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ABSTRACT
In this paper, we study how artificial facts can be added
to an RDFS ontology. Artificial facts are an easy way of
proving the ownership of an ontology: If another ontology
contains the artificial fact, it has probably been taken from
the original ontology. We show how the ownership of an
ontology can be established with provably tight probability
bounds, even if only parts of the ontology are being re-used.
We explain how artificial facts can be generated in an incon-
spicuous and minimally disruptive way. Our demo allows
users to generate artificial facts and to guess which facts
were generated.

Categories and Subject Descriptors
H.2.0 [Information Systems]: Database Management

1. INTRODUCTION
Public Ontologies. An ontology is a formal collection

of world knowledge. Ontologies on the Semantic Web are
usually available under some kind of license, such as the
Creative-Commons License (CC)1 or the GNU General Pub-
lic License (GPL)2. Table 1 lists some of the major ontologies
with their licenses [5].

License Conditions Ontologies
GPL attribution, copyleft SUMO [4]
CC-BY-SA attribution, share-alike DBpedia [2]
CC-BY attribution YAGO [6], Freebase,

Geonames, OpenCyc [3]
CC-BY-ND attribution, UniProt

no derivatives
proprietary access under TrueKnowledge,

restrictions full Cyc [3]

Table 1: Common licenses for ontologies

Most licenses give users a free hand to use the data as
they please. The user may even re-publish the ontology as
part of another ontology. In this case, the user has to give
credit to the original ontology. Commercially sold ontologies
(such as Cyc) usually have more restrictive licenses. They
prohibit re-publication completely. Some ontologies, such as

1http://creativecommons.org
2http://www.gnu.org/copyleft/gpl.html

TrueKnowledge3, have even more restrictive licenses. They
prohibit even the systematic retrieval of the data. In all of
these cases, the systematic dissemination of the data without
proper acknowledgment to the original is prohibited.

Ownership Proof. This raises the question of how we
can detect whether ontological data has been illegally dis-
seminated. We call a person who re-publishes an ontology
(or part of it) in a way that is inconsistent with its license
an attacker. We call the source ontology the original ontol-
ogy and the re-published ontology the stolen ontology. The
attacker could, e.g., re-publish the original ontology under
his own name. Or he could use parts of the original in his
own ontology without giving due credit to the original. We
call an ontology that is potentially stolen a suspect ontol-
ogy. In this paper, we do not deal with the ethical or legal
consequences of re-using data from an ontology. The reuse
may be prohibited or entirely legal. In this paper, we just
establish whether a reuse took place or not. That is, we deal
with the general question of ownership proof : How can we
attest that the suspect ontology contains part of the original
ontology?

Obviously, it is not sufficient to find that the suspect on-
tology contains data from the original ontology. This is be-
cause ontologies contain world knowledge, which anybody
can collect. The attacker can simply claim that he collected
the data manually, or that he extracted the statements from
public sources, and that he happened to produce the same
data as the original ontology. This might even be true. Al-
ternatively, we could publish the original ontology with a
time stamp (in the style of proof of software ownership).
For example, we could upload the ontology to a trusted ex-
ternal server. If someone else publishes the same data later,
then we could point to the original copy. However, this does
not prove our ownership. The other publisher could have
had the data before we published ours. The fact that he did
not publish his data cannot be used against him.

Related Work. Previous work (e.g., [1, 5]) has focused
on sophisticated approaches for ownership proofs, notably
on watermarking. Watermarking introduces small modifi-
cations into the original ontology. If these modifications
appear in the suspect ontology, they act as a proof of own-
ership. Our own work [5] has introduced the concept of
subtractive watermarking, where the ontology is marked by
removing certain statements. All of these approaches have
a considerable drawback: To prove that a suspect ontology
“stole data” from the original ontology, the suspect ontology
has to be downloaded and checked for the marks. Since the

3http://www.trueknowledge.com
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watermarking hides only one bit of information per mark,
there are usually several dozens to several hundred marks
that have to be checked in order to have reliable indication
of theft. Checking these marks requires downloading the
ontology, unpacking it on the local hard drive, and running
an algorithm that is at least linear. This is a very time-
consuming process. It might even be impossible to check
the marks, if the suspect ontology cannot be downloaded,
but only queried online. There is currently no way an ontol-
ogy owner can check manually online whether some ontology
is stolen.

Contribution. This is where the current paper steps in.
We propose to use additive watermarking. This technique is
inspired by the use of fictitious entities in dictionaries or trap
streets in maps that serve to identify plagiarism. In this pa-
per, we transfer this idea to ontologies. Our technique adds
a small number of artificial facts to the original ontology. If
these artificial facts appear in a suspect ontology, they act
as a proof of ownership. The appearance of an artificial fact
in a suspect ontology can be checked manually in no time.
It suffices to query the suspect ontology for the artificial fact
and see whether it appears. In this paper, we substantiate
this idea by three contributions:

1. We give an algorithm that generates artificial facts au-
tomatically in an inconspicuous way.

2. We give a theoretical analysis that yields the optimal
number of facts that have to be added to establish
ownership with provable bounds.

3. We provide a demo system that lets users add artificial
facts and play with them.

2. PRELIMINARIES
Watermarking. A watermarking protocol is defined by

two algorithms, a marker and a detector. Given an origi-
nal ontology and a secret key, the marker generates a wa-
termarked ontology. Given a suspect ontology, the original
ontology, and the secret key, the detector decides if the sus-
pect ontology contains the mark. If that is the case, it is
assumed that the suspect ontology stole data from the origi-
nal ontology. It may be, however, that the suspect ontology
is innocent and that it contains the mark just by chance.
We call such cases false positives. The marking algorithm is
designed in such a way that the probability of a false posi-
tive is provably below a security threshold ξ. For common
applications, ξ = 10−6. The attacker can also attempt to
obscure the mark. In this case, the detector cannot detect
that the suspect ontology is stolen. The marking algorithm
bounds the probability of such cases to be below ξ, too.

Additive Watermarking. Our watermarking works by
adding a small number of artificial facts to the ontology.
Since this creates factually wrong statements, this technique
compromises the quality of the ontology. If the ontology is
highly sensitive to even small misrepresentations of reality,
then the consequences might be harmful. Therefore, an on-
tology owner has to decide carefully whether watermarking
is an option for him or not. As always, watermarking is
a trade-off between the ability to prove ownership and the
truthfulness of the data.

We show that the total number of fake facts that our al-
gorithm adds is usually small (less than 20 in the exper-
iments). For large ontologies, this number fades in com-
parison with the total number of facts, which may be in

the millions. For automatically constructed ontologies, the
number of fake facts is usually orders of magnitudes smaller
than the number of false facts that the ontologies contain
anyway. YAGO[6], e.g., one of the largest ontologies with a
quality guarantee, has an accuracy of 95%, meaning that it
contains already hundreds of thousands of accidentally false
statements.

Visibility. Our technique aims to generate artificial facts
that cannot be easily spotted by a human or detected by a
machine. For this purpose, the facts re-use an existing re-
lation from the ontology, an existing entity as subject and
either another existing entity or a statistically invisible lit-
eral value as object. For example, our method could add
the fact that someone’s height was 1.76 meters. This value
is chosen to be both valid for an ownership proof and sta-
tistically plausible. For the statistical plausibility, we rely
on a statistical invisibility threshold θ, with 0 < θ < 1. This
threshold is fixed upfront by the user. If θ is close to 0, then
the artificial facts will be less visible, but the algorithm will
also have fewer opportunities for marking. If θ is close to 1,
then the algorithm can mark more entities, but the marks
are potentially more visible.

CSPRNGs. Our watermarking makes use of a crypto-
graphically secure pseudo-random number generator (CSRNG).
A CSPRNG is a function that, given an integer seed value,
generates a pseudo-random sequence of bits. A CSPRNG
is designed in such a way that it is close to impossible (1)
to predict the next bit without knowing the seed value or
(2) to find the seed value that generated the bit sequence.
We use a fixed CSPRNG G. By combining several random
bits, G can also produce a pseudo-random integer value. We
write G.nextInt(n) to denote the next pseudo-random inte-
ger value of G between 0 and n− 1 inclusively.

RDFS. Our approach targets RDFS ontologies [7]. An
RDFS ontology over a set of entities E, a set of literals L, and
a set of relation names R can be seen as a set of triples O ⊂
E ×R× (E ∪ L). Each triple is called a statement, with its
components being called subject, predicate and object. RDFS
can also designate entities as classes, and other entities as
instances of one or multiple classes. We assume that every
entity is either a class or an instance of a class.4 A class
can be the super-class of another class. In this case, all
instances of the class are implicitly instances of the super-
class. A direct instance of a class is an instance that is not
implied by a super-class relationship. In all of the following,
we see a class as the set of its direct instances. In general,
our technique targets RDFS ontologies with rich instances
and many assertions about instances. Our approach is less
well-suited for ontologies that contain only a schema. Our
main target are ontologies such as the ones in Table 1.

Namespaces. An attacker can rename entities and rela-
tions in the stolen ontology. He can change the namespace
of the data, or apply syntactic variations to names and lit-
erals. For our approach, we assume that it is still possible
for a human to determine whether a given fake fact appears
in the suspect ontology. This assumption is reasonable, be-
cause if it were not possible for a human to say whether a
given ontology contains a particular fact, then the ontology
would be of very limited use.

4In RDFS, classes can be instances of other classes, but this
is rare in practice.
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3. ADDITIVE WATERMARKING
Possible Values. Let us discuss the statements that our

watermarking algorithm will add to an ontology O. The
algorithm will add different types of statements for different
types of relations. Let us first consider a relation r whose
objects are entities or non-numeric literals. A possible value
for r in a class c is an entity (or literal) v such that

|{e ∈ c : 〈e, r, v〉 ∈ O}| > 1/θ

(where θ is the statistical invisibility threshold). This means
that if we add an edge 〈e, r, v〉 to O, the number of subjects
of r that have v as an object will change by less than 1/θ.
For example, with θ = 0.01, we can add a Grammy Award
winner to the ontology, but not a Fields Medal winner, be-
cause there are less than 100 Fields Medal winners.

Let us now look at a relation r whose objects are rational
numbers or integer numbers. The image of r in a class c is

im(r, c) = {v|∃e ∈ c : 〈e, r, v〉 ∈ O}

A possible value for r in c is any value

v ∈ [min(im(r, c),max(im(r, c))]

that has at most as many decimal mantissa digits as the
values in im(r, c) do. If the range of r is dates, then a
possible value for r is any date yyyy-mm-dd, where yyyy is
a possible value of r projected to the years and mm ∈ [1, 12]
and dd ∈ [1, 28].

Markable Entities. The markable relations of an entity
e are all relations that have possible values in any class of
which e is a direct instance. The defining class of a markable
relation r for an entity e is the class c such that (1) e is a
direct instance of c, (2) r has possible values in c, and (3)
the set of possible values is smallest among all the classes
of e in which r has possible values. We note the defining
class of r for e as def(r, e). Then, the possible values of r
for e are simply the possible values of r in the defining class.
The maximal cardinality of r for e is the maximal number of
outgoing r-links that members of the defining class exhibit:

maxcard(r, e) = maxe′∈def(r,e)|{e′′ : 〈e′, r, e′′〉 ∈ O}|

These definitions are just one possible way to designate
possible values. Indeed, the value invention mechanism can
be adapted to the ontology, since our marking algorithm
treats it as a black box.

Marking. Algorithm 1 shows how we watermark an on-
tology. The ontology owner first chooses a secret key, i.e., a
numeric value that only he knows. He also chooses the num-
ber of facts n that he wishes to generate (we will discuss in
Section 4 how to choose n). The CSPRNG G is seeded with
the hash code of the ontology and the secret key. Then, our
algorithm iterates through all N entities of the original on-
tology5. For each entity e, G is asked to generate a random
integer number between 0 and N/n. If this number equals
0, e is chosen to become part of an artificial fact. The al-
gorithm uses G again to choose a markable relation ri of e,
and then again to choose a value vj among the possible val-
ues. If 〈e, ri, vj〉 already exists in the ontology, e is skipped
as unmarkable. If e already has the maximum number of
r links, then one r-fact is deleted at random from e. Then
the artificial fact 〈e, ri, vj〉 is added to the ontology. This
process is repeated until n facts have been added.

5We assume a canonical ordering, e.g., alphabetical.

Algorithm 1 additiveMark(ontology O, key K, int n)

N ← number of entities in O
G.seed(hash(O)⊕K)
while true do

for all entities e of O do
if G.nextInt(N/n) 6= 0 then continue
r1, ..., rk ← markable relations of e
if k = 0 then continue
i← G.nextInt(k) + 1
v1, ..., vl ← possible values of ri for e
j ← G.nextInt(l) + 1
if 〈e, ri, vj〉 ∈ O then continue
if |{v : 〈e, ri, v〉 ∈ O}| = maxcard(r, e) then

remove one statement 〈e, ri, v〉 at random from O
end if
O ← O + 〈e, ri, vj〉
if n facts have been added then return

end for
end while

Detection. Our detection algorithm simply checks if the
added n facts are present in the suspect ontology. This can
even be done manually. To prove the ownership, the ontol-
ogy owner shows the secret key that generated the artificial
facts. By the nature of G, it is impossible that the ontol-
ogy owner created a posteriori the secret key that generates
the artificial facts. Therefore, the ontology owner must have
generated the facts by himself based on the key. This proves
his ownership.

4. ANALYSIS
Consistency. We have to ensure that the marked on-

tology is still logically consistent. Our approach considers
RDFS ontologies only. RDFS contains no class disjointness
constraints, no domain/range consistency constraints (the
class membership is simply inferred), and no cardinality con-
straints. All deduction rules in RDFS are purely positive.
Therefore, by design, an RDFS ontology cannot become in-
consistent. Therefore, we may add (and even remove) asser-
tions about instances without the danger of inconsistency.

False Positives. Let us now model the probability that
a random ontology is considered stolen by mistake. For this
purpose, we have to estimate the probability that an arti-
ficial fact appears in an innocent ontology by chance. We
say that the expected probability of a possible value v for a
relation r in a class c is the proportion of entities in c that
have this value for r:

p(r, v, c) =
|{e ∈ c : 〈e, r, v〉 ∈ O}|

|c|

If p(r, v, c) = 0, we set p(r, v, c) to one over the number of
possible values of r in c. The probability that a generated
fact 〈e, r, v〉 in a class c appears by chance in an innocent
ontology is far smaller that p(r, v, c), because the original
ontology represents only part of reality, and many more pos-
sible values may be admissible in reality. Let p be the maxi-
mal expected probability among the generated values. Since
our algorithm chooses the artificial facts independently, the
probability that all n facts appear by chance in any given
innocent ontology is bounded by pn. Therefore, choosing
n ≥ ln ξ

ln p
ensures that the probability of a false positive is

below the security threshold ξ. In reality, Algorithm 1 can
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simply be run until the product of the expected probabilities
of the added facts is below the security threshold ξ.

Subset Attacks. Let us consider an attacker who steals
only a part of the ontology. Let us assume that the attacker
steals random facts with a probability q. That is, if the
original ontology contains k facts, the stolen portion will
have an expected size of q · k. To guarantee detection, we
have to ensure that every sub-portion of size q · k contains
at least n artificial facts. A Hoeffding bound tells us that
we have to add N facts in total, where N is such that

(q − n/N)2N ≥ −ln(ξ)/2

This choice ensures that the probability that a sub-portion
contains less than n facts is less than ξ. This allows the
ontology owner to compute the number of artificial facts to
add, if he wishes to protect the ontology against thefts of a
certain size.

Experiments. We were interested in the number of facts
that we have to add to existing ontologies in order to protect
them against theft. For this purpose, we collected 5 ontolo-
gies from the Semantic Web that cover a wide range of com-
plexity, size, and topics (Table 2): The core part of YAGO
[6], the manually supervised part of DBpedia [2], the Univer-
sal Protein Resource6, an ontology about schools (provided
by the UK government7), and a subset of the IMDb8. Table
2 shows the ontologies with the number of facts, the num-
ber of relations, and the number of instances. We report
the proportion of markable instances, the proportion of re-
lations that have possible values and the average number of
possible values per entity. We determine the number of facts
to add by help of the average expected probabilities. Only
a handful of facts have to be added to protect the ontolo-
gies against theft. Even if we want to guard against subset
attacks (q = 80%, q = 50%), the number of added facts is
minuscule in comparison with the huge number of facts in
the ontologies. The loss in precision is hardly noticeable.

YAGO DBpedia UniProt Schools IMDb

# facts 18m 20m 6096 6m 34m
# relations 83 1107 4 186 12
# instances 2.6m 1.7m 1869 263,954 4.6m
markable inst. 45% 99% 71% 50% 100%
markable rel. 81% 50% 25% 53% 75%
avg.# poss. val. 2.6m 158m 60 6k 6k
Facts to add 1 1 4 2 2
- for q = 80% 14 14 20 16 16
- for q = 50% 32 32 43 36 36

Table 2: Marking different ontologies

Visibility. Our approach generates facts only on the ba-
sis of class membership. It does not take into account other
facts of the marked entity. This is a weakness. Our ap-
proach could, e.g., generate a death date that is earlier than
the birth date. Or it could generate a surface area for a
city that is implausible given its population. Although our
approach will never generate facts that make the ontology
inconsistent in the logical sense, it could generate facts that
are semantically implausible. However, even though this
will certainly happen in practice, our experience with real
ontologies makes us believe that the majority of artificial

6http://www.uniprot.org/
7http://data.gov.uk/
8http://imdb.com

facts will go unnoticed. Our goal is to test this hypothesis
empirically with the present demo.

5. DEMO
Our demo visualizes the creation of fake facts for ontolo-

gies. The user chooses an ontology and our system displays
the ontology in a graph-like fashion. Then the user can
instruct the system to add fake facts to the ontology. To in-
crease the educational and entertainment value of the demo,
the user can explicitly choose the entity to which the fake
fact shall be added. Users can also choose the relation for
which a fake fact shall be generated, if they wish to. This al-
lows, e.g., adding a long-deserved award to their favorite pop
singer, generating a death date for a politician, or adding
new actors to a movie. The actual values are chosen by the
system in order to be least suspect. The artificial facts ap-
pear highlighted in the graph of the ontology. To test the
plausibility of the invented facts, users are invited to hide
the highlighting of the generated facts and to have other
users guess which facts were added to the entity (Figure
1). Since, in a real application, such facts would be chosen
and generated automatically, our demo also displays the ex-
pected probability of each generated fact, which mirrors the
security contributed by this fact.

Figure 1: The system added a hidden fake fact to
Leonardo DiCaprio on YAGO
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