
Turning a Web 2.0 Social Network into a Web 3.0,
distributed, and secured Social Web Application

Henry Story
21 rue Saint Honoré

77300 France
henry.story@bblfish.net

Romain Blin
Université de Saint-Etienne,

Jean Monnet
10 rue Tréfilerie
F-42023 France

romain.blin@etu.univ-st-
etienne.fr

Julien Subercaze
Université de Saint-Etienne,

Jean Monnet
10 rue Tréfilerie
F-42023 France

julien.subercaze@univ-
st-etienne.fr

Christophe Gravier
Université de Saint-Etienne,

Jean Monnet
10 rue Tréfilerie
F-42023 France

christophe.gravier@univ-
st-etienne.fr

Pierre Maret
Université de Saint-Etienne,

Jean Monnet
10 rue Tréfilerie
F-42023 France

pierre.maret@univ-st-
etienne.fr

ABSTRACT
This demonstration presents the process of transforming
a Web 2.0 centralized social network into a Web 3.0, dis-
tributed, and secured Social application, and what was learnt
in this process. The initial Web 2.0 Social Network appli-
cation was written by a group of students over a period of
4 months in the spring of 2011. It had all the bells and
whistles of the well known Social Networks: walls to post
on, circles of friends, etc. The students were very enthusi-
astic in building their social network, but the chances of it
growing into a large community were close to non-existent
unless a way could be found to tie it into a bigger social
network. This is where linked data protected by the Web
Access Control Ontology and WebID authentication could
come to the rescue. The paper describes this transformation
process, and we will demonstrate the full software version at
the conference.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
Experimentation

Keywords
WebID, user interface, decentralized social network

1. INTRODUCTION
The generation of Web applications that emerged after

the 2001 .com crash, come to be known as the Web 2.0 gen-
eration. The main emphasis of services produced since then
was on social and user-generated content. This was achieved

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

by putting together different technologies: machine-readable
formats like XML (Atom, RSS, etc.) or JSON, served over
plain HTTP in the REST1 architectural style, and displayed
in rich user interfaces built up using JavaScript in the browser.
Formats such as Atom and RSS which led to the Blogging
movement were fundamentaly distributed. However Web 2.0
somehow evolved over time into more and more centralised
architectures where a few service providers dominate the
market. Most content is now written and produced by peo-
ple on a handful of Social Networking sites. Where blogging
allowed for distributed but necessarily public conversations,
the Social Networks provided a sense of cosyness by allow-
ing people to limit the visibility of their writings to their
friends or other social groups. This cosyness is partly illu-
sory though, as the servive providers get to see all the infor-
mation from every person on their network, wheras each
users sees only information from his closest friends.With
some Social Networks providers claiming upwards of 500
million users, this asymetry of information starts to be very
problematic leading to visions of Big Brother types societies
[4]. But less dramatically it also results in a loss of poten-
tial: large service providers cannot provide for every need
but tend to specialise on a few simple things they can do
in an industrial setting. So while Web 2.0 did succeed in
bringing the social aspec of the Web to the front of people’s
consciousness, it ended up with islands of non communicat-
ing social networks.

In parallel, the Semantic Web grew quickly under the im-
pulse of the W3C, the academic community, and the indus-
try, so as to build the foundations of distributed and linked
data at a global scale. It is interesting to note that the first
application of the RDF2 specification was to blogging, in
what is known as RSS3, which stood for either Really Sim-
ple Syndication or RDF site summary [1]. Around 2001 the

1Representational State Transfer
2Resource Description Framework, http://www.w3.org/
RDF/
3http://www.rssboard.org/rss-specification

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

417



influential and widely deployed FOAF4 ontology appeared
too. FOAF actually made it possible and easy to create
a distributed social Web where people could create machine
readable profiles which would allow people to describe them-
selves and link to each other no matter who controlled the
server. As Semantic Web tools increased in quality and the
understanding of linked data grew, so the size of the data
cloud started to grow in an exponential manner. It turns out
then that the Semantic Web solved the problem of creating a
distributed social web, but not the problem of privacy: data
on the semantic web is usually considered world readable.
To allow data on the semantic web to be access controlled,
one would first need to solve the problem of global agent
identity.

This is what Initiatives such as WebID [6] have been de-
veloped to solve. WebId ties identification into the Web by
following strictly all the best practices of Web Architecture,
and so working in harmony with the design of the web.

In summary, where the Web 2.0 community brought local
social networks to the fore, making great strides in client/server
data and user interface design, the Semantic Web commu-
nity developed the foundations for extending those results
into the global distributed space. On this reading taking a
Web 2.0 application and refactoring it into a Web 3.0 appli-
cation is an exercise that every application on the web will
end up going through.

Section 2 presents LifeShare, the students’ project, which
we used as our starting point . Next, section 3 explains the
refactoring process of LifeShare, the encountered difficulties
and some of the lessons learned in this process. Section 4
is a highlight of the demonstration screencast provided with
this paper.

2. LIFESHARE
LifeShare is the product of a students project in the ad-

vanced Web programming course (SS11) at the University
of Saint-Etienne. In this course, students were requested
to build high-end Web applications inspired by popular ser-
vices. The resulting LifeShare is a social network imple-
menting features from mainstream social networks such as
Facebook and Google+ : walls (fig. 1), picture and video
sharing, etc. It is now an open-source project5 under the
MIT License. LifeShare uses a traditional three-tier archi-
tecture and was built using the following technologies:

• MySQL Database,

• JSP + Servlet,

• HTML + CSS,

• AJAX,

• Tomcat 7 server.

The project provides an high-end user interface similar to
those of existing social networks. The data layer was clearly
separated from the rest of the code. The application man-
ages internally any item as part of a graph. Users, posts,
photos are vertices of this graph. Vertices are connected to
each other using a set of predefined relations. Privacy - in
so far it is possible on a centralised network - was carefully

4Friend of a Friend, http://www.foaf-project.org/
5http://bblfish.net/tmp/2011/05/11/lifeshare

Figure 1: User’s wall on LifeShare

taken into account from the very beginning of the project.
For instance, the deletion of a user account will lead to the
removal of all the Web content generated by the user. This
not only covers Web contents such videos, photos, posts,
but also the informational content of the user’s interactions
such as “likes”. LifeShare is a fully functional project and
presents an attractive user interface.

3. REFACTORING
The modules composing LifeShare - written in the typical

Web 2.0 pattern - needed to be refactored in order to turn
it into a node in the larger Social Web. First LifeShare’s
internal data representation was using a local implicit data
structure which had to be made explicit and turned into
context free notation - namely RDF. Section 3.1 presents
the different vocabularies used for this purpose. In order
to enble LifeShare users to authenticate across LifeShare in-
stances and indeed onto any other service they would want
to, we integrated a WebID as described in section 3.2. Where
LifeShare was built on the presupposition that any instance
could access all data from its local datastore, the shift to a
decentralised architecture required Lifeshare to be able to
fetch and publish data using the simplest HTTP protocol as
detailed in section 3.3. With decentralised data come issues
of privacy which brought us to needing distributed access
control rules. A Social Network with one user would not
make sense in a traditional setting, but in the distributed
space it clearly makes sense, allowing this application to
targets lightweight devices such as the FreedomBox6. Some
optimizations to prepare LifeShare for constrained deploy-
ment environments are presented in 3.4. Finally we present
the lessons learned from this refactoring process in section
3.5.

3.1 Data Refactoring
The original LifeShare represented all its data as one large

graph of relations connecting all types of resources it knew
about: users, posts, pictures, videos, etc... All these rela-
tions were stored in a MySQL database in simple <subject
relation object> fashion. The subjects and the relations
were identified simply by numbers, which were then manip-
ulated by a Java API. LifeShare being a multi-user social

6http://freedomboxfoundation.org/

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

418



Figure 2: Architecture of the refactored LifeShare

network different people could say contradictory things, so
the graph could not form one consistent whole. And indeed
the distinction about who said what, was encoded implicitly
in the relations themselves. The <Bob knows Joe> relations
would mean that Bob said he knew Joe for example.

Refactoring the one graph database required then to both
make the number system explicit by replacing them with
global identifiers, and to also make explicit who said what by
placing statements made by each user into separate graphs.
This was done by changing the implementation of the data
access layer from one that made calls to the SQL layer to
one that simply built in-memory models using the Jena API
[3] by reading and writing files on the disk with clearly read-
able names in a simple understandable directory structure.
Optimizations were left for later. This had a few adavan-
tages. Firstly the data could then easily be read from the file
system making it easier to visualise the process of publish-
ing it, and making it easy to debug - the file system being
one of the most trusted pieces of software on any computer.
Secondly, this clarified issues of graph naming by building
on well developed intuitions people have of how files belong-
ing to different people should be organised, and how this
information should be split. We used the FOAF ontology
to describe the user’s profile, his preferences and his social
graph, which we then extended with the relationships7 vo-
cabulary when needed. The SIOC ontology [2] was used to
describe users’ posts, comments and more generally any gen-
erated content on the platform. We then of course replaced
identifiers with URLs giving every agent on the system in
the process a WebID. This then enabled the first interesting
new feature to be added: universal drag and drop[5]. Tak-
ing advantage of the HTML5 drag & drop feature8 users can
now add friends by draging their local or remote profiles into
their circle.

7http://vocab.org/relationship/.html
8http://dev.w3.org/html5/spec/Overview.html\#dnd

3.2 Authentication and privacy management
The WebID protocol 9, also known as FOAF+SSL [6],

enables secure global, passwordless authentication. With
WebID a user can authenticate to any enabled site in one
click without requiring an exchange of passwords, or even the
setting up of an account. Without this a distributed secure
social web would be unmanageable, as one would have to
create accounts on each of one’s friends networks, invent a
different password for each of them, and then still link all
the data. The WebID being a pointer to the profile, it ties
a users identity into the web of relations, which can be used
to form a web of trust.

This requires that creating a Client Certificate be ex-
treemly easy. Using the html5 keygen element a WebID
Certificate can be in fact reduced to a one click experience.
The presentation layer therefore had to be updated and an
extra servlet added for the certificate generation process.
The LifeShare server had to be enabled to work on https
and request client certificates when needed.

Finally we semanticised the Access Control Layer by using
the WebAccessControl10 ontology to provide decentralized
Access Control List (ACL). A person with a profile hosted
by any site can take part in a group hosted by any other
site. Consequently we updated the underlying part of the
circle privacy management using the read-write-web imple-
mentation of WebAccessControl11.

3.3 Exposing the data
LifeShare Web 3.0 aims at decentralization. To enable sev-

eral instances of LifeShare to communicate with each other
and with the Semantic Web, we made the data available
over HTTP, fetchable with GET, queriable with SPARQL
ASK and SELECTs and updatable with SPARQL update
as well as with HTTP PUT and POST. As a result Life-
Share is then accessible from semantic mobile applications,

9http://www.w3.org/2005/Incubator/webid/spec/
10http://www.w3.org/wiki/WebAccessControl
11https://dvcs.w3.org/hg/read-write-web/

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

419



for example the Mobile Social Semantic Web [7] applica-
tion for Android. The read-write-web12 server written in
Scala was used to allow the files generated by the rewritten
LifeShare instance to be published and edited from the web
using HTTP and SPARQL.

3.4 Lightweight application
To ensure that the application can be used on lightweight

devices, such as the FreedomBox13, the refactoring process
provided de facto several optimizations. Instead of working
with the complete graph, as it was formely done in the first
version of LifeShare, we now use file sized sections of the
graph. The netty or jetty based framworks are very light
weight and should allow further memory savings by opimis-
ing threads using Java NIO, which allows one thread to work
on a very large number of open connections and files.

3.5 Implementation - Lessons learned
We present the overall resulting architecture after refac-

toring in figure 2, compliant with the one proposed by Yeung
[8]. The biggest refactoring operation was related to moving
away from the SQL datatabase to using RDF files stored on
the filesystem. This required rewriting the whole data ac-
cess layer - but luckily it was quite small and so the process
could be finished in a little under two weeks. Refactoring
the UI layer to make better use of the url identifiers was
another important task which we are about to start. We
want to move to having that UI layer communicate in rdf
formats so as to unify the data access layer throughout the
application. Adding WebID authentication and public key
creation was then comparatively simple.

4. DEMONSTRATION
We will show how end users can benefit from using the

Web 3.0 LifeShare in the following ways. Our demonstra-
tion uses two machines, one running the original version
and one running the refactored version in order to show
to the end users the difference between the two versions.
The demonstration consists of two parts. The first part fol-
lows the steps of a standard user joining the system and
shows the benefits from an end user perspective. The sec-
ond parts presents the different refactoring steps required
to transform the application, from a developer perspective.
The demonstration starts with account creation and login.
Using WebID in the refactored version enables users to lo-
gin without username and password and allows the import
of existing FOAF data for non registered users (not regis-
tered on the platform, i.e. these users already own a FOAF
profile hosted on the web). In the meantime we show the
slowness of the process of creating a new account on the Web
2.0 version, where users must fill a standard form and vali-
date their email adresses. The ease of using WebID is largely
demonstrated by the gain of time and the reduced effort for
the end user. Next, we present how a logged user can add
some friends. We first present the standard search which is
common to the two versions. Then we show the highlight
of our demonstration which enables users to add friends us-
ing a simple drag’n drop from a FOAF profile. This feature
enables end users to add friends that are not in the Life-
Share platform but own a FOAF profile. It demonstrates

12https://dvcs.w3.org/hg/read-write-web/
13http://freedomboxfoundation.org/

through a real-life example the power of combining Seman-
tic Web vocabularies with HTML5. Once some friends have
been gathered in the user profile, this latter wants to share
messages on his/her wall. However not all his/her friends
are concerned with the message. We present the combi-
nation of circles management and Web Acess Control for
privacy preservation. The second part of the demonstration
consists of a short slideshow presenting the refactoring pro-
cess. We lay stress on the encountered difficulties, that we
illustrate with code samples. The two parts of the demon-
stration can be independently presented, depending on the
audience. A screencast is available at the following adress
: http://bblfish.net/blog/2011/11/11/. It presents the
original Web 2.0 version of LifeShare and its architecture,
and describes the different transformations that have been
applied, as well as some killer features of the refactored ver-
sion.

5. REFERENCES
[1] D. Ayers and A. Watt. Beginning Rss & Atom

Programming. John wiley & sons, inc., 2005.

[2] J. Breslin, A. Harth, U. Bojars, and S. Decker. Towards
semantically-interlinked online communities. The
Semantic Web: Research and Applications, pages
71–83, 2005.

[3] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: implementing
the semantic web recommendations. In Proceedings of
the 13th international World Wide Web conference on
Alternate track papers & posters, pages 74–83. ACM,
2004.

[4] George Orwell. 1984. Secker and Warburg, 1949.

[5] H. Story. Universal drag and drop. The Sun BabelFish
Blog, December 2006.

[6] H. Story, B. Harbulot, I. Jacobi, and M. Jones. Foaf+
ssl: Restful authentication for the social web. In
Proceedings of the First Workshop on Trust and
Privacy on the Social and Semantic Web (SPOT2009).
Citeseer, 2009.

[7] S. Tramp, P. Frischmuth, N. Arndt, T. Ermilov, and
S. Auer. Weaving a distributed, semantic social
network for mobile users. The Semantic Web: Research
and Applications, pages 200–214, 2011.

[8] C.A. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and
T. Berners-Lee. Decentralization: The future of online
social networking. In W3C Workshop on the Future of
Social Networking Position Papers, 2009.

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

420




