that contain potentially math,
but not actually math queries.

A search session is a sequence of queries issued by an indi-
vidual with less than 30 minutes between sequential queries
[4]. Therefore, if a user is idle for more than 30 minutes and
then issues a query, a new session starts. An example of a
search session is shown in Figure 3.

The main idea behind our algorithm is to identify sessions
within which users tend to ask math queries. We call such
sessions math-oriented sessions. If a cluster contains many
queries that mostly appear in math-oriented sessions, it is
an indication that this cluster probably consists mainly of
math queries.

We observe that in practice, a rather large fraction of
queries within a math-oriented session are math queries. In
other words, potentially math queries that are actually math
tend to appear frequently within a session while other po-
tentially math queries, that are actually non-math, typically
appear in isolation.

Based on this observation, for a session S, we defineMd(S)
as the fraction of distinct potentially math queries to the to-
tal number of distinct queries within S:

Md(S) = |{Q∈S|Q is PM}|
|{Q∈ S}| .

PM in the above equation stands for potentially math. We
define Mr(S) to be the fraction of potentially math queries
within the session:

Mr(S) = # of Q∈S|Q is PM
|S| .

Note that to calculate Md, we only count distinct queries,
so if the same query is asked more than once in a session,
it is counted once in calculating Md, while to calculate Mr,
such repetitions are taken into account.

Then, we define M(S) = Md(S).Mr(S).
In the calculation of Md(S), repetitions of the same query
within a session are ignored, and for Mr(S) the diversity
of queries does not matter. M(S) results in something in

P
Minimum Average Maximum

Non-math 0.04 0.12 0.27
Undecided 0.10 0.20 0.30

Math 0.18 0.33 0.51

Table 1: Minimum, average, and maximum value of
P for math, non-math, and undecided clusters.

.

between, and according to our experiments, it can better
predict if a session is math-oriented. Math-oriented sessions
tend to have higher number of potentially math queries, and
hence a higher value of M(S).

For a cluster C, we define P (C) as follows:

P (C) =

∑
Si∈{S|(C∩S)6=φ}

(M(Si))

|{S|(C∩S)6=φ}| .

P (C) represents the average value of M for all distinct
sessions that contain at least one query from C. If a ses-
sion contains more than one query from the same cluster, it
is counted once only. Because short sessions are less infor-
mative, we only counted sessions that contain at least three
distinct queries.

In the next section, the relationship between P and per-
centage of math queries in a cluster is statistically evaluated
and modelled for predictive and descriptive purposes.

3.4 Data analysis and statistical modelling
In this section we present a statistical model that allows

us to estimate the percentage of math queries in a cluster
based on the calculated value of P (C), and show that this
model is statistically significant. The model is constructed
using the data set generated from the following process.

We took a 1-percent sample from Bing’s search logs from
“4-26-2011” to “6-26-2011”, and extracted queries with US-
English language 1. After marking the queries in this sam-
ple, we collected 71,800 potentially math queries. Applying
our clustering algorithm with θ = 0.85 resulted in 9,120
clusters. Among them, we picked a training set as follows.
We chose 150 arbitrary clusters, and randomly selected 25
queries from each one. Then, we manually marked each se-
lected query as math or non-math. In Figure 4, each cluster
is represented with a red square. For each cluster, the x-axis
represents the calculated value of P, and the y-axis shows the
percentage of math queries.

The sample is summarized in Table 1. If more than 80%
of queries in a cluster are math, we call it a math cluster, if
less than 20% are math, we call it a non-math cluster, and
otherwise we say it is undecided. As confirmed by t.student
test [10], the average value of P for non-math clusters is sig-
nificantly smaller than the similar value for math clusters at
99% confidence level. This suggests there is a statistical re-
lation between the percentage of math queries and the value
of P . In the remainder of this section, we further investigate

1The language of a query is determined by the language of
the operating system of the client machine, that is available
in search logs.
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Figure 3: An example of a session. Math queries are shown in pink.

Figure 4: Change in the percentage of math queries within a cluster as P increases.

P ≤ 0.11 0.11 < P < 0.32 P ≥ 0.32
Non-math 95% 40% 0%
Undecided 5% 36% 2%

Math 0% 24% 98%
total 100% 100% 100%

Table 2: Percentage of math and non-math clusters
for various ranges of P.

.this relation.

The relation between P (C) and percentage of math queries
in a cluster is modelled through a nonlinear regression. The
choice of nonlinear regression curve is motivated by the na-
ture of data as presented in figure 4. We chose the best
curve from a selection of polynomial and logarithmic curves
according to their R2 values. In the context of statistical
models, the coefficient of determination, R2, represents the
proportion of variability in the data that is explained by the
model, and provides a measure of how well future outcomes
are likely to be predicted by the model [16]. According to
the least square estimation method [12], the best fit is the
following polynomial function (the black curve in figure 4):

T (C) =

{
−8.14P (C)2 + 7.38P (C)− 0.62 for 0 ≤ P (C) ≤ 0.45

1 for P (C) > 0.45
(1)

In the above equation, T (C) represents the percentage of

math queries in cluster C. All coefficients are significant at
95% confidence level. The model’s R2 is 0.759. That is,
the above relationship has captured approximately 76% of
the variability within the data. In addition, the analysis of
variance (ANOVA) [1] for this model results in a highly sig-
nificant regression (F-Value:225.54 with 2 and 143 degrees
of freedom) with prediction error bond of 0.047.

The above model allows us to estimate the proper thresh-
olds on the value of P (C) to predict if a cluster is math or
non-math. These thresholds are the values of P (C) that re-
sult in T (C) = 0.2 and T (C) = 0.8 according to equation 1.
As highlighted with blue circles in figure 4, the thresholds
for math (T (C) ≥ 0.8) and non-math (T (C) ≤ 0.2) clus-
ters are 0.11 and 0.32 respectively. The prediction power of
these thresholds is demonstrated in Table 2. According to
this table, 95% of clusters with P (C) ≤ 0.11 are non-math,
5% are undecided. Also, 98% of clusters with P (C) > 0.32
are math, and 2% of them are undecided. In other words,
the rate of correct guess is at least 95% for math and non-
math clusters.

Similar data is presented in Figure 5-a, where the average
percentage of math queries as a function of an upper-bound
on the value of P is shown, e.g. on average, 10% of the
queries in clusters with P (C) ≤ 0.17 are math queries. Fig-
ure 5-b represents similar information, e.g. on average, 90%
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(a) (b)

Figure 5: Average percentage of math queries in clusters with P (a)smaller, and (b)greater than a value.

Figure 6: The average value of P for various types.

of queries in clusters with P (C) ≥ 0.22 or more are math
queries.

Note that the model is affected by the boundaries of the
response and independent variables (i.e. T (C) and P (C))
and is not powerful in recognizing small differences close to
the boundaries. For example, consider two clusters, C1 and
C2, with T (C1) = 0.95 (i.e. 95% of queries in cluster C1 are
math), and T (C2) = 0.90. Because T (C1) and T (C2) are
close to 1 (the boundary value), our model does not differ-
entiate them. It does not affect the usability of our model
because such boundary values are treated equally in our ap-
plication (e.g. both clusters with 90% and 95% of math
queries are considered math clusters).

According to the above analysis, we conclude that our
model can predict the percentage of math queries in a cluster
C using the value of P (C).

3.5 Further experiments
The clustering algorithm that we described in Section 3.2,

is merely based on the structure of queries. However, some
queries with the same template might have totally differ-
ent meanings. For example, our clustering algorithm puts
“9/11” and “146/23” in the same cluster, even though the

first one probably means “ninth of September” while the
second one means “146 divided by 23”. In this section, we
perform a manual clustering on a different data set to vali-
date the model we derived in the previous section.

We extracted queries from Bing search logs for the first
day of each month from January 2011 to July 2011. Af-
ter marking queries, we randomly picked 1000 potentially
math queries. We then manually assigned types to them,
and put queries with the same types in the same cluster.
For example “how many feet are in 10 meters” and “convert
10 litre/100km to mile/gallon” are both assigned type “unit-
conversion” and hence are placed in the same cluster. Some
types with their examples are listed in Table 3.

The average value of P (C) for each cluster is presented
in Figure 6. Complex-calculation and calculation queries
have the highest value of P. Basic-calculation queries have a
relatively lower values of P, which is consistent with the fact
that some queries that belong to this class, although seem to
be math, are actually a date or some other non-math queries,
mistakenly marked by the human annotator. Ambiguous-
unit-conversion and ambiguous calculations, have the lowest
value of P, confirming the fact that in practice most such
ambiguous queries are actually non-math.
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Type Example queries
Complex calculation “square root of (10 choose 20)/log(20)”

Calculation “(10+17.4)ˆ20/14”
Percent “What percent of 14 is 10?”

12% of 127
Symbolic computation “Solve yˆ2+y=0”

“integral xˆ2+1 dx x from 1 to 10”
Geometry “Volume of a 10-foot cube”

Unit conversion “120 km/h to mph”
“How many square feet are in ten square meters?”

Basic calculation “145*12”
“78/40”

Definition “Binomial coefficient for 6, 4”
Plot “x+1 graph”

Probably non-math “9/11”
“1834-1876”

Ambiguous math “12a-1”
Roman numerals “8 in roman numerals”

“II”
Greek alphabet “omega 3”

Ambiguous calculation “3*-4*”
Ambiguous unit conversion “12h”

Table 3: Example queries for each type.

3.6 Discussion
In the previous sections we showed that our model can

correctly predict if a group of queries is math or non-math
in most cases. Our prediction might be wrong when we can-
not correctly guess if a session is math-oriented, or when
a cluster contains queries of different natures (i.e. a mix-
ture of math and non-math queries). To address the first
issue, we can use other heuristics that help to better iden-
tify math-oriented sessions. For example, clicking on web
pages with math contents is an indication that a user is in-
terested in math, and hence the session is more likely to
be math-oriented. It requires an algorithm to automatically
determine if a web-page has math contents, and possibly a
predefined list of math web sites. This is out of the scope of
this paper, but is one direction of our future work.

We mentioned earlier that in some cases we cannot infer
the intention of a user by just looking at the query. How-
ever, the clustering algorithm we described in Section 3.2
relies only on the structure of queries. It might result in
clusters that contain a heterogeneous collection of queries.
As pointed out in Section 3.5, the technique we describe for
recognizing math clusters can be combined with any cluster-
ing technique. Our model can better predict the percentage
of math queries in clusters with more semantically similar
queries. Therefore, our proposed clustering technique can
be replaced by more sophisticated clustering algorithms to
enhance the results.

It might be argued that our model is biased in favour
of math queries that are already answered by Bing. In our
experiments, many queries that are identified as math by our
model, and manually confirmed to be math queries, are not
currently answered. For example according to Figure 6, our
model can correctly predict the percentage of math queries
for types such as complex-calculation and geometry, while

such queries are not currently answered properly by Bing.

4. USEFULNESS OF ANSWERS

Figure 7: Fraction of users who issued similar
queries in at least three different sessions.

So far, we are able to predict if a collection of queries is
math or not. It allows us to automatically identify math
clusters, and discover the clusters of math queries that are
not currently answered. Next, we evaluate the usefulness of
given answers. We also study how answering math queries
affects the behaviour of users.

Traditionally, most IR evaluation techniques consider click-
ing on search results as implicit feedback from users. How-
ever, math answers do not contain links, so such evaluation
techniques cannot be directly applied to math answers.

A recent study shows that repeat triggering of answers of
the same type by the same user is a sign of satisfaction [4].
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Figure 8: The value of dU for various types.

Based on this observation, for a specific cluster, we define a
returning user to be an individual who issues one or more
queries of this cluster in at least three distinct sessions. We
also define the returning user rate for a cluster as the ratio
of the number of returning users to the number of distinct
users who asked a query of this cluster at least once. In Fig-
ure 7, the returning user rate for various classes of queries
is shown (each type represents a cluster as discussed in Sec-
tion 3.6). Complex-unit-conversion (e.g. “what is the area
of a 10*20m rectangle in sq feet?”) and complex-calculation
queries are not currently answered, so they have the lowest
average ratio of returning users. Many symbolic-calculation
(e.g. “solve xˆ2+x+1=0”) and basic calculation queries are
correctly answered, hence users who issue such queries are
probably happy with the results and ask them rather often.

Some evaluation algorithms represent a session as a se-
quence of genes (i.e. symbols that encode various types of
user’s interactions with the engine) [3, 5]. Similarly, we rep-
resent a session by a sequence as follows. The start and end
of the session are represented with ‘S’ and ‘E’. If a query
is a math query, we represent that with its cluster-id (the
identifier of the cluster that the query belongs to), otherwise
we represent it with Q. A click is represented by ‘C’. Note
that although a math answer does not contain links, but
for many math queries a ranked list of documents is also
shown in the result page, and a user might click on them
(e.g. Fig 3). For example the session shown in Figure 3 is
represented with the following sequence:

S[1310004859]Q[256658805]QC[256658805]E

If a math query is answered, but a user clicks on one of
the retrieved documents, it implies that the answer could
not sufficiently satisfy her needs. We also observe that a
consecutive sequence of queries of the same cluster followed
by a click is a sign that a user repeatedly modifies a query to
get an answer, and after giving up, clicks on a result. There-
fore, given a cluster U and session I, we define the following
metric:

dU,I = # of “[[id(U)]]C”inI
# of “[[id(U)]]”inI

[[id(U)]] is a maximal consecutive sequence of [id(U)]s
within the session’s interaction sequence. For example as-
sume the interaction sequence of a session is:
“S [100][100][100]︸ ︷︷ ︸ C[200]E”.

[[100]] is marked with an under-brace, and dU,I = 1
2
. Note

that a simple click-rate metric results in 1
4
, and it assumes

the answers to the first two queries of cluster [100] are good
and only the third query is followed by a click and hence not
correctly answered.

For each cluster U , we calculate dU , the average of dU,I
for all distinct sessions within which at least one query from
U is asked. In Figure 8, dU for various types is shown. Many
plot and geometry queries are not currently answered, and
they have the highest click rates. Not surprisingly, calcu-
lation and unit conversion queries have relatively low click
rates.

From May 1st 2011 to Jun 24th 2011 , the average dU for
all math clusters in 1-week periods is shown in Figure 9 (each
week is represented by its last day). We observe a decline as
new features are added to our math answering system over
time.

According to our experiments, we can conclude that the
ratio of returning users, and click rate are indicative mea-
sures for estimating the usefulness of math answers.

5. CONCLUSIONS AND FUTURE WORK
For some queries, providing a user with a short answer

as well as a ranked list of documents can better satisfy her
information needs. In this paper we studied math queries,
a class of such queries for which an answer should be cal-
culated rather than being looked up in a database. We
described techniques for calculating the similarity of math
queries and clustering them. We then proposed an algo-
rithm for identifying math queries among a collection of ar-
bitrary queries using the information in Bing’s search logs,
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Figure 9: The average value of dU over time.

and discussed its accuracy through statistical and empirical
analysis. The advantage of this algorithm is that it works
well in cases where the structure of a group of math queries
in not known in advance, or where a non-math query looks
like a math query. Finally, we investigated how answering
a math query correctly, affects the behaviour of users. We
described two parameters that, as implicit feedback from
users, indicate how satisfied they are with the answers. To
the best of our knowledge, the problems that we addressed
in this paper have not been previously studied.

As a part of our future work, we wish to extend our al-
gorithm to recognize math queries on the query processing
time. It helps to decide if an answer should be triggered
for an ambiguous query. For example if “lg 100” should be
treated as a math query (“log(100)”), or it should be inter-
preted as “LG’s cell phone model 100”.

We mentioned earlier that other information can be de-
ployed to enhance the results of our math detection tech-
nique. For example clicking on pages with math contents is
an indication that a user is interested in math, and is more
likely to ask math queries. Therefore, we wish to deploy
such information to enhance our algorithm. Another direc-
tion of our future work is to study cases where a math query
is mixed with many noisy keywords (e.g. “what is the area
of a 20*22 meter land located in France in square feet?”).
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