
OPAL: A Passe-partout for Web Forms∗

Xiaonan Guo, Jochen Kranzdorf, Tim Furche, Giovanni Grasso, Giorgio Orsi, Christian Schallhart
Department of Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk

ABSTRACT
Web forms are the interfaces of the deep web. Though modern web
browsers provide facilities to assist in form filling, this assistance
is limited to prior form fillings or keyword matching.

Automatic form understanding enables a broad range of appli-
cations, including crawlers, meta-search engines, and usability and
accessibility support for enhanced web browsing. In this demon-
stration, we use a novel form understanding approach, OPAL, to
assist in form filling even for complex, previously unknown forms.
OPAL associates form labels to fields by analyzing structural prop-
erties in the HTML encoding and visual features of the page render-
ing. OPAL interprets this labeling and classifies the fields according
to a given domain ontology. The combination of these two prop-
erties, allows OPAL to deal effectively with many forms outside of
the grasp of existing form filling techniques. In the UK real estate
domain, OPAL achieves > 99% accuracy in form understanding.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line Information
Services—Web-based services

General Terms
Languages, Experimentation

Keywords
form filling, form understanding, web interfaces, deep web

1. INTRODUCTION
Tired of filling web forms with the same contents over and over

again? Though browsers increasingly provide assistance for form
filling, it is limited to previously filled forms or forms where labels
are obviously attached with form fields and use a limited set of
keywords. Suppose you want to buy a flat: To get notified of new
flats matching your criteria as soon as possible, you need to register
with each agency serving your area. Each time you need to provide
all of your criteria, in as much as they apply to the registration
form provided by the agency. Wouldn’t it be great to provide your

∗The research leading to these results has received funding from the
European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) / ERC grant agree-
ment DIADEM, no. 246858. Giorgio Orsi has been supported by
the Oxford Martin School, Institute for the Future of Computing.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

criteria only once, in a passe-partout form, and the browser figures
out how fields of a specific form are related to that passe-partout
and fills the fields accordingly.

A human can easily do that, recognize most elements and their
function, such as date or price fields, by associating textual labels
to the corresponding fields and by grouping logically and visually
coherent fields together. Once the fields are classified and corre-
sponding values are specified, one can fill the form accordingly.
However, automatic approaches to form understanding, see [4],
suffer from three main limitations: (i) Domain independence lim-
its them to observations holding across multiple domains, which
has been acknowledged in [7, 5]. (ii) Using a single feature class,
i.e., visual, textual, or structural properties, compromises the ro-
bustness of their results. (iii) Monolithic algorithm design handi-
caps their adaptability to the continuously changing web. For ex-
ample, [6, 5] encode specific assumptions on spatial relationships
of fields and labels, or [3] works with token classes hard-coded for
concepts, such as “min” or “max”. On typical web forms, these
approaches therefore identify form fields only with an accuracy
around 90%− 92%. Furthermore, they are often limited only to
associating fields with labels (form labeling) and do not classify
forms with a given schema. For form filling we need such a schema
(given by our passe-partout) and near perfect accuracy to minimize
manual corrections by the user.

In this demonstration, we therefore present an assisted form fill-
ing system based on OPAL (ontology based web pattern analysis
with logic) [2], a domain-aware form understanding system that
achieves near perfect accuracy through a combination of visual,
textual, and structural features. In particular, OPAL labels each
form in three sequential “scopes”, increasing the size of the page
fragment relevant to the analysis of each individual field from a
small HTML subtree to a large visual neighborhood: We exploit
(i) at field scope the structure of the page between fields and la-
bels, (ii) at segment scope observations on fields in groups of similar
fields, and (iii) at layout scope the relative position of fields and texts
in the visual rendering of the page. Subsequently, we interpret the
form by aligning the form and its labeling with the domain schema
(containing the concepts of the master form). This interpretation is
often imperfect due to missing or misunderstood labels. OPAL ad-
dresses this in a repair step, where structural constraints drive the
disambiguation and completion of the classification. The necessary
constraints are specified in an extension of Datalog to express com-
mon patterns as parameterizable templates. A group consisting,
e.g., of a minimum and maximum field is a template for generic
range specifications.

The demonstration showcases OPAL’s analysis and the automatic
form filling driven by OPAL. In the OPAL GUI, the user provides
form fillings in the master form (passe-partout) for a domain such

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

353



Form Labeling Form Model

DOM tree Segment tree Layout tree Schema tree

Segment Scope
Layout Scope Domain Scope

In
pu

t

Output

Field ScopeField Scope

Figure 1: OPAL Overview

as real estate. The system then automatically analyzes any given
form and, if recognized as a real estate form, automatically fills it
with the values of the master form. To illustrate the inner work-
ings of OPAL, the user can visualize how form labels are associated
with form fields in the three scopes above, and where additional
adjustments are necessary based on the domain constraints.

2. THE OPAL APPROACH
OPAL operates on the live DOM of a web page, i.e., the DOM

tree computed by the rendering engine of a browser. This implies
that all the CSS rules have been applied and that all the client-side
scripting code has been executed. The browser also provides the
CSS box model, i.e., the bounding boxes of all DOM elements.

When humans interact with forms, they have a clear understand-
ing of the form elements such as buttons, input fields, and the input
values to be provided to correctly perform a search. To mimic such
an understanding in a software program, the necessary background
knowledge must be provided formally.

In OPAL, the needed background knowledge is formalized as a
domain schema Σ : 〈T ,CT 〉 where: (i) T is a set of types, such as
PRICE-FIELD or AREA-MAP, representing logical entities in the form,
while (ii) CT consists of (first-order) constraints encoding structural
relationships among types. The schema depends on the domain and
is assumed to be an input of the filling process.

Given a DOM tree P, a form model for a domain schema Σ is a
tree M : 〈F,λ ,τ〉where (i) F is the tree of fields and field segments,
(ii) λ : F×P relates form fields with their labels in P, (iii) τ : F→ T
types each node in F . E.g., a form segment is typed as GEOGRAPHIC-
SEGMENT if all its children are of type GEOGRAPHIC-FIELD.

Automated form filling consists of three tasks: labeling, in-
terpretation, and filling (see Figure 1). The labeling task associates
textual labels in the form to the corresponding (groups of) fields,
while the interpretation tasks annotates the fields in the form with
types from the schema and verifies that such annotation is consis-
tent with the constraints. Finally, the filling task, automatically fills
the form fields with values and then submits the form.

Labeling. OPAL associates labels to fields using a multi-scope
approach that simulates the human exploration of a form.

At field scope, OPAL considers a single field f and tries to lo-
cate a suitable label l among the immediate neighbors of f using
only the structure of the DOM tree. In particular, OPAL considers
explicit references (e.g., using the for attribute) and common DOM
ancestors for f and l which has no other field descendant.

If a suitable label for f is not found, OPAL considers at segment
scope groups of structurally related fields (“segments”) and tries to
locate a suitable label for the entire group as well as repeated pat-
terns of interleaved fields and labels. OPAL derives the segments

from the HTML structure, based on similarity between fields, with
elimination of segments that are likely to have no semantic rele-
vance and are only introduced, e.g., for formatting reasons.

If the analysis at the first two scopes fails, OPAL locates at layout
scope labels that are visually related to f using the CSS box model.
We observe a strong preference for placing labels in the w-nw-n (i.e.,
west, north-west, north) visual neighborhood of a field. However,
forms often have fields interspersed with field and segment labels,
therefore OPAL considers also overshadowing. Intuitively, we col-
lect all the labels l in the w-nw-n region of f and, if they are not
overshadowed by another field and contained only in segments that
are ancestors of f , then we consider them labels for f .

Each of the three labeling scopes considers information not con-
sidered in the prior scopes. Their order reflects the higher confi-
dence in earlier stages. In addition, each scope builds on the partial
form labeling of the previous scope.

Interpretation. The goal of the interpretation task is to turn the
form labeling into a model of the form consistent with the domain
schema. Intuitively, it represents a further enlargement of the la-
beling scopes from the given form to the class of all the forms of a
domain (domain scope). To this end, the textual content of the la-
bels in the form model must be interpreted so that the correspond-
ing fields can be associated with types of the schema. This is done
in OPAL by annotating the labels with a entity recognizer such as
GATE configured for a given domain (e.g., real estate).

If X is a node in the form model F and A(X) the set of annota-
tions carried by its labels, then the following constraint types X as
PRICE-FIELD if X has a label annotated with class price.

PRICE-FIELD(X)⇐ price ∈ A(X)

Once the fields have been associated with types, OPAL uses the
constraints in the domain schema to (i) verify that the types of the
fields and their relationships satisfy the constraints, and (ii) com-
plete a partially specified form model.

As an example, the following constraint checks whether there
exist two sibling nodes X ,Y in the form model with a common
parent Z such that one of the two (X) is already typed as MINFIELD,
i.e., X represents a minimum quantity, e.g., for a price or an item.
If this is true, the constraint gives to the untyped node Y the type
MAX-FIELD, i.e., Y represents a maximum price for the same quantity.

MAX-PRICE(Y )⇐ MIN-PRICE(X),sibl(X ,Y ), PRICE-FIELD(Y )

Filling. If the model produced by the interpretation step is con-
sistent with the schema, we proceed to the actual filling of the form.
The values provided in the master form (the “passe-partout”) are
automatically filled into the corresponding fields of the current web
form. The main challenges in doing so are mapping the free text in-
puts from the master form to the field types used in the actual form.
E.g., if we can not fill the exact value in a select box that does not
include the value from the master form, we try to find the closest
(for continuous) or most similar (for discrete) value. Failing either
we keep the default value and notify the user (by highlighting the
field). Furthermore, we apply normalization on the values, e.g., in
case of different representations such as “1k” vs. “1000”.

Adapting OPAL to a new domain is a fairly easy task. For the
used car domain, e.g., we reused the real estate templates, instanti-
ated with used car concepts. For gazetteers we can, in most cases,
exploit existing data sources.

3. THE OPAL DEMO
In the demonstration, we showcase OPAL on forms from the real

estate and the used car domain. OPAL’s domain independent part
is very successful on forms of any domain, but for form filling a

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

354



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(j)

(i)

(a) (b) (c)

location

property type

bedroom number

sales

min-price

order-by

display method

pagination

posted within
submit button

(d)

Figure 2: Dawsons multi-scope labeling and typing

domain schema is indispensable. Once the form is interpreted by
OPAL we fill it using the values from the master form.

We now discuss step-by-step OPAL’s form understanding and
form filling on three real estate forms.

Dawsons Estate Agents. Our first example is the form on
the site of Dawsons Estate Agents (dawsonsproperty.co.uk/
properties_for_sale.php) as it appears fairly simple, yet re-
quires most of OPAL’s scopes.

OPAL locates the form on the page and performs its analysis, pro-
ducing the annotations that are then visualized by the GUI. Daw-
sons’ original form is shown in Figure 2. Each of the components
(a)-(j), each of the fields (c)-(g) and the two groups of checkboxes
in (b) are enclosed in a table, tr, or td element. Labels for each
of the components such as “Bedrooms:” appear in separate tr’s.

Field scope. In our example, OPAL’s field scope correctly as-
signs all labels to their fields except those of the checkboxes in (b).
The reason is that all these labels have a common ancestor in the
DOM with their field that is not shared with any other field. In Fig-
ure 2a we show this initial form labeling using same color for fields
and their labels.

Segment scope. The demonstration proceeds by visualizing the
output of the segment scope. In our example, the groups (b)-(g) be-
come segments, with (b) further divided into two segments for each
of the vertical checkbox groups. Here, OPAL identifies a repeated
pattern and each checkbox in (b) is labeled with the text appearing
after it as shown in Figure 2b. OPAL also assigns the text in bold
face appearing atop each segment as the label for the entire segment
(see Figure 2c).

Layout scope. On this form, visual features do not produce fur-
ther label assignments.

Form interpretation. Finally, OPAL uses constraints specified
in the domain schema to annotate fields and segments and to re-
pair and verify the form interpretation obtained so far. E.g., the
first field in (e) is classified as MIN-PRICE as we recognize this seg-
ment as an instance of a price range pattern. These constraints also
disambiguate between multiple annotations, e.g., fields in (f) are
annotated with order-by and price, but the price annotation is disre-
garded due to the group label. For the two checkbox segments in
(b), OPAL collapses the two as they are the only children of their

parent segment and both are of the same type. Figure 2d shows the
final field classification as produced by OPAL.

Form filling. Using the form interpretation, OPAL then fills each
field according to the value provided in the master form. This is
fairly straightforward in this case (with the exception of the check-
box for bedroom) and OPAL fills the form with 100% success.

PrimeLocation. To further detail the form filling process, we
use the form primelocation.com/uk-property-for-sale, see
Figure 3. Here we show the entire OPAL GUI: The top panel al-
lows the user to switch on or off the visualization of the results of
OPAL’s scopes. In particular, form fields and associated labels are
highlighted with the same colors. Form segments are shown as un-
filled boxes with their labels in the same color. The bottom panel
shows the master form (OPAL’s passe-partout), where the user pro-
vides her search requirements. The user can switch between the UK
real estate or used car domains and is presented the corresponding
fields. Note, that we use free text fields for the values.

In the middle panel of Figure 3, we show primelocation with the
results of field and segment scope highlighted. For example, “price
range” is assigned as segment label for the group containing both
price fields which are labeled “minimum” and “maximum” respec-
tively. The screenshot actually shows primelocation after OPAL has
filled it according to the values from the master form. Notice, how
for the three select boxes for minimum and maximum price, as well
as bedroom number, OPAL picks the closest value to the one spec-
ified in the master form. OPAL can also easily handle variations
in the value representation such as “3 bedrooms” (vs. “3” in the
master form).

Holbrook Moran Estate Agents. Consider the form taken
from Holbrook Moran Estate Agents (holbrookmoran.co.uk), Fig-
ure 4a. At a first glance, this form appears to be simpler than the
previous one. Nevertheless, all the four labeling scopes must be
used to complete its analysis.

First, at field scope, OPAL correctly labels fields in area (d) and
(e). Next, at segment scope, we successfully find the segments for
areas (a), (c), and (e). For (a), by recognizing the interleaving pattern
between the radio buttons and texts, OPAL associates these texts

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

355



Figure 3: OPAL Interface

correctly with the respective radio buttons. However, in (c), no clear
text-field pattern arises to guide the label assignment.

Thus, the first two scopes leave the fields in areas (b) and (c)
unassigned. OPAL continues with its analysis by exploiting visual
information. At the layout scope (see Figure 4b), “Town / City”
in area (b) is the only visible text for the drop down list, since it
appears in the top left region of the field and does not belong to
the visible region of any other field. Similarly, in area (c) we assign
“Price” to both drop down lists.

Finally at domain scope, OPAL classifies the elements and veri-
fies that the obtained results comply with our domain specific form
model. There are no ambiguous or superfluous segments in this
case.

By leveraging form interpretation, the filling phase requires
OPAL to pick the closest matches from all the select boxes. If no
match is found, such as for the town/city here (as Holbrook Moran
does not serve the London area), the wildcard value is selected and
the user is notified.

Evaluation. The demonstration proceeds with several other ex-
amples form the UK real estate and used car domain. Figure 5a
shows precision, recall, and F-score (accuracy) of OPAL for 100
forms from each of these domains. The contribution of each anal-
ysis scopes in this experiment is depicted in Figure 5b. In both
cases, OPAL achieves nearly perfect form understanding with F-
scores close to 99%. We evaluate the form filling on top of this
evaluation and observed no case where OPAL understands a form
correctly, but does not fill it successfully, except for a few cases
where the form changes dynamically or uses heavily scripted UI
elements. Figure 5b emphasizes that the combination of the three
form labeling scopes and the domain dependent form interpreta-
tion are indeed necessary to achieve such a high accuracy. In par-
ticular, it is worth pointing out that though it may appear that we
achieve high accuracy with the simple form scope only (> 80% in
the used car domain), that observation overlooks that the hard task
in form understanding are the last 10%. To underline this, we also
evaluated OPAL on two publicly available benchmarks, ICQ and

(a)

(b)

(c)

(d)

(f)

(e)

(a) web page (b) page scope

Figure 4: Holbrook Moran form and page-scope labeling

1

0.99

Precision
0.98

Precision
Recall

0.97 F-score

0.96

0.95
Real-estate Used-carReal estate Used car

(a) Accuracy

0.8

1

domain 
layout 
segment

Real-estate Used-car
0.6

segment
field

(b) Scopes

Figure 5: OPAL evaluation

TEL-8 (http://metaquerier.cs.uiuc.edu/repository/), using
only OPAL’s domain independent form labeling. Even in this case,
OPAL easily outperforms existing form understanding systems with
> 95% on average for ICQ (where existing systems such as [1]
achieve at best 92%).

A screencast of this demonstration is available at
diadem-project.info/opal.

4. REFERENCES
[1] E. C. Dragut, T. Kabisch, C. Yu, and U. Leser. A hierarchical

approach to model web query interfaces for web source
integration. Proc. VLDB Endow., 2:325–336, 2009.

[2] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, and
C. Schallhart. Real Understanding for Real Estate Forms. In
Proc. of WIMS, 2011.

[3] R. Khare and Y. An. An empirical study on using hidden
markov model for search interface segmentation. In Proc. of
CIKM, pages 17–26, 2009.

[4] R. Khare, Y. An, and I.-Y. Song. Understanding Deep Web
Search Interfaces: A Survey. SIGMOD Record, 39(1):33–40,
2010.

[5] H. Nguyen, T. Nguyen, and J. Freire. Learning to extract form
labels. Proc. VLDB Endow., 1:684–694, 2008.

[6] W. Wu, A. Doan, C. Yu, and W. Meng. Modeling and
Extracting Deep-Web Query Interfaces. In Advances in
Information & Intelligent Systems, pages 65–90, 2009.

[7] K. C.-C. C. Zhen Zhang, Bin He. Understanding Web Query
Interfaces: Best-Effort Parsing with Hidden Syntax. In Proc of
SIGMOD, 2004.

WWW 2012 – Demos Track April 16–20, 2012, Lyon, France

356




