

FoCUS: Learning to Crawl Web Forums
Jingtian Jiang†* Nenghai Yu† Chin-Yew Lin‡

†MOE-MS Key Lab of MCC,
University of Science and Technology of China

No. 96 Jinzhai Road, Hefei, China 230026

‡Microsoft Research Asia
Building 2, No. 5 Dan Ling St, Haidian Dist.

Beijing, China 100190
 silyt@mail.ustc.edu.cn ynh@ustc.edu.cn cyl@microsoft.com

ABSTRACT
In this paper, we present FoCUS (Forum Crawler Under
Supervision), a supervised web-scale forum crawler. The goal of
FoCUS is to only trawl relevant forum content from the web with
minimal overhead. Forum threads contain information content that
is the target of forum crawlers. Although forums have different
layouts or styles and are powered by different forum software
packages, they always have similar implicit navigation paths
connected by specific URL types to lead users from entry pages to
thread pages. Based on this observation, we reduce the web forum
crawling problem to a URL type recognition problem and show
how to learn accurate and effective regular expression patterns of
implicit navigation paths from an automatically created training
set using aggregated results from weak page type classifiers.
Robust page type classifiers can be trained from as few as 5
annotated forums and applied to a large set of unseen forums. Our
test results show that FoCUS achieved over 98% effectiveness
and 97% coverage on a large set of test forums powered by over
150 different forum software packages.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – clustering, information filtering.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Forum Crawling, Page Classification, Page Type, URL Pattern.

1. INTRODUCTION
Internet forums are important platforms where users can request
and exchange information with others. For example, the
TripAdvisor Travel Board is a place where people can ask and
share travel tips. Due to the richness of information in forums,
researchers are increasingly interested in mining knowledge from
them. Zhai et al. [21], Yang et al. [20] and Song et al. [16]
extracted structured data from forums. Glance et al. [9] tried to
mine business intelligence from forum data. Zhang et al. [22]
proposed algorithms to extract expertise network in forums. Gao
et al. [8] identified question and answer pairs in forum threads.
According to an article from eMarketer - Where Are Social Media
Marketers Seeing the Most Success? - forums are still part of the

global social media strategy of the Top 500 Companies, and they
are still getting really high marketing success with forums1.

To harvest knowledge from forums, their contents have to be
downloaded first. Generic crawlers [5], which adopt a breadth-
first traversal strategy, are usually ineffective and inefficient for
forum crawling. This is mainly due to two non-crawler-friendly
characteristics of forums [6] [19]: (1) duplicate links &
uninformative pages and (2) page-flipping links. A forum usually
has many duplicate links which point to a common page but with
different URLs, e.g., shortcut links pointing to latest posts or
URLs for user experience functions such as “view by title”. A
generic crawler that blindly follows these links will trawl many
duplicate pages that make it inefficient. A Forum typically has
many uninformative pages such as login control to protect users’
privacy. Following these links, a crawler will trawl many
uninformative pages. Though there are standard-based methods
such as specifying the “rel” attribute with “nofollow” value (i.e.
“rel=nofollow”)2, Robots Exclusion Standard (robots.txt)3, and
Sitemap4 [15], for forum operators to instruct web crawlers on
how to crawl a site effectively, we found that over a set of 9 test
forums more than 47% of the pages trawled by a generic crawler
following these protocols are duplicate or uninformative. This
number is a little higher than the 40% that Cai et al. [6] reported
but both show the inefficiency of generic crawlers.

Besides duplicate links & uninformative pages, a long forum
board or thread is usually divided into multiple pages which are
linked by page-flipping links, for example, see Figure 2 (b) and
(c). Generic crawlers process each page individually and ignore
the relationship between such pages. These relationships should
be preserved while crawling to facilitate downstream tasks such as
page wrapping and content indexing [20]. For example, multiple
pages belonging to a thread should be concatenated together in
order to extract all posts of this thread as well as the reply-
relationships between posts.

In addition to the above challenges, there is also the problem of
entry URL discovery. A forum’s entry URL points to its home
page, which is the lowest common ancestor page of all threads.
Our experiment in Section 5.3.2 shows that a crawler starting
from an entry URL could achieve much higher performance than
starting from other URLs. Previous works by Vidal et al. [18] and
Cai et al. [6] assumed that an entry URL is given. But entry URL
discovery is not a trivial problem. An entry URL is not necessary
at the root URL level of a forum hosting site and its form varies
from site to site. Without entry URLs, existing crawling methods
such as Vidal et al. [18] and Cai et al. [6] are less effective.

1 http://www.emarketer.com/Article.aspx?R=1008211
2 http://en.wikipedia.org/wiki/Nofollow
3 http://www.robotstxt.org/
4 http://sitemaps.org/protocol.php

*This work was done when Jingtian Jiang was an intern at Microsoft
Research Asia.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use, and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

33

Figure 1. A typical link structure in forums (some links are

ignored to show a clear view)

In this paper, we present FoCUS (Forum Crawler Under
Supervision), a supervised web-scale forum crawler, to address
these challenges. The goal of FoCUS is to trawl relevant content,
i.e. user posts, from forums with minimal overhead. Forums exist
in many different layouts or styles and powered by a variety of
forum software packages, but they always have implicit
navigation paths to lead users from entry pages to thread pages.
Figure 1 illustrates a typical page and link structure in a forum.
For example, a user can navigate from the entry page to a thread
page through the following paths:

1. entry ՜board ՜ thread

2. entry ՜list‐of‐board ՜board ՜thread

3. entry ՜list‐of‐board & thread ՜thread

4. entry ՜list‐of‐board & thread ՜board ՜thread

5. entry ՜list‐of‐board ՜list‐of‐board & thread ՜board
՜thread

6. entry ՜list‐of‐board ՜list‐of‐board & thread ՜thread

We call pages between the entry page and thread page which are
on a breadth-first navigation path the index page. We represent
these implicit paths as the following navigation path (EIT path):

entry page ՜ index page ՜ thread page

Links between an entry page and an index page or between two
index pages are referred as index URLs. Links between an index
page and a thread page are referred as thread URLs. Links
connecting multiple pages of a board and multiple pages of a thread
are referred as page-flipping URLs. A crawler starting from the
entry page of a forum only needs to follow index URLs, thread
URLs, and page-flipping URLs to traverse EIT path and achieve all
thread pages. The challenge of forum crawling is then reduced to a
URL type recognition problem. In this paper, we show how to learn
regular expression patterns, i.e. ITF regexes, recognizing these three
types of URLs from as few as 5 annotated forum packages and
apply them to a large set of 160 unseen forums packages. Note that
we specifically refer to “forum package” rather than “forum site”. A
forum software package such as vBulletin5 can be deployed by
many forum sites.

The major contributions of this paper are as follows:

1. We reduce the forum crawling problem to a URL type
recognition problem and implement a crawler, FoCUS, to
demonstrate its applicability.

5 Please see www.forummatrix.org for a list of forum packages.

2. We show how to automatically learn regular expression patterns
(ITF regexes) that recognize the index URL, thread URL, and
page-flipping URL using the page classifiers built from as few as
5 annotated forums.

3. We evaluate FoCUS on a large set of 160 unseen forum packages
that cover 668,683 forum sites. To the best of our knowledge,
this is the largest scale evaluation of this type. In addition, we
show that the patterns are effective and the resulting crawler is
efficient.

4. We compare FoCUS with a baseline generic breadth-first
crawler, a structure-driven crawler, and a state-of-the-art crawler
iRobot and show that FoCUS outperforms these crawlers in
terms of effectiveness and coverage.

5. We design an effective forum entry URL discovery method.
Entry URLs need to be specified to start crawling to get higher
recall. But entry page discovery is not a trivial task since entry
pages vary from forums to forums. Our evaluation shows that a
naïve baseline can achieve only 76% recall and precision; while
our method can achieve over 95% recall and precision.

The rest of this paper is organized as follows. Section 2 is a brief
review of related work. In Section 3, we define terms used in this
paper. We report our observations which motivate our method and
describe the detail of the proposed method in Section 0. In Section
5, we report results of our experiments. In the last section, we draw
conclusions and point out future directions of research.

2. RELATED WORK
Vidal et al. [18] proposed a method for learning regular expression
patterns of URLs that lead a crawler from an entry page to target
pages. Target pages were found through comparing DOM trees of
pages with a pre-selected sample target page. It is very effective but
it only works for the specific site from which the sample page is
drawn. The same process has to be repeated every time for a new
site. Therefore, it is not suitable to large- scale crawling. In contrast,
FoCUS learns URL patterns across multiple sites and automatically
finds forum entry page given a page from a forum. Experimental
results show that FoCUS is effective in large scale forum crawling
by leveraging crawling knowledge learned from a few annotated
forum sites.

Guo et al. [10] and Li et al. [13] are similar to our work. However,
Guo et al. did not mention how to discover and traverse URLs. Li et
al. developed some heuristic rules to discover URLs, but their rules
are too specific and can only be applied to specific forums powered
by the particular forum software package in which the heuristics
were conceived. Unfortunately, according to ForumMatrix [1],
there are hundreds of different forum software packages on the
internet. Please refer to [1] [2] [3] for more information about
different forum software packages. In addition, many forums use
their own customized software.

A recent and more comprehensive work on forum crawling is
iRobot by Cai et al. [6]. iRobot aims to automatically learn a
forum crawler with minimum human intervention by sampling
forum pages, clustering them, selecting informative clusters via an
informativeness measure, and finding a traversal path by a
spanning tree algorithm. However, the traversal path selection
procedure requires human inspection. Follow up work by Wang et
al. [19] proposed an algorithm to address the traversal path
selection problem. They introduced the concept of skeleton link
and page-flipping link. Skeleton links are “the most important
links supporting the structure of a forum site”. Important is
determined by informativeness metric and coverage metric. Page-

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

34

flipping links are determined using connectivity metric. By
identifying and only following skeleton links and page-flipping
links, they showed that iRobot can achieve good effectiveness and
coverage. However, according to our evaluation, its sampling
strategy and informativeness estimation is not always robust and its
tree-like traversal path does not allow more than one path from a
starting page node to a common ending page node. For example, as
shown in Figure 1, there are 6 paths from entry to thread. But
iRobot would only take the first path (entry ՜ board ՜ thread).
iRobot learns URL location information to discover new URLs in
crawling, but a URL location might become invalid when the page
structure changes. Comparing with iRobot, we explicitly define EIT
(entry-index-thread) paths. FoCUS leverages page layouts to
identify index pages and thread pages. FoCUS learns precise URL
string patterns instead of URL locations to discover new URLs.
Thus it does not need to classify new pages in crawling and would
not be affected by a change in page structures. The respective
results between iRobot and FoCUS demonstrated that the EIT path
and URL string patterns are more robust than the traversal path and
URL location feature in iRobot.

Another related work is near-duplicate detection. Forum crawling
also needs to remove duplicates. But content-based duplicate
detection [11] [14] is not bandwidth-efficient, because it can only be
carried out when pages have been downloaded. URL-based
duplicate detection [4] [7] [12] is not helpful. It tries to mine rules of
different URLs with similar text. But such methods still need to
analyze logs from target sites or results of a previous crawl. In this
paper, through detecting index, thread and page-flipping URLs,
FoCUS could avoid duplicates without duplicate detection.

3. TERMINOLOGY
To facilitate presentation in the following sections, we first define
some terms used in this paper.

Page Type. We classified forum pages into four page types:
Entry Page: A page that is the lowest common ancestor of all
thread pages in a forum. See Figure 2 (a).
Index Page: A page that contains a table-like structure; each row
in it contains information on URLs pointing to a board or a
thread. See Figure 2 (b). In Figure 1, list-of-board page, list-of-
board & thread page, board page are all index pages.
Thread Page: A page that contains a list of posts with user-
generated content (UGC). See Figure 2 (c).
Other Page: A page that is not an entry, index, or thread page.

URL Type. There are four types of URLs:
Index URL: A URL that is on an entry page or index page and
points to an index page. Its anchor text shows the title of its
destination board. Figure 2 (a) and (b) show an example.
Thread URL: A URL that is on an index page and points to a
thread page. Its anchor text shows the title of its destination
thread. Figure 2 (b) and (c) show an example.
Page-flipping URL: A URL that leads users to another page of a
same board or a same thread. Correctly dealing with page-flipping
URLs enables a crawler to download all threads in a large board
or all posts in a long thread. See Figure 2 (b) and (c) for examples.
Other URL: A URL is not index, thread, or page-flipping URL.

EIT Path. An EIT (entry-index-thread) path is a navigation path
from an entry page through a sequence of index pages (via index
URLs and page-flipping URLs) to thread pages (via thread URLs
and page-flipping URLs).

Figure 2. An instance of EIT path: entry ՜ board ՜ thread

ITF Regex. An ITF (index-thread-page-flipping) regex is a
regular expression that used to recognize index, thread, or page-
flipping URLs on EIT path. ITF regexes is what FoCUS aims to
learn and applies directly in online crawling.

4. FoCUS – A Supervised Forum Crawler
In this section, we first motivate and give an overview of our
approach. The remaining sections deep dive into each module.

4.1 Observations
In order to crawl forum threads effectively and efficiently, we
investigated about 40 forums (not used in testing) and found the
following characteristics in almost all of them:

a. Navigation Path: Despite differences in layout and style,
forums always have similar implicit navigation paths leading
users from their entry pages to thread pages. In general web
crawling, Vidal et al. [18] learned “navigation patterns” leading
to target pages (thread pages in our case). iRobot also adopted
similar idea but applied page sampling and clustering
techniques to find target pages (Cai et al. [6]). It used

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

35

informativeness and coverage metrics to find navigation paths
(or traversal paths in Wang et al. [19]). We explicitly defined
EIT path that specifies what types of URL and page that a
crawler should follow to reach thread pages.

b. URL Layout: URL layout information such as the location of a
URL on a page and its anchor text length is an important
indicator of its function. URLs of the same function usually
appear at the same location. For example, in Figure 2 (a) and
(b), index URLs appear in the left rectangles. In addition, index
URLs and thread URLs usually have longer anchor texts that
provide board or thread titles (see Figure 2 (a) and (b)).

c. Page Layout: Index pages from different forums share similar
layout. The same applies to thread pages. However, an index
page usually has very different page layout from a thread page.
An index page tends to have many narrow records giving
information about boards or threads. A thread page typically has
a few large records that contain user posts. iRobot used this
feature to cluster similar pages together and apply its
informativeness metric to decide whether a set of pages should
be crawled. FoCUS learns page type classifiers directly from a
set of annotated pages based on this characteristic. This is the
only part where manual annotation is required for FoCUS.

Inspired by these observations, we developed FoCUS. The main
idea behind FoCUS is that index URL, thread URL, and page-
flipping URLs can be detected based on their layout
characteristics and destination pages; and forum pages can be
classified by their layouts. This knowledge about URLs and pages
and forum structures can be learned from a few annotated forums
and then applied to unseen forums. Our experimental results in
Section 5 confirm the effectiveness of our approach.

4.2 System Overview
Figure 3 shows the overall architecture of FoCUS. It consists of
two major parts: the learning part and the online crawling part.
The learning part learns ITF regexes of a given forum from
automatically constructed URL examples. The online crawling
part applies learned ITF regexes to crawl all threads efficiently.

Given any page of a forum, FoCUS first finds its entry URL using
Entry URL Discovery module. Then, it uses the Index/Thread
URL Detection module to detect index URLs and thread URLs on
the entry page; the detected index URLs and thread URLs are
saved to the URL training set. Next, the destination pages of the
detected index URLs are feed to this module again to detect more
index URLs and thread URLs until no more index URL detected.
After that, the Page-Flipping URL Detection module tries to find
page-flipping URLs in both index pages and thread pages and
saves them to the training set. Finally, the ITF Regexes Learning
module learns a set of ITF regexes from the URL training set.

FoCUS performs online crawling as follows: it first pushes the
entry URL into a URL queue; next it fetches a URL from the
queue and downloads its page, and then pushes the outgoing
URLs that are matched with any learned ITF regex into the URL
queue. This step is repeated until the URL queue is empty.

4.3 Learning ITF Regexes
To learn ITF regexes, FoCUS adopts a two-step supervised
training procedure. The first step is training set construction. The
second step is regex learning.

Figure 3. Overall architecture of FoCUS

4.3.1 Constructing URL Training Set
The goal of training set construction is to automatically create sets
of highly precise index URL, thread URL, and page-flipping URL
string samples for regex learning. We use a similar procedure to
construct index URL and thread URL training sets since they have
very similar properties except the types of their destination pages;
we present this part first. Page-flipping URL strings have their
own specific properties which are different from properties of
index URL and thread URL strings; we present this part later.

4.3.1.1 Index and Thread URL String Training Sets
Recall that an index URL is a URL that is on an entry page or
index page; and its destination page is another index page; while a
thread URL is a URL that is on an index page; and its destination
page is a thread page. We also note that the only way to
distinguish index URLs from thread URLs is the type of their
destination pages. Therefore, we need a method to decide page
type of a destination page.

As we mentioned in Section 4.1, the index page and thread page
have their own typical layouts. Usually, an index page has many
narrow records, relatively long anchor text and short plain text;
while a thread page has a few large records, usually user posts or
merchant advertisements. Each post has a very long text block and
relatively short anchor text. An index page or a thread page
always has a timestamp field in each record, but the timestamp
order in the two types of pages are reversed: the timestamps are
typically in descending order in an index page while they are in
ascending order in a thread page. In addition, each record in an
index page or a thread page usually has a link pointing to a user
profile page (See Figure 2 for example).

Inspired by such characteristic, we propose features representing
page layouts as shown in Table 1 and build page classifiers using
Support Vector Machine (SVM) [17] to decide page type.
SVMlight Version 6.026 with a default linear kernel setting is used
to build our classifiers. One index page classifier and one thread
page classifier are built using the same feature set. FoCUS does
not need strong page type classifiers, as we will explain later.

6 Please see svmlight.joachims.org for details about SVMlight.

Entry URL
Discovery

Index/Thread
URL Detection

Page‐Flipping
URL DetectionITF Regexes

Learning

A Forum
Page

Thread
Pages

The Forum

Learning

Online
Crawling

Thread
Pages

Entry
Page

Index/Thread
URL Set

Pre‐Built Page
Classifiers

Page‐Flipping
URL SetITF Regexes

Index
Pages

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

36

Table 1. Main features used in index/thread page classification

Feature Name Value Type Short Description

Record Count Float Number of records
Max Anchor
Text Length

Float
The max length in characters of anchor
text per record

Max Height Float The max value of height of each record
Max Text
Length

Float
The max length in characters of plain
text per record

Average Text
Length

Float
The average length in characters of
plain text among all records

Has Timestamp Boolean Whether each record has a timestamp

Time Order Float
The order of timestamps in the records
if the timestamps exist

Has User Link Boolean
Whether each record has a link
pointing to a user profile page

In our experiment over 160 forum sites (10 pages each of index,
thread, and other page) each powered by a different forum
software package, our classifiers achieved 96% recall and 97%
precision for index page and 97% recall and 98% precision for
thread page with different amount of training data (see Table 2).

After showing how to detect index and thread pages, we next
describe how to find index URLs and thread URLs on an entry
page or index page. Recall again the definition of index (or
thread) URL that its anchor text is the board (or thread) title of its
destination page. This is illustrated in Figure 2 (a) and (b) where
index (or thread) URLs usually have relatively long anchor text,
are grouped according to their functions, and placed at the same
“table” column position. See also Figure 4 (a). Leveraging such
structured layout information, we group URLs based on their
locations and treat URLs as a group instead of as individual
URLs. We then assume that the URL group with the longest total
anchor text is a candidate group of index (or thread) URLs. This
simple group anchor-text-length-based discriminative method
does not need a length threshold to decide the type of a URL and
can take care of index (or thread) URL with short anchor text.
According to [21] and [16], URLs that appear in an HTML table-
like structure can be extracted by aligning DOM trees and stored
in a link-table. This technique has been well studied in recent
years, so we will not discuss it here. In this paper, we adopted the
partial tree alignment method in [16]. Figure 4 shows an example
of the table-like structure in an index page and its corresponding
link-table. Figure 4 (a) is a screenshot of an index page, in which
each row contains the thread title, the last poster, a shortcut to the
last post, the number of posts, and the number of views. After
aligning the DOM tree in Figure 4 (a), a link-table is generated as
shown in Figure 4 (b). The text and images with their URLs are
aligned and stored in the link-table while the plain text (number of
posts and views) is discarded. In Figure 4, thread titles with their
URLs are aligned to group 1, the most recent posters with their
URLs are aligned to group 2, and the shortcuts are aligned to
group 3. Based on our assumption of index or thread URL groups,
we will select group 1 as the candidate for the index or thread
URL group because it has the longest anchor text.

Note that we cannot determine the type of the candidate group so
far. We need to check the destination page type of the URLs in the
candidate group. A majority voting method is adopted to
determine the type since classification results on individual page
might be erroneous. By utilizing aggregated classification results,
FoCUS does not need strong page classifiers. In summary, we
create index and thread URL training strings using Algorithm 1.

Figure 4. An example of URL grouping (a) an HTML “table”

containing thread information (b) grouped URLs

Algorithm 1. Index/thread URL detection
Input: sp: an entry page or index page
Output: it_group: a group of index/thread URLs
1: let it_group be �;
2: url_groups = Collect URL groups by aligning DOM tree of sp;
3: foreach ug in url_groups do
4: ug.AnchorLen = Total anchor text length in ug;
5: end foreach
6: it_group = arg max(ug.AnchorLen) in url_groups;
7: it_group.DstPageType = Majority type of destination pages;
8: if it_group.DstPageType is INDEX_PAGE
9: it_group.UrlType = INDEX_URL;

10: else if it_group.DstPageType is THREAD_PAGE
11: it_group.UrlType = THREAD_URL;
12: else
13: it_group = �;
14: end if
15: return it_group;

Algorithm 2. Page-flipping URL detection

Input: sp: an index page or thread page
Output: pf_group: a group of page-flipping URLs
1: let pf_group be �;
2: url_groups = Collect URL groups by aligning DOM tree of sp;
3: foreach ug in url_groups do
4: if the anchor text of ug are digit strings //property 1)
5: pages = Download(URLs in ug);
6: if ug appears at same location in pages as in sp//property 2)

 and pages have the similar layout to sp //property 3)
7: pf_group = ug;
8: pf_group.UrlType = PAGE_FLIPPING_URL;
9: break;

10: end if
11: end if
12: end foreach
13: return pf_group;

4.3.1.2 Page-Flipping URL String Training Set
Page-flipping URLs point to index pages or thread pages but they
are very different from index URLs or thread URLs. For example,
URLs in the rounded rectangles in top-right corner of Figure 2 (b)
and (c) are page-flipping URLs. They have following properties:

1) Their anchor text is either a sequence of digits such as 1, 2, 3,
or special text such as “last”;

2) They appear at the same location in the DOM tree of their
destination pages as in their source page;

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

37

3) Their destination pages have similar layout with their source
page. We use tree similarity to determine whether the layouts
of two pages are similar or not;

Our page-flipping URL detection module works based on above
properties. The detail is shown as Algorithm 2. In our experiment
over 160 forum sites (10 pages each of index and thread page),
our method achieved 93% recall and 99% precision, proving this
simple method is quite effective. The found page-flipping URLs
are saved as training examples.

4.3.2 Learning ITF Regexes
We have shown how to create index URL, thread URL, and page-
flipping URL string training sets; next we explain how to learn
ITF regexes from these training sets.

Vidal et al. [18] applied URL string generalization, but we do not
use their method because it is too strict and is easily affected by
negative URL examples. It requires very clean precise URL
examples. However, FoCUS cannot guarantee this since its
training sets are all created automatically. For example, given
URL examples as follows (the top 4 URLs are positive while the
bottom 2 URLs are negative):

http://www.gardenstew.com/about20152.html
http://www.gardenstew.com/about18382.html
http://www.gardenstew.com/about19741.html
http://www.gardenstew.com/about20142.html
http://www.gardenstew.com/user34.html
http://www.gardenstew.com/post180803.html

It creates a URL regular expression pattern as follows:
http://www.gardenstew.com/\w+\d+.html; while the target pattern
is http://www.gardenstew.com/about\d+.html. Instead, we apply
the method introduced by Koppula et al. [12] which is better able
to deal with negative examples. We briefly describe their
technique below. For more details, please refer to their paper.

Starting with the generic pattern ‘*’, their algorithm finds more
specific patterns matching a set of URLs. Then each specific
pattern is further refined into more specific patterns. Patterns are
refined recursively until no more patterns could be refined. Given
the previous example, ‘*’ is refined to one specific pattern
http://www.gardenstew.com/\w+\d+.html that matches all URLs.
Then this pattern is refined to three more specific patterns:

1. http://www.gardenstew.com/about\d+.html
2. http://www.gardenstew.com/user\d+.html
3. http://www.gardenstew.com/post\d+.html

Each pattern matches a subset of URLs. These patterns are refined
recursively until no more specific patterns could be generated.
These patterns are final output as they cannot be refined further.

We made one modification of the technique: a refined pattern is
retained only if the number of its matching URLs is greater than
an empirically determined threshold. This is designed to reduce
patterns with very low coverage since we expect a correct pattern
should cover many URLs. The threshold is set to 0.2 times the
total count of URLs. It was determined based on 5 training
forums. For the above example, only the first pattern is retained.

In practice, this method might include session ID7 in learned URL
patterns. We issue multiple requests of a URL over a span of time
to detect any embedded session ID and exclude it from URLs.

7 http://en.wikipedia.org/wiki/Session_ID

4.4 Online Crawling
Given a forum, FoCUS first learns a set of ITF regexes following
the procedure described in the previous sections. Then it performs
online crawling using a breadth-first strategy. It first pushes the
entry URL into a URL queue; next it fetches a URL from the
URL queue and downloads its page; and then it pushes the
outgoing URLs that are matched with any learned regex into the
URL queue. FoCUS repeats this step until the URL queue is
empty or other conditions are satisfied.

What makes FoCUS efficient in online crawling is that it only
needs to apply the learned ITF regexes on outgoing URLs in
newly downloaded pages. FoCUS does not need to group
outgoing URLs, classify pages, detect page-flipping URLs, or
learn regexes again for that forum. Such time consuming
operations are only performed during its learning phase.

4.5 Entry URL Discovery
In the previous sections, we explained how FoCUS learns ITF
regexes that can be used in online crawling to determine what
URLs to follow and what URLs to ignore. However, an entry
page needs to be specified to start the crawling process. To the
best of our knowledge, all previous methods assumed a forum
entry page is given. In practice, especially in web-scale crawling,
manual forum entry page annotation is not practical. Forum entry
page discovery is not a trivial task since entry pages vary from
forums to forums. Our experiment shows that a naïve baseline
method can achieve only about 76% recall and precision. To make
FoCUS more practical and scalable in web-scale crawling, we
design a simple yet effective forum entry URL discovery method
based on some techniques introduced in previous sections.

We observe that (1) almost every page contains a link to lead
users back to the entry page of a forum; (2) an entry page has
most index URLs since it leads users to all forum thread pages.
Based on the index URL detection module and the index page
classifier described the Section 4.3.1.1, we proposed a method for
finding the entry page for a forum given a URL pointing to any
page of the forum. The method’s detail is shown in Algorithm 3.
Our evaluation on 160 forums shows that this method can achieve
98% precision and 95% recall.

Algorithm 3. Entry URL discovery

Input: page: a forum page from a forum
Output: entry_url: Entry URL of this forum
1: cand_urls = Extract outgoing URLs in page; // candidate URLs
2: sel_urls = Randomly select a few URLs from cand_urls;
3: foreach u in sel_urls do
4: page = Download(u); // every page has an entry URL
5: cand_urls = cand_urls ∩ {outgoing URLs in page};
6: end foreach
7: let entry_url be empty, count be 0;
8: foreach u in cand_urls do
9: page = Download(u);

10: index_urls = Detect index URLs in page;
11: if count < |index_urls|
12: count = |index_urls|;
13: entry_url = u; // entry page has most index URLs
14: end if
15: end foreach
16: return entry_url;

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

38

5. EXPERIMENTS
To carry out meaningful evaluations that are good indicators of
web-scale forum crawling, we selected 200 different forum
software packages from ForumMatrix [1], Forum Software [2], and
Big-Boards [3]. For each software package, we found a forum site
powered by it. In total, we have 200 forums powered by 200
different software packages. Among them, we selected 40 forums
as our training set and leave the remaining 160 for testing.

These 200 software packages cover a large number of forum sites.
The 40 training packages are deployed by 59,432 forum sites and
the 160 test packages are deployed by 668,683 forum sites. To the
best of our knowledge, this is the most comprehensive
investigation of forum crawling in terms of forum site coverage to
date. In addition, we wrote scripts to find out how many threads,
posts, and users are in these forums. In total, we estimated that
these packages cover about 2.7 billion threads generated by over
986 million users.
It should be noted that according to our statistics, on all forum
sites that we have found, the top 10 most frequent software
packages are deployed by 17% of all forum sites and cover about
9% of all threads.
In the evaluation of page type classification, index/thread URL
detection, and entry page discovery, we selected the training/test
pages and checked results manually as the data set is not very
large (no more than 5,000 pages). But in the evaluation of online
crawling, it’s impossible to manually verify whether all the
crawled pages are thread page or not. Instead, we wrote a set of
URL based rules to detect index and thread pages for each forum.
We used these rule sets to check the page type of crawled pages.
To ensure that our rule sets can be used as an alternative to
manual evaluation, we used each rule set to annotate 200 pages
randomly selected from its corresponding forum. We found that
these rule sets achieved at least 99% precision and 100% recall.

5.1 Efficiency of FoCUS
We evaluated the efficiency of FoCUS in terms of the number of
pages crawled and the time spent during its learning phase.

Similar to structure-driven crawler and iRobot, FoCUS fetches
some pages during its learning phase. We evaluated how many
pages FoCUS needed to visit to get satisfactory learning results.
Among the 160 test forums used in our evaluation, the maximum
number of pages FoCUS visited is 2,663, the minimum number is
252, and the average number is 442. We found that the structure-
driven crawler needed to visit at least 3,000 pages to find
navigation patterns, which is larger than Vidal et al. [18] reported;
iRobot [6] needed to sample at least 2,000 pages to find complete
traversal paths.

To estimate the time spent on a forum during the learning phase,
we ran FoCUS on a machine with two 4-core 2.20 GHz CPUs, 32
GB memory, and 64-bit Windows Server 2008 SP1 OS. The
maximum time spent on a forum is 3,416 seconds, the minimum
time was 25 seconds, and the average was 466 seconds.
According to our experience, even a skilled human would spend
about 1,200 seconds on average to write URL rules for a forum.

5.2 Evaluations of FoCUS Modules
5.2.1 Evaluation of Index/Thread URL Detection
To build page classifiers, we manually selected 5 index pages, 5
thread pages, and 5 other pages from each of the 40 forums and
extracted the features listed in Table 1. For testing, we manually

Table 2. Result of page type classification and URL detection

#Train
Forum

Index Page % Thread Page %
Index/Thread URL

Detection %
Precision Recall Precision Recall Precision Recall
Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

5 97.51 0.83 96.98 1.33 98.24 0.55 98.12 1.15 99.02 0.17 98.14 0.21

10 97.05 0.69 97.47 1.56 98.28 0.27 98.04 1.23 99.01 0.15 98.13 0.18

20 97.23 0.20 96.91 1.38 98.43 0.44 97.96 1.49 99.01 0.15 98.08 0.17

30 97.34 0.18 96.18 0.56 98.66 0.26 98.00 1.18 99.00 0.10 98.10 0.12

40 97.44 N/A 96.38 N/A 99.04 N/A 97.49 N/A 99.03 N/A 98.12 N/A

Table 3. Results of entry page discovery

Method
Precision % Recall %

Average Std. Dev. Average Std. Dev.
Baseline 76.38 1.74 76.38 1.74
FoCUS 98.08 0.85 95.81 0.59

selected 10 index pages, 10 thread pages and 10 other pages from
each of the 160 forums. This is called 10-Page/160 test set. We
then ran the index/thread URL detection module described in
Section 4.3.1.1 on the 10-Page/160 test set and manually checked
whether the detected URLs are correct. Note that we computed
the results at the page level not at the individual URL level since
we applied a majority voting procedure.

To further examine how many annotated pages FoCUS needs to
achieve a good performance, we conducted similar experiments
but with more training forums (10, 20, 30, and 40) and applied
cross validation. Table 2 shows the results. We find that our
classifiers achieved over 96% recall and precision at all cases with
tight standard deviation. It is particularly encouraging to see that
FoCUS can achieve over 98% precision and recall in index/thread
URL detection with only as few as 5 annotated forums.

5.2.2 Evaluation of Page-Flipping URL Detection
We applied the module described in Section 4.3.1.2 on the 10-
Page/160 test set and manually checked whether it found the
correct page-flipping URLs. The method achieved 99% precision
and 93% recall. The failure is mainly due to JavaScript-based
page-flipping URLs or HTML DOM tree alignment error.

5.2.3 Evaluation of Entry URL Discovery
As far as we know, all prior works in forum crawling assume that
an entry page is given. However, finding forum entry page is not
trivial. To demonstrate this, we compare our entry page detection
method with a heuristic baseline. The heuristic baseline tries to
find the following keywords ending with ‘/’ in a URL: forum,
board, community, bbs, and discus. If a keyword is found, the path
from the URL host to this keyword is extracted as its entry page
URL; if not, the URL host is extracted as its entry page URL.

For each forum in the test set, we randomly sampled a page and
fed it to this module. Then we manually checked if its output was
indeed its entry page. In order to see whether FoCUS and the
baseline are robust, we repeated this procedure 10 times with
different sample pages. The result is shown in Table 3. The
baseline had 76% precision and recall. On the contrary, FoCUS
achieved 98% precision and 95% recall. The low standard
deviation also indicates that it is not sensitive to sample pages.
There are two main failure cases: 1) forums are no longer in
operation and 2) JavaScript generated URLs which we do not
handle currently.

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

39

Table 4. Forums used in online crawling evaluation

ID Forum Software #Threads
1 http://forums.afterdawn.com/ Customized 535,383
2 http://forums.asp.net/ CommunityServer 66,966
3 http://forum.xda-developers.com/ vBulletin 299,073
4 http://bbs.cqzg.cn/ Discuz! 428,555
5 http://forums.crackberry.com/ vBulletin V2 525,381
6 http://forums.gentoo.org/ phpBB V2 681,813
7 http://lkcn.net/bbs/ IP.Board 180,692
8 http://www.techreport.com/forums/ phpBB 65,083
9 http://www.redandwhitekop.com/forum/ SMF 138,963

5.3 Evaluation of Online Crawling
We have shown in the previous sections that FoCUS is efficient in
learning ITF regexes and is effective in detection of index URL,
thread URL, page-flipping URL, and forum entry URL. In this
section, we compare FoCUS with other existing methods in terms
of effectiveness and coverage (defined later).

We selected 9 forums (Table 4) from among the 160 test forums
for this comparison study. 8 of the 9 forums are popular software
packages used by many forum sites (plus one customized package
used by afterdawn.com). These software packages cover 388,245
forums. This is about 53% of forums powered by the 200
packages studied in this paper, and about 15% of all forums we
have found.

We now define effectiveness and coverage metric. Effectiveness
measures the percentage of thread pages among all pages crawled:

Effectiveness ൌ
ݏ݀ܽ݁ݎ݄ݐ ݈݀݁ݓܽݎܥ#
ݏ݁݃ܽ݌ ݈݀݁ݓܽݎܥ#

ൈ 100%

Coverage measures the percentage of crawled thread pages of a
forum crawled to all retrievable thread pages of the forum:

Coverage ൌ
ݏ݀ܽ݁ݎ݄ݐ ݈݀݁ݓܽݎܥ#

݈݈ܽ ݊݅ ݏ݀ܽ݁ݎ݄ܶ#
ൈ 100%

Ideally, we would like to have 100% effectiveness and 100%
coverage when all threads of a forum are crawled and only thread
pages are crawled. A crawler can have high effectiveness but low
coverage or low effectiveness and high coverage. For example, a
crawler can only trawl 10% of all thread pages, i.e. 10% coverage,
with 100% effectiveness; or a crawler needs to trawl 10 times the
thread pages, i.e. 10% effectiveness to reach 100% coverage.

In order to make a fair comparison, we have mirrored the 160 test
forums by a brute-force crawler. We also checked the forums to
find out the number of threads in each forum. All the following
crawling experiments were simulated on the mirrored data set.

5.3.1 Evaluation of a Generic Crawler
To show the hardness of the challenges in forum crawling, we
implemented a generic breadth-first crawler following the
protocols of “nofollow” and robots.txt. This crawler also recorded
the URLs with the attribute “rel=nofollow” or which were
disallowed by robots.txt but did not visit them.

Figure 5 shows the ratio of thread URLs, uninformative &
duplicate URLs, URLs disallowed by robots.txt and URLs with
“rel=nofollow”. We can see that “nofollow” is only effective on 3
forums while robots.txt is effective on 6 forums. Neither nofollow
nor robots.txt is effective on 2 forums as they are not used on the
2 forums. Even though they help a generic crawler avoid a lot of
pages on 7 forums, the crawler still visited many uninformative &
duplicate pages. To show that clearly, the effectiveness of this
crawler is shown in Figure 8 and coverage is shown in Figure 9.

Figure 5. Ratio of different URLs discovered by a generic crawler

Figure 6. Coverage comparison between starting from entry
URL and non-entry URL

The coverage on all forums is almost 100%, but the average
effectiveness is around 53%. The best effectiveness is about 74%
on “xda-developers (3)”. It’s because this forum better maintained
robots.txt than other forums. This showed that “nofollow” and
robots.txt did help forum crawling, but not enough. We can
conclude that a generic crawler is less effective and not scalable
for forum crawling, and its performance depends on how well the
“nofollow” and robots.txt is maintained.

5.3.2 Evaluation of Starting from Non-Entry URLs
As we discussed earlier, a crawler starting from the entry URL
cab achieve higher coverage than when starting from other URLs.
We also did an experiment to verify this. We used the generic
crawler in Section 5.3.1, but set it only follow the index URL,
thread URL and page-flipping URL. So it is an ideal forum
crawler with 100% effectiveness. It starts from the entry URL and
a randomly selected non-entry URL respectively. The crawler
stopped when no more pages could be retrieved. We also repeat
this experiment with different non-entry URLs.

The results are shown in Figure 6 (we did not show the
effectiveness as it was 100%). When starting from entry URL, the
coverage is all close to 100%. But when starting from a non-entry
URL, the coverage decreased significantly. The average coverage
is about 52%. The coverage on “cqzg (4)” is very high. This is
because there are many cross-board URLs in that forum. That is, a
page of one board contains URLs pointing to other boards. But in
other forums, there are fewer cross-board URLs. Thus the crawler
could only find the threads in the board to which the starting URL
belongs. This experiment showed that an entry URL is critical for
forum crawling, and automatic entry URL discovery is necessary
to make a crawler scalable.

5.3.3 Evaluation of Structure-Driven Crawler
Although the structure-driven crawler [18] is not a forum crawler,
it could be applied to forums. To make it a more meaningful
comparison, we adapted it to find page-flipping URL patterns in
order to increase its coverage.

The results of it are shown in Figure 7. We observe that it
performed well on “cqzg (4)” and “techreport (8)”. On these 2
forums, it found the exact patterns of index URL, thread URL,
and page-flipping URL. However, it did not perform well on other
forums, and for example, suffered from low effectiveness. This is
primarily due to the absence of good and specific URL similarity

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9

Thread URLs Uninformative&Duplicate URLs
URLs disallowed by robots.txt URLs with "ref=nofollow"

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

Starting from entry URLs Starting from non-entry URLs

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

40

functions in structure-driven crawler. Thus it did not find precise
URL patterns. Therefore, it performed similarly to the behavior of
a generic crawler and got good coverage on the forums except
“afterdawn (1)”. This is because it does not find the pattern of
page-flipping URL on this forum. From the results, we can
conclude that a structure-driven crawler with small domain
adaptation is not enough to be used as an effective forum crawler.
We compare FoCUS with a more competent forum crawler,
iRobot, and a generic crawler in the next section.

5.3.4 Online Crawling Comparison
In this section, we report the result of comparison between a
generic crawler described in Section 5.3.1, iRobot (we re-
implemented iRobot for our evaluations) and FoCUS. We let
iRobot and FoCUS crawl each forum until no more pages could
be retrieved. After that we count how many threads and other
pages were crawled, respectively.

5.3.4.1 Crawling Effectiveness Comparison
Figure 8 shows the effectiveness comparison. FoCUS achieved
almost 100% effectiveness on all forums. This confirms the
effectiveness and robustness of FoCUS. The generic crawler is
much less effective as we discussed in Section 5.3.1. As a
comparison forum crawler, iRobot’s effectiveness was about 90%.
It obtained high effectiveness on 6 out of 9 forums. But, it did not
perform well on “xda-developers (3)”, “lkcn (7)”, and “techreport
(8)”. After an error analysis, we found iRobot’s ineffectiveness
was mainly due to that its random sampling strategy sampled
many useless and noisy pages. For “xda-developers (3)” and
“techreport (8)”, they have many redundant URLs, which made it
hard to select the best traversal path. As to “lkcn (7)”, iRobot
crawled many user profiles. Because this forum did not impose
login control or robots.txt, many user profile pages were sampled
and retained by iRobot’s informativeness estimation.

Comparing to iRobot, FoCUS learns the EIT path in forums and
ITF regexes directly. Therefore, FoCUS was not affected by noisy
pages and performed better. This indicates that given the fixed
bandwidth and storage, FoCUS could crawl much more valuable
content than iRobot.

5.3.4.2 Crawling Coverage Comparison
According to Figure 9, FoCUS had better coverage than iRobot.
The average coverage of FoCUS was 99%, which is very close to
a generic crawler, comparing to iRobot’s 86%. After an error
analysis, we found that iRobot’s low coverage on “cqzg (4)” was
due to the fact its forum pages had two layout structures. iRobot
learned only one structure from sampled pages. This led to
iRobot’s loss of many thread pages. For “crackberry (5)” and
“Gentoo (6)”, iRobot suffered from changed page-flipping URL
locations across pages. iRobot’s tree-like traversal path also
deceased its coverage on “lkcn (7)” and “cqzg (4)”. In these 2
forums, some boards have many sub-boards. Recall that iRobot’s
tree-like traversal path selection does not allow more than one
path from an entry page node to a thread page node. Thus iRobot
missed the thread URLs in these sub-boards.

In contrast, FoCUS crawled almost all the threads in forums since
it learned EIT path and ITF regexes directly. In online crawling,
FoCUS found all boards and threads whether they appeared in
repetitive regions or not. The results on coverage also
demonstrated our methods of index/thread URL and page-flipping
URL detection are very effective.

Figure 7. Effectiveness and coverage of structure-driven crawler

Figure 8. Effectiveness comparison between a generic crawler,
iRobot and FoCUS

Figure 9. Coverage comparison between a generic crawler,
iRobot and FoCUS

5.3.5 Large Scale Online Crawling
All previous works evaluated their methods on only a few forums.
In this paper, to find out how FoCUS would perform in real online
crawling, we evaluated FoCUS on 160 test forums which
represents 160 different forum software packages. After learning
ITF regexes, we found that FoCUS failed on 2 forums. One forum
was no longer in operation and the other used JavaScript to
generate index URLs. We tested FoCUS on the remaining 158
forums.

The effectiveness of 156 out of the 158 forums was greater than
98%. The effectiveness of the remaining 2 forums was about 91%.
The coverage of 154 out of the 158 forums was greater than 97%.
The coverage of the remaining 4 forums ranged from 4% to 58%.
For these forums, FoCUS failed to find the page-flipping URLs
since they either used JavaScript or they were too small.

The smallest forum in the 158 test forums had only 261 threads
and the largest one had over 2 billion threads. To verify that
FoCUS performs well across forums of different sizes, we
calculated its micro-average and macro-average of effectiveness
and coverage. As shown in Table 5, the micro-average and macro-
average are both high and they are very close. This indicates that
FoCUS performed well on small forums and large forums and is
practical in web-scale crawling. To the best of our knowledge, it’s
the first time such a large-scale test has been reported.

Table 5. Micro/Macro-average of effectiveness and coverage

 Effectiveness % Coverage %

Micro-Average 99.96 99.16

Macro-Average 99.85 97.46

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

Effectiveness Coverage

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

A Generic Crawler iRobot FoCUS

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

A Generic Crawler iRobot FoCUS

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

41

5.4 Apply to cQA Sites and Blog Sites
Though we proposed the concept of recognizing EIT path by
learning ITF regexes to solve the forum crawling problem, the
concept of EIT path and learning ITF regexes also applies to some
other sites, such as community Question & Answer sites (cQA)
and blog sites. In order to verify, we conducted a small
experiment to test FoCUS on some cQA sites and blog sites. The
numbers of questions or blogs in these sites vary from 93 to more
than 1.6 million. The results show FoCUS achieved nearly 100%
effectiveness and coverage on all sites. This demonstrated that our
EIT path also applies to at least some cQA sites and blog sites and
achieve the same performance as on forum sites.

6. CONCLUSION
In this paper, we proposed and implemented FoCUS, a supervised
forum crawler. We reduced the forum crawling problem to a URL
type recognition problem and showed how to leverage implicit
navigation paths of forums, i.e. entry-index-thread (EIT) path, and
designed methods to learn ITF regexes explicitly. Experimental
results on 160 forum sites each powered by a different forum
software package confirm that FoCUS could effectively learn
knowledge of EIT path and ITF regexes from as few as 5
annotated forums. We also showed that FoCUS can effectively
apply learned forum crawling knowledge on 160 unseen forums to
automatically collect index URL, thread URL, and page-flipping
URL string training sets and learn the ITF regexes from the
training sets. These learned regexes could be applied directly in
online crawling. Training and testing on the basis of forum
package makes our experiments manageable and our results
applicable to many forum sites. Moreover, FoCUS can start from
any page of a forum, while all previous works expect an entry
page is given. Our test results on 9 unseen forums show that
FoCUS is indeed very effective and efficient and outperforms the
state-of-the-art forum crawler, iRobot. The results on 160 forums
show that FoCUS can apply the learned knowledge to a large set
of unseen forums and still achieve a very good performance.
Though, the method introduced in this paper is targeted at forum
crawling, the implicit EIT-like path also apply to other sites, such
as community Q&A sites, blog sites, and so on.

In the future, we would like to handle forums which use
JavaScript, include incremental crawling, and discover new
threads and refresh crawled threads in a timely manner. The initial
results of applying FoCUS-like crawler to other social media are
very promising. We would like to conduct more comprehensive
experiments to further verify our approach and improve upon it.

7. ACKNOWLEDGMENT
This work was supported in part by Fundamental Research Funds
for the Central Universities (No. WK2100230002), National
Natural Science Foundation of China (No. 60933013), and
National Science and Technology Major Project (No.
2010ZX03004-003).

8. REFERENCES
[1] ForumMatrix. http://www.forummatrix.org/index.php

[2] Forum Software Reviews. http://www.forum-
software.org/forum-reviews

[3] Message Boards Statistics. http://www.big-
boards.com/statistics/

[4] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not crawl in
the DUST: different URLs with similar text. In Proc. of 16th
WWW, pages 111-120, 2007.

[5] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Computer Networks and
ISDN Systems, 30(1-7):107-117, 1998.

[6] R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L. Zhang. iRobot:
An Intelligent Crawler for Web Forums. In Proc. of 17th
WWW, pages 447-456, 2008.

[7] A. Dasgupta, R. Kumar, and A. Sasturkar. De-duping URLs
via rewrite rules. In Proc. of 14th KDD, pages 186-194, 2008.

[8] C. Gao, L. Wang, C.-Y. Lin, and Y.-I. Song. Finding
Question-Answer Pairs from Online Forums. In Proc. of 31st
SIGIR, pages 467-474, 2008.

[9] N. Glance, M. Hurst, K. Nigam, M. Siegler, R. Stockton, and
T. Tomokiyo. Deriving Marketing Intelligence from Online
Discussion. In Proc. 11th SIGKDD, pages 419-428, 2005.

[10] Y. Guo, K. Li, K. Zhang, and G. Zhang. Board Forum
Crawling: a Web Crawling Method for Web Forum. In Proc.
of 2006 IEEE/WIC/ACM WI, pages 475-478, 2006.

[11] M. Henzinger. Finding near-duplicate Web pages: a large-
scale evaluation of algorithms. In Proc. of 29th SIGIR, pages
284-291, 2006.

[12] H. S. Koppula, K.P. Leela, A. Agarwal, K.P. Chitrapura, S.
Garg and A. Sasturkar. Learning URL Patterns for Webpage
De-duplication. In Proc. of 3rd WSDM, pages 381-390, 2010.

[13] K. Li, X.Q. Cheng, Y. Guo, and K. Zhang. Crawling
Dynamic Web Pages in WWW Forums. Computer
Engineering, 33(6): 80-82, 2007.

[14] G. S. Manku, A. Jain, and A. D. Sarma. Detecting near-
duplicates for Web crawling. In Proc. of 16th WWW, pages
141-150, 2007.

[15] U. Schonfeld , N. Shivakumar. Sitemaps: above and beyond
the crawl of duty. In Proc. of the 18th WWW, pages 991-
1000, 2009.

[16] X.Y. Song, J. Liu, Y.B. Cao, and C.-Y. Lin. Automatic
Extraction of Web Data Records Containing User-Generated
Content. In Proc. of 19th CIKM, pages 39-48, 2010.

[17] V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer, 1995.

[18] M. L. A. Vidal, A. S. Silva, E. S. Moura, and J. M. B.
Cavalcanti. Structure-driven Crawler Generation by
Example. In Proc. of 29th SIGIR, pages 292-299, 2006.

[19] Y. Wang, J.-M. Yang, W. Lai, R. Cai, L. Zhang, and W.-Y.
Ma. Exploring Traversal Strategy for Web Forum Crawling.
In Proc. of 31st SIGIR, pages 459-466, 2008.

[20] J.-M. Yang, R. Cai, Y. Wang, J. Zhu, L. Zhang, and W.-Y.
Ma. Incorporating Site-Level Knowledge to Extract
Structured Data from Web Forums. In Proc. of 18th WWW,
pages 181-190, 2009.

[21] Y. Zhai and B. Liu. Structured Data Extraction from the Web
based on Partial Tree Alignment. IEEE Trans. Knowl. Data
Eng., 18(12):1614−1628, 2006.

[22] J. Zhang, M. S. Ackerman, and L. Adamic. Expertise
Networks in Online Communities: Structure and Algorithms.
In Proc. of 16th WWW, pages 221-230, 2007.

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

