
Web-Scale User Modeling for Targeting

Mohamed Aly, Andrew Hatch, Vanja Josifovski, Vijay K. Narayanan
Yahoo! Research

Santa Clara, CA 95051, USA
{aly, aohatch, vanjaj, vnarayan}@yahoo-inc.com

ABSTRACT
We present the experiences from building a web-scale user
modeling platform for optimizing display advertising tar-
geting at Yahoo!. The platform described in this paper al-
lows for per-campaign maximization of conversions repre-
senting purchase activities or transactions. Conversions di-
rectly translate to advertiser’s revenue, and thus provide the
most relevant metrics of return on advertising investment.
We focus on two major challenges: how to efficiently pro-
cess histories of billions of users on a daily basis, and how to
build per-campaign conversion models given the extremely
low conversion rates (compared to click rates in a traditional
setting). We first present mechanisms for building web-scale
user profiles in a daily incremental fashion. Second, we show
how to reduce the latency through in-memory processing of
billions of user records. Finally, we discuss a technique for
scaling the number of handled campaigns/models by intro-
ducing an efficient labeling technique that allows for sharing
negative training examples across multiple campaigns.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

General Terms
Algorithms, Performance, Experimentation

Keywords
Behavioral targeting, user modeling, advertising

1. INTRODUCTION
While the emergence of online commerce and advertis-

ing has allowed advertisers to much more efficiently track
the performance of their campaigns, the key goal of online
advertising has not changed — advertisers are primarily in-
terested in optimizing return on investment, i.e. getting
the highest response from the users by spending as little as
possible. In the online environment, ad platforms have tra-
ditionally allowed advertisers to target users in populations
that are likely to respond positively to the provided advertis-
ing. Traditionally the methods to specify user populations
rely on demographics or location info, where the advertiser
chooses a set of locations and certain demographic attributes

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

to select the population segment to see the ad. The demo-
graphics and location attributes can either be obtained from
registration databases or inferred from past user activity.
Another traditional online targeting method that uses the
past user activity is behavioral targeting. Here, instead of
bucketing the users into demographics’ categories, users are
put into predefined interest categories as parenting, auto,
health, which are then purchased by the advertisers.

One weakness of the demographic and behavioral target-
ing is that the segments of users are not created using any
feedback from individual advertisers and usually represent
large interest groups. For example, a typical behavioral cat-
egory would be“health and fitness”. Such category will com-
bine users interested in a specific brand of cross-country run-
ning shoes, as well as others interested in shock absorbent
heels. Furthermore, most of the behavioral targeting meth-
ods described in the literature are based on clicks, and not
on actual purchasing behavior [7, 13, 16]. Online advertising
platform can easily track clicks by redirecting the ad landing
page urls. However, click behavior might not correspond to
commercial activity post click.

The recent trend in display advertising has been for the
advertisers to instrument their web sites with embedded
code that beacons the user activity on the website to the
ad network, allowing thus third parties to capture the user
transactions on their sites. These transactions are com-
monly called conversions and can be used to optimize the
user segment generation specifically for a given advertiser
[6, 3, 4, 9, 14, 2]. Using conversions enables the ad network
to optimize for users that are actually inclined to perform a
transaction as opposed to a casual (and in some cases ran-
dom) visit to the web site through a click. In fact, in our
recent work [1], we clearly showed that maximizing for clicks
does not lead to maximizing for conversions, hence provid-
ing evidence for the necessity of developing models that are
specifically optimized for conversions. While using adver-
tiser data can improve the performance of campaigns, it also
adds to the complexity of the optimization problem, as now
the ad-targeting platform needs to find a different segment
for each advertiser and thus solve orders of magnitude more
optimization problems than in the case of traditional behav-
ioral targeting.

In this paper, we frame the behavioral targeting prob-
lem as a per-campaign conversion optimization problem and
describe a large-scale machine learning based approach for
solving it. We focus on our experience in building a web-
scale, production grade, user-modeling platform for improv-
ing behavioral targeting, and thus we will not present all the

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

3

details of the modeling process. We will focus on the design
choices that allows for repeatable, per-campaign customiza-
tion of targeting. More specifically, we will discuss two core,
and somewhat contradicting, issues we encountered in build-
ing and operating the system: 1) high data volumes and 2)
sparseness of conversions.

Processing activities of billions of users on a daily ba-
sis imposes many challenges. The first and foremost is,
how to build user profiles in an efficient way while effi-
ciently expanding these profiles with the new user daily
activities? A second important challenge is, how to cope
with the disk input/output overhead when processing bil-
lions of users through series of successive operations, such
as instance labeling and feature engineering? A third chal-
lenge consists of dealing with the problem of optimizing mul-
tiple campaigns at the same time, thus, the need for forming
positive and negative training instances for each of the cam-
paigns in an independent fashion and the possibility of repet-
itive processing of users exposed for different campaigns.

The conversion rarity issue requires that we parsimoniously
mine the user historical online behavior. We build upon our
recent findings [1] on how to represent and combine differ-
ent user activities such as search queries, page views and ad
clicks when modeling user interests, and the optimal user
history length to be used in modeling user interests. In
this work, we address further important questions needed
for building a web-scale user-modeling platform, as for ex-
ample, how to efficiently determine feature weights? Should
user activity counts represent feature weights or more so-
phisticated techniques are needed? Is feature weight nor-
malization needed? If so, how to normalize? Should all user
activities be treated in a similar way regardless of their tim-
ings, or should short-term or long-term user history given
a higher importance? Is it beneficial to leverage the user
activity distributions in feature weighting?

Our main contributions in this paper are as follows:

• We present mechanisms for building web-scale user
profiles in a daily incremental fashion.

• We explore the power of in-memory processing to effi-
ciently process billions of user records.

• We describe a technique for scalable labeling of data
across thousands of campaigns by sharing negative train-
ing examples across multiple campaigns.

• We explore different techniques for feature weighting
including using activity counts for weighting and fea-
ture weighting based on feature recency. We clearly
show the higher importance of recent user history over
older user activities with respect to targeting.

• Finally, we show the importance of robust feature se-
lection in optimizing the end-to-end daily running time
of our platform without affecting its modeling accu-
racy.

2. PROBLEM DESCRIPTION
We aim to optimize existing campaigns where the ad-

vertisers pay per conversion (or action), commonly known
as cost-per-action (CPA) campaigns. Each campaign has
already been tuned manually by using traditional demo-
graphic and behavioral targeting techniques. Our objective

is to refine the targeting constraints using the past behavior
of the users. Through such refinement, we can improve the
number of conversions per ad impression without greatly
increasing the number of impressions, which increases the
value of the inventory.

The interaction between user’s events can be very com-
plex. In some cases the ordering of the events is meaningful
(e.g. in most cases users first buy camera and then lenses),
while in other cases, the order could be reversed (e.g. run-
ning shoes and running shorts). In this work we simplify
the model by assuming that the events prior to the con-
version contain indications of its occurrence and we do not
use any events past the conversion event in our prediction
framework. As shown in Figure 1, we consider user history
as a sequence of events relative to some target time, τ , at
which time the user is being considered for targeting. We
decompose the user’s sequence of events around the target
time τ as follows:

u(τ) = (EF (τ), ET (τ))

where EF = {e | e ∈ E ∧ t(e) < τ}
and ET = {e | e ∈ E ∧ τ ≤ t(e) ≤ τ + δ}

Here EF (τ) denotes the events prior to the target time and
we call it the feature window. ET (τ) denotes the events that
occur between τ and τ + δ and we call it the target window.
The granularity of both variables is in terms of days.

Hence, when we model behavioral targeting as a machine
learning task where each user history forms a training exam-
ple: a user is a positive example if she is credited to a conver-
sion in the target window, a negative example otherwise.For
a given campaign, a user can only be a positive or a nega-
tive example, but not both at the same time. Given train-
ing users {1, . . . ,m}, we define T =

〈
(x1, y1), ..(xm, ym)

〉
∈

(Rn×{−1,+1})m to be the training data, where xi is a fea-
ture vector constructed from the events of the user i in the
feature window, yi = +1 if the ith example is positive, and
yi = −1 otherwise. The test set is defined similarly.

While we have explored different modeling approaches, in
this work, we focus on the user profile generation and report
results with using a linear SVM algorithm [15], and focus on
the issue of how to leverage user history efficiently. In par-
ticular, how to generate user profiles in a form of feature
vectors (e.g., representing different events as features, com-
puting their weights, incorporating timestamps) and how to
construct target labels (i.e., conversions). We note that the
conclusions presented here are valid in a more general con-
text, i.e., with other modeling methods as well.

A user representation method consists of a function φ :
U → Rn, where Rn is the Euclidean space of dimension n.
A target label function is defined as γ : U → {−1,+1}.
Given this, we extract an appropriate feature and target
label set as (x, y) = (φ(u), γ(u)). We then select a vector
w ∈ Rn by solving the following optimization:

arg min
w∈Rn

w2 + C
m∑

i=1

L(w ! xi),

where L(ŷ, y) = max(1 − ŷy, 0) and C is a constant that
controls the balance between regularization and minimizing
the loss on the training set.

In this work, we investigate different user representation

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

4

Figure 1: Targeting model is trained on user histo-
ries (rectangles) as they existed prior to the start of
the conversion process (open circle) that led to the
conversion (solid circle). For evaluation, all users are
given the same target time (yesterday) and the ad
server may choose to show ads at some point in the
future to start the conversion process (open circle).

operators φ(u), basically when converting events to features,
computing feature weights, and incorporate timestamps.

3. SYSTEM ARCHITECTURE
We now present the high-level architecture of our plat-

form. Our main design objective is to build a highly flexi-
ble and efficient platform to enable repeatable per-campaign
customization of targeted advertising. Hence, we design
our platform to concurrently customize multiple campaigns
based on the advertiser objectives of each campaign. In
that regard, agility in feature discovery and testing is the
key challenge. Optimally, the platform should allow a fairly
quick discovery process, where once initial models are gener-
ated, a loop of model evaluation and refinement takes place
to tune valuable features for optimizing campaign return.

Figure 2 presents the high-level architecture of our plat-
form. The main components of our platform are: the user
profile generator, the campaign manager, the training pipeline,
and the scoring pipeline. The user profile generator is the
component responsible for building user profiles containing
user history coming from different sources, such as content
data, social data, and ad logs. User profiles are updated on
a daily basis with the user activities on that day.

The campaign manager is the main campaign entry point
of our system. Once an advertiser selects to optimize a cur-
rent campaign through our system, the campaign is added to
the campaign manager. The optimization cycle for a given
campaign starts from an original user segment specified by
the advertiser (possibly users expected to highly convert on
this campaign). Campaign optimization can also start from
the set of users previously converting for that campaign.
Taking both user profiles and ad logs as inputs, the train-
ing pipeline is the component responsible for training and
generating models highlighting the important features char-
acterizing converters on this campaign. These models are
passed to the scoring pipeline to be evaluated on all Yahoo!
user base on a daily basis. As a result of this evaluation,
the scoring pipeline produces user segments containing users
with high probability of converting for this campaign. These
segments are then pushed to the ad servers on a daily basis.
On a daily basis, the new user ad interaction on this cam-

Figure 2: System Architecture

paign, together with the updated user profiles, are used to
tune the valuable features in the current models.

Our platform fully runs on Apache Hadoop 1. In our
design, we determine two granularities of operations: work-
flows and tasks. We define a task to be a contiguous set
of operations to be applied on one (ore more) input data
set(s) resulting in one (or more) output data set(s), where
both the input and output data sets are stored on Hadoop
Data File System (HDFS). The workflow is simply defined
as being a set of tasks whose dependence upon each other
can be represented as a Directed Acyclic Graph (DAG). For
example, the training pipeline can represent one workflow
and the scoring pipeline can represent another workflow.

4. USER PROFILE GENERATION
The first challenge for our platform lies in handling the

huge amounts of user histories. The ability of handling bil-
lions of user records in an efficient way on a daily basis is
a key for our platform to successfully train and score per-
campaign models for improving targeting in a daily fashion.
In this section, we highlight our techniques for building web-
scale user profiles in an efficient manner.

4.1 User Representation
We start by describing the main types of user activity in

our platform. When collecting the user’s historical online be-
havior, we consider both active and passive events. Passive
events include viewing ads and visiting pages in which an ac-
tion is not specifically required upon seeing the page. Active
events include issuing search queries and clicking ads, i.e.,
when users actually perform an action on the page. Brows-
ing event is somewhat active because the user took action
to visit the page, but we argue that the activity level is
less than specifically typing a search query or clicking on
an ad. Previously, we showed that the collection of active
and passive user events is stronger in predicting the user’s
propensity to convert on a set of advertisements than any
type separately [1].

Events are associated with both a timestamp and meta-
data. For example, if an event is a visit to a finance web
page, the metadata associated with the event would be the
content of the page, which is logged separately and then

1http://hadoop.apache.org/

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

5

joined with the event along with the anonymized identifier of
the user and the time. We consider several different events,
each with a corresponding feature extraction method.

• Pages visited : Website pages are clustered into several
smaller subdirectories. Some features extracted are
the id of the cluster and the category of the page from
an existing hierarchical page categorizer.

• Search queries: Searches issued, clicks on search links,
clicks on search advertising links. Some features ex-
tracted are the query category, the click information
and the unigrams/bigrams in the query. Furthermore,
we use the category of the search query from an exist-
ing hierarchical query categorizer.

• Graphical Ads: Views and clicks on ads. Some features
extracted are the ad category, the click information,
and the id of the ad. We also use ad view and ad
click categories resulting from feeding views and clicks,
respectiviely, to an existing hierarchical ad categorizer.

4.2 Incremental User Profile Generation
User profiles are not static — users perform new observ-

able activity daily. To provide up-to-date targeting, the
user profiles need to be updated when the new activity is
recorded. In addition to adding new activity, due to improve
performance and satisfy legal and engineering constraints,
activity that is deemed too long in the past is removed from
the user profile. A simple way to update the profile is to re-
generate it every day. However, this approach would require
processing all the raw data for the duration of the obser-
vation period and thus it would be prohibitively expensive.
Therefore we designed an incremental mechanism for updat-
ing the user profiles where user history events are aggregated
on the daily level. Here, activities of each day form a daily
user profile. In the daily data set, only the count of each spe-
cific event is stored, rather than the actual timestamps of the
different event occurrences. We develop a user data model
consisting of an efficient representation of the user, both in-
memory on on-disk. For the on-disk user representation, we
use the JSON format to represent the user activities. Each
user record is represented by a JSON object, with a set of
key-value pairs. Within this object, daily activities are rep-
resented through a JSON array, where each day is assigned
a JSON object with key-value pairs representing the indi-
vidual activities that the user did on that day together with
their counts. We allow meta-data key-value pairs on both
the user level and the activity level. As for the in-memory
representation, we use C++ maps (internally implemented
as balanced binary search tree) to represent activities, thus
maintaining the in-memory activity order. We also maintain
the activity order when writing user records to disk.

Recall that we use all user history falling in the feature
window, EF (τ), in training. Thus, keeping user profiles ag-
gregated on the daily level means that we need to feed u(τ)
(i.e., the sum of the feature window and the target window)
daily user profiles as input to the training pipeline on a daily
basis. This is definitely very infeasible. For that reason,
we developed an efficient mechanism for keeping user pro-
files aggregated on multiple time granularities, daily, weekly,
and monthly. Furthermore, we set each of the user profiles of
larger time granularities to apply a daily round robin mech-
anism to drop the JSON object of the oldest day and sub-
stitute it with the one representing today’s user activities.

Based on the training date, we take the minimum number of
user profiles covering the training period, u(τ), while giving
preference to user profiles from larger time granularities in
addition to minimizing the coverage intersection (in terms of
days) between the different user profiles selected. So, instead
of having u(τ) user records to be joined at the beginning of
the training pipeline, we end up joining 2-3 records at most.

The final technique in our incremental user profile gen-
eration methodology is to efficiently join user records. As
newly generated user daily profiles are in need to be joined
daily with user profiles of larger granularities, e.g., weekly
and monthly, efficient joining of user records represent a
key challenge. For that goal, we leverage Hadoop’s map-
reduce platform in aggregating users with the same key in
one reducer. This can be achieved by setting the number of
reducers of the user profile generation task to be constant
across all days and applying any type of consistent hashing
on the user key to map a given user to the same reducer at
every new daily run (i.e., the one with the same number).
Once all records of a given user are available at the same
reducer, we merge all activities from the different input user
records into one (in-memory) user record. We then opti-
mize the round-robin activity maintenance effect to avoid
parsing all activities of all user records. Instead, we directly
access the first day of history covered by the activities map
(O(log n)) and delete it from the map. This drops the over-
all running time of the round robin process from linear time
to logarithmic time.

One of the great advantages of the new efficient technique
for incrementally building user profiles on a daily basis is
that it allows our platform to build richer and denser user
profiles. As user profiles are aggregating logs from differ-
ent systems/products (e.g., user logs of Yahoo! News, Ya-
hoo! Finance, etc), the ability to join user history from
the different sources on a daily basis requires processing of
large amounts of data. Using our new scalable user profile
generation technique, we are currently able to aggregate all
user data into a single user profile in an incremental fashion.
From one side, this resulted in richer user profiles as this in-
creased the profile density (we define the Profile Density to
be the total number of days of history spanned by a user pro-
file). On the other hand, it substantially reduced the total
number of profiles to be processed by our platform. Figure 3
compares the profile density distribution of the old and the
new versions of our system when building user profiles for
two-months worth of user histories. The comparison clearly
shows the large effect of our new technique in increasing the
profile density of a large amount of our users. This is accom-
panied by a 32.46% decrease in the total number of resulting
user profiles.

5. THE MODULE FRAMEWORK
One of the major challenges imposed by the web-scale

volumes of user profiles is the cost of disk input/output.
Considering all operations of any typical tasks in our plat-
form, the cost of I/O to HDFS is by far the most expensive
in terms of running time. This definitely represents a great
roadblock, especially when trying to run our pipelines on a
daily basis processing billions of user records. One impor-
tant observation in that regard is that, most of our opera-
tions are independent, that is, an operation is applied on one
user record at a time without dependence on any other user
records. In light of this observation, we devised a mech-

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

6

Figure 3: A Comparison of Profile Density Distribution without (left) and with (right) the Incremental
Profile Generation Technique

Figure 4: The Module Framework

anism for in-memory processing to minimize the disk I/O
operations in any given task.

Figure 4 presents a high level overview of our module
framework. Basically, we are introducing a new processing
granularity to our platform, which is the module. A mod-
ule is a unit of processing that modifies records in-memory.
We defined a standard API for modules to standardize the
input and output formats of the module to be a set of one
or more records of our standard in-memory user represen-
tation. A module is executed by a module-host task that is
responsible for loading users from disk, passing them to the
module, merging the module output with the original user
records (in-memory), and storing the resulting user records
back to disk. The module-host task is equipped with the
capability of running multiple modules in series and pipelin-
ing user records through these modules while maintaining
the module running order.

1 Module 2 Modules 3 Modules
1k users 0.0% 3.0% 5.0%
10k users 9.29% 10.5% 11.2%
100k users 98.5% 100.2% 102.4%

Table 1: Relative difference in running time perfor-
mance for applying module framework on multiple
numbers of modules and multiple sizes of user sets

The module framework has a lot of advantages. The obvi-
ous advantage is to reduce workflow running times substan-
tially, due to the ability of performing multiple operations on
the same set of user records in-memory while reducing the
number of disk I/O operations by a factor of n, where n is the
number of modules run in series. Table 1 presents an empir-
ical comparison of running times of our module framework
when run on 1, 2, and 3 module with sets of user records of
multiple sizes. In this setting, each of the modules performs
a typical set of operations requiring the iterative access to all
user daily activity objects, as well as to all key-value pairs
in each of these daily activities. The numbers clearly show
the ability of the module framework to exponentially reduce
processing time with the addition of new modules and the
increase of the number of processed user profiles. The second
major advantage for the module framework is to simplify the
plug-in of new operations (mainly feature extraction ones)
in our platform with no need for large code changes, e.g.,
adding the support for new data sources, plugging-in new
analysis techniques for user data. This allows our platform
to support rapid innovation and shortens the path between
experimentation of new techniques and actually getting suc-
cessful ones into production.

6. TRAINING EXAMPLE LABELING
Our system uses support vector machines (SVMs) to train

conversion models for each ad campaign. Each conversion
model is trained on a set of positive training examples and on
a separate set of negative examples. The positive examples

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

7

are composed of “converters”, that is, users who viewed an
ad from a given ad campaign and later converted, while the
negative examples are drawn from the set of users who did
not convert. In our original system, the negative examples
were drawn from the following two groups:

1. “non-converters”: Users who viewed an ad but did not
convert

2. “non-viewers”: Users who did not view an ad from the
given ad campaign

While the set of “converters” for a given ad campaign is
typically on the order of several thousand unique users in
a one-month period, the set of “non-converters” and “non-
viewers” is typically on the order of hundreds of millions of
unique users. Generating large numbers of examples and
training on them can be computationally expensive; hence,
the large number of negative examples leads to a potential
bottleneck in system scalability and run-time. In experi-
ments, we have found that model accuracy improves as we
increase the number of negative examples; however, this im-
provement typically tops-out at around 200k negative exam-
ples. Hence, we can improve system run-time without sac-
rificing classification accuracy by aggressively subsampling
the negative examples. We can further reduce computa-
tion time and memory requirements by replacing the set of
“non-viewers”, which are advertiser dependent, with a ran-
dom sample of Yahoo! users. Note that this arrangement
is somewhat non-ideal, since a random sample will contain
a small percentage of “converters”, which are used as posi-
tive examples. However, we have not seen any appreciable
degradation in accuracy from replacing “non-viewers” with
a random sample of users.

7. EXPERIMENTAL EVALUATION
We study the performance of our platform compared to

the previous version of the system that we developed in [1].
We mainly compare modeling performance in terms of the
area under the ROC curve (AUC). To assess the efficiency
of the novel engineering techniques applied in our platform
(those presented in Sections 4,5,6), we compare both systems
in terms of the end to end running time performances of the
training and scoring pipelines. Before presenting the per-
formance comparison between the two systems, we present
further details about our platform.

7.1 Dataset
In our experiments, we generate user profiles for 7.7B

users (i.e., browser cookies) spanning two months worth of
user history.. We collected 4 weeks of ad data (i.e., impres-
sions, clicks, and conversions) for 1776 campaigns over this
set of users. Each campaign is treated as a separate tar-
geting task. 66% of the data is used for training, while the
remaining 34% is used for scoring. The train/test split is
performed in a random fashion (rather than based on event
times such as in [1]). This helps in removing any data depen-
dency between the train and test sets. As our user profiles
span 2 months of user history, each training/scoring exam-
ple is preceded by at least 4 weeks of user events. Negative
examples are down-sampled using the same technique pre-
sented in Section 6. This benchmark data set enables us to
do rigorous offline experiments. The empirical evaluation is
based on our baseline. Unless otherwise specified, all metrics

are measured as conversion-weighted average of AUC across
all campaigns in the benchmark set. For simplicity, we de-
note the conversion-weighted average of AUC as Weighted
AUC.

7.2 Model Parameters and Feature Engineer-
ing

Our system consists of the application of the support vec-
tor machine classifier on a per-campaign basis. The train-
ing pipeline is responsible for building the positive/negative
training instances for each of the campaigns, then for run-
ning the classifier to produce the per-campaign models. Based
on some simple experiments, we arrived at the following clas-
sification parameters. Because we have a large number of
mostly irrelevant features, we choose a strong regularization
parameter of C ∈ [0.001, 0.05]. Next, since we have a highly
imbalanced class distribution, we choose a weighting param-
eter for each of the positive and negative classes of any cam-
paign as the reverse of the number of instances from that
class for that campaign. In order to have a single parameter
configuration for all learning tasks, we sample the negative
examples such that the class ratio is always satisfied.

For all feature types, we use a common feature weighting
operator φ : E! → Rn which we call relative frequency
bag of events. The frequency of an event is defined as the
number of days in which the user has performed the event.
We consider each type of events separately (e.g., page visits,
search queries). For example we concentrate on page visits
and denote by event p the “visit to any e-mail page” and
other page view events by q and r. If the user had visited
the pages p, q, and r in a sequence over four days as follows:

e = (p1, p1, p2, q2, r3, q4)

where each event pi denotes the visit on page p on day i,
then the frequency bag of events representation for page
visits would be: Fp(e) = (p : 2, q : 2, r : 1) where we use the
convention of p : n to mean that the feature p has the value
n in the feature vector. Here, the page p was visited 3 times
but on just 2 distinct dates. The relative frequency repre-
sentation normalizes within each feature type such that the
final feature vector is defined as follows:

φ(e) =

(
F1(e)

‖F1(e)‖
, . . . ,

Fn(e)
‖Fn(e)‖

)

where n is the number of feature types such as page views,
ad views, ad clicks, etc.

Another important aspect related to features is that of
feature selection. In a platform processing billions of user
events on a daily basis, there needs to be a mechanism for
determining the importance of the different features in terms
of targeting. For example, events representing the browsing
history corresponding to the email checks are, with a high
probability, not of any benefit for advertisers, thus, may be
dropped from the user profiles without causing any effect on
the modeling accuracy of our platform. To model the im-
portance of the different events, i.e., features, for targeting,
we apply feature selection techniques for only including the
most discriminative features in terms of classification. For
our baseline, we include a straightforward feature selection
technique that we denote as Example Existence Threshold-
ing, where we only include features available in at least p
negative training examples and q positive training examples.

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

8

Old System Current Platform
∆Average AUC 0.0% 3.1%
∆Training Time 0.0% -70.3%
∆Scoring Time 0.0% -65.62%

Table 2: Platform Modeling and Running Time Per-
formance

Based on a simple parameter tuning, we select p = 100 and
q = 1 as the thresholding parameters for our baseline.

7.3 Overall Performance
We first study the overall performance of our platform

compared to the system we originally developed in [1]. Ta-
ble 3 presents both the modeling and the running time per-
formances of our platform compared to our old system. As
for the modeling performance, it has been computed through
an offline stress test analysis on data corresponding to 226
current advertising campaigns. The comparison of the two
systems in terms of AUC shows the superiority of our plat-
form over the existing system. As for running times, the
analysis shows that our new efficient techniques for user pro-
file generation and handling as well as for the generation of
negative instances result in the reduction of the training
pipeline running time by 70.3%. As for the scoring pipeline,
our new techniques for efficient user profile joining, as well
as the power of in-memory processing through the module
framework result in a 65.62% reduction in its running time.
We deployed our platform to production and achieved a com-
parable boost in online metrics, such as eCPA, compared to
the old system (we don’t share these results for privacy rea-
sons).

7.4 Feature Weighting
We now move on to explore the effect of different feature

engineering techniques on the performance of our platform.
All the experiments are based on using the dataset presented
in Section 7.1. Our first track of exploration consists of fea-
ture weighting. Driven by the rarity of targets, we study the
most efficient techniques for weighting features to optimize
the targeting accuracy of our platform.

7.4.1 Weighting by Activity Counts
As described in Section 7.2, our platform uses a common

per-feature-type feature representation (i.e., weighting) op-
erator φ : E! → Rn which we call relative frequency bag
of events. The frequency of an event is defined as the num-
ber of days in which the user has performed the event. We
now question this feature weighting technique by consider-
ing two different techniques that are based on actual user
daily activity counts. The two techniques are:

• Weighting by the Sum of Daily Activity Counts: As-
signing each feature a weight equal to the total num-
ber of times that user performed the activity across
all days in the example history period. Thus, wf =∑

∀d<td wf,d, where wf is the weight of history event
f , d represents any day in which event f is available in
the user history, td is the target date of the instance,
i.e., the impression date in case of a negative instance
and the conversion date in case of a positive instance,
and wf,d is the total number of times the user per-
formed event f on day d.

∆AUC
Baseline 0.0%

Weighting by the Sum of Daily Activity Counts -4.26%
Weighting by the Activity Count Logarithm -0.57%

Table 3: Targeting Accuracy Comparison of the Ac-
tivity Count Feature Weighting Techniques with the
Baseline

• Weighting by the Activity Count Logarithm: Weight-
ing by the logarithm of the total number of times that
the user performed the activity throughout the exam-
ple history period. Thus, wf =

∑
∀d<td logwf,d + 1.

Note that we add 1 to cope for the zero log for the
∀d<tdwf,d = 1 case.

Table 3 presents the comparison of the baseline perfor-
mance with those of the activity count feature weighting
techniques. The comparison shows that the current rela-
tive frequency weighting scheme beats both activity count
weighting schemes. Modeling performance is highly degraded
when trying to weight features based on the sum of raw ac-
tivity counts throughout the example history periods with
a percentage decrease of −4.26%. This is mainly due to the
fact that this scheme results in a very wide distribution for
feature weights. This complicates the task of the classifier
in identifying the discriminative features for each campaign.
The rarity of our targets further complicates the classifier
task and results in the severe witnessed performance degra-
dation. On the other hand, adding the logarithm operator to
the raw activity count helps in reducing the range of possible
feature weights. That’s why the decrease in performance is
much less than in the first case (only −0.57%). Overall, the
relative frequency weighting technique performs the best as
it bounds the feature weights by the total number of days
spanned by the user profiles (In our scheme, that number is
L2 normalized to a value ∈ [0, 1]).

7.4.2 Recency-Based Feature Weighting
In this experiment, we move on to study another feature

weighting technique. Basically, we investigate whether the
recency of the user activity makes a difference in the activity
value. For instance, a user may have searched for the query
“toyota cars” two days before the target date, while she may
have visited“www.orbitz.com”a week before the target date.
The question is, if the targeting system is to show this user
an advertisement, will it be a car-related one or a travel-
related one? We investigate this problem by trying to give
more weight to the recent activity in comparison to the older
ones (or to older ones over recent ones). Our goal is to
understand which history type is more important when it
comes to targeting, short-term history or long-term history.

As described before (Section 7.2), we set the weight of
each feature in user profile based on the number of days
on which the feature is present. Hence, in our baseline, we
do not distinguish between the features which occurred in
recent days and those which had occurred earlier. For this
experiment, to give more weights to recent features we set
the weight of feature f to:

∑

ti∈<f,u>

α−(τ−ti)

where τ is the target time (when the prediction is being

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

9

Figure 5: Effect of Recency-Based Feature Weight-
ing on Targeting Accuracy

made), α is the decay factor (or in other words, the decay
base) and <f, u> is the sequence of days on which feature
f is present in the history of user u. When α = 1 the above
weighting approach reduces to uniform weighting. By set-
ting α to a larger constant, we can give more weight to recent
user activities in comparison to the older ones. Similarly, by
setting α to a smaller constant, we favor older user activities
over recent ones. Note that the weights are then normalized
within each feature type, as before.

In Figure 5, we show the effect of decay factor α on the
prediction performance. We report performance with re-
spect to the baseline (i.e., α = 1). Results show that the
best performance is achieved by α = 1.25, that is, when we
give a slightly higher preference to recent history over older
history. Performance improves by around 2.3% (in terms
of weighted AUC) over the baseline, where we are giving
similar weight to all activities regardless of their occurrence
dates. The performance gain decreases when we increase the
value of the decay factor. This shows that, although recent
history is more important than older history, we still need to
include older history to get the most complete idea about the
user. This makes perfect sense as for example, a user who is
a great long-term basketball fan will be a perfect candidate
to be targeted with offers on game tickets during the time
of the NBA playoffs though she may have most of her recent
activity related to travel as she is planning for a future va-
cation. Furthermore, our results show the large performace
loss incurred in favoring long-term history over short-term
history. This is obvious as the recent history clearly com-
municates with a high probability the current interests of
the user. So, neglecting such history type is definitely not a
good idea.

This result contradicts with our previous findings [1] where
we have seen that the uniform wheighting of history events,
regardless of the event date, performs better than giving
more weight to neither recent nor older events. The main
explanation for this contradition lies in the improved density
of the user profiles achieved by our new platform due to the
incremental profile generation technique presented in Sec-
tion 4.2. As Figure 5 shows, our new scalable profile genera-

tion technique helps in improving the density distribution of
user profiles. Basically, increasing the history length means
we know more about the user. This gives us the power to
better model user interests. In our case, this helps us un-
derstand better facts about the relative importance of the
user history, something that was impossible to achieve with
sparse user profiles. This represents a great lesson and a per-
fect example for the boosted targeting accuracy that could
be achieved when applying sophisticated engineering solu-
tions to improve the overall system scalability.

7.5 Feature Selection
Next, we study the effect of feature selection in terms of

both modeling accuracy and resulting model sizes. Through-
out this section, we denote the “model size” of any cam-
paign as the total number of features available in the trained
model for this campaign. We compare different feature se-
lection mechanisms in terms of the conversion-weighted av-
erage model sizes. For simplicity, we denote the conversion-
weighted average model size for any feature selection scheme
as the “weighted model size” for that scheme. Considering
the architecture of our platform, we note that a reduction
in the weighted model size would result in a comparable
reduction in the running time of our daily scoring pipeline
(assuming the number of users to be scored is the same).
Furthermore, forming a feature white list including the top
discriminative features and filtering all user events based on
such list further reduces the daily scoring time.

A straightforward feature selection technique is to filter
feature types with no real value in terms of advertising. As
described in Section 4.1, we mainly have three types of fea-
tures, together with sub-types related to each of them: pages
visited, search queries, and graphical ads. For each fea-
ture type, sub-types included both raw features (actual user
events) together with categorical features, resulting from
feeding events from that feature type to a corresponding
hierarchical categorizer and using the resulting categories
instead of the actual features. In this experiment, we apply
two feature selection techniques based on completely drop-
ping all features belonging to one or more feature sub-types.

Based on an analysis of the feature type sizes, we real-
ized that ad views represent a fairly large percentage of the
available user events. This is due to the fact that, with every
single page view, many ads are shown to the user. One fact
about ad views is that they represent passive user behav-
ior. Furthermore, we can assume the following hypothesis.
In the case of a user viewing an ad and interacting with
it through clicks/conversions, click features should give the
same signal as the ad views. In contrary, if the user just
views the ad, this usually tells small information about the
user interests. Hence, the first filtering technique that we
apply consists of dropping all raw ad views. As for the sec-
ond filtering technique we apply, we drop all raw features
and only keep categorical features.

Table 4 shows the comparison of the two feature type fil-
tering techniques with the baseline. Results show that each
of the two techniques is able to achieve more than 70% re-
duction in weighted model size while dropping the weighted
AUC measure by 3.69% and 4.26%, respectively. This in-
deed verifies that many of our raw features are completely
non-discriminative. However, a small percentage of these
features are actually important in terms of targeting accu-

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

10

∆AUC ∆ Weighted Model Size
Baseline 0.0% 0.0%

No Ad Views -3.69% -71.41%
Only Categorical Features -4.26% -70.88%

Table 4: Targeting Accuracy and Model Size
Changes for Different Feature Type Filtering Tech-
niques.

∆AUC ∆ Weighted Model Size
Baseline 0.0% 0.0%

(500neg.&1pos.) -2.22% -64.52%
(1000neg.&10pos.) -4.26% -78.77%

Table 5: Targeting Accuracy and Model Size
Changes for Different Example Existence Threshol-
ing Versions

racy. Hence, we move on to consider more advanced feature
selection mechanisms.

In the next experiment, explore further the threshold-
ing technique presented in Section 7.2, to filter features in
a more rigorous fashion. We consider two versions of the
technique by using the following parameter settings: (p =
500, q = 1) and (p = 1000, q = 10), respectively. Figure 5
shows the performance of the two techniques compared to
the baseline. Similar to the feature type filtering results,
the performance measures of the two techniques show that
a considerable amount of features could be dropped without
highly affecting the targeting accuracy.

7.6 Filtering by Mutual Information
Based on the results achieved with the previous two types

of feature selection, we move on to study a more standard
feature selection technique, which is feature selection through
considering the mutual information between features and la-
bels and including discriminative features with a large mu-
tual information with labels. We use the following score to
evaluate the importance of a feature:

I(y, [x]i) = H(y)−H(y|[x]i) (1)

= H(y) +
∑

[x]i

[
∑

y

p(y|[x]i) log p(y|[x]i)
]

Whenever y, [x]i have finite (small) joint support, this can
be approximated efficiently by using empirical probability
estimates. We use the latter as a criterion to order features,
on a per campaign basis, then take the top k features in the
ordered list to be included in the feature white list. The
final feature white list represents the union of the top-k lists
for all campaigns modeled by the platform. When training
and scoring models, we only include features belonging to
the feature white list.

Table 6 shows the results of various versions of the mu-
tual information selection technique based on using different
values for parameter k. Results show that, with a small k
value of only 500, we can perform 4.83% less than the base-
line in terms of weighted AUC while reducing the weighted
model size by 99.11%. Increasing the value of k to be a mul-
tiple of 10, 000 achived almost the same tagreting accuracy
as the baseline with a drop in weighted AUC ranging from
0.56% for k = 10, 000 to 0.14% with k ∈ [20, 000, 50, 000],

∆AUC ∆ Weighted Model Size
Baseline 0.0% 0.0%

MI (top 100) -10.93% -99.81%
MI (top 500) -4.83% -99.11%
MI (top 1000) -2.98% -98.21%
MI (top 10,000) -0.56% -82.31%
MI (top 20,000) -0.28% -64.81%
MI (top 30,000) -0.14% -47.38%
MI (top 40,000) -0.14% -30%
MI (top 50,000) -0.14% -12.67%
MI (top 100,000) 0% 73.19%

Table 6: Targeting Accuracy and Model Size
Changes with Different Mutual Information Ver-
sions (Various K Values)

while achieving a reduction in weighted model size rang-
ing from 82.31% to 12.67%, respectively. This result shows
that, increasing the feature white list size beyond a specific
threshold achieves very little improvement in modeling accu-
racy. Finally, increasing the k value to be 100, 000 actually
reaches an equal targeting accuracy to that of the baseline
while increasing the weighted model size by 73.19%. This
clearly shows that a huge number of features were added
on top of the ones already selected by the baseline without
achieving any improvement in terms of targeting accuracy.

Note that, in addition to mutual information, we applied
feature selection based on another standard feature selection
technique, namely &1 regularization. Results achieved by
the latter in terms of both targeting accuracy and weighted
model size were comparable to the results achieved by fea-
ture selection through mutual information. However, the
end-to-end running times of the feature selection through
mutual information were slightly better. In production, we
select to use a mixture of both feature selection techniques
where we apply a coarse feature selection through mutual in-
formation, then we apply a rigorous feature selection through
&1 regularization. This turns out to achieve the best perfor-
mance in terms of both targeting accuracy and end-to-end
pipeline running times.

8. RELATEDWORK
Targeting users who will convert is a difficult problem and

often the problem is divided into predicting clicks, and pre-
dicting the probability that the click will convert [9, 6, 14].
The advantage of this division relates to business logic: the
publisher (such as Yahoo! or Google) has data about how
likely users are to follow various paths towards clicks on ad-
vertisements on their site. On the other hand, advertisers
have more information about the paths of users on their
website.

In this paper, we focused on building predictive models
for user conversions. We compared our approach with ex-
isting behavioral targeting methods (such as [7, 16]) which
optimize for click-through rates and showed how optimizing
directly for conversions can lead to improved performance.
Compared to previous work on conversion optimization [6, 3,
4, 9, 14], our work makes several new contributions: we look
into understanding the effect of different user activities on
prediction, give insights about the temporal aspect of user
behavior (recency vs. long-term trends) and explore differ-

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

11

ent variants (user representation and target label) through
large offline and online experiments.

9. CONCLUSION
Behavioral targeting platforms use user’s historical activ-

ity to find responsive audiences for display advertising cam-
paigns. Unlike the traditional model of crafting audiences
based on the data available to the publishers as page views
and search queries, a new trend has recently emerged where
advertiser specific information is used to customize the au-
dience selection for each advertiser. In this paper, we pre-
sented some of the lessons learned from building a web-scale
user-modeling platform for audience selection. Our main de-
sign objective is to build a highly flexible and efficient plat-
form to enable repeatable (per-campaign) customization of
targeted advertising. Our platform faces two major chal-
lenges:1) the web-scale volumes of user history to be pro-
cessed on a daily basis; and 2) the rarity of targets, i.e.,
conversions.

To address these challenges, we first develop an efficient
technique for building user profiles in an incremental fashion.
Additionally, we develop a user processing pipeline where
the users are partitioned among machines and each user
data is passed in-memory through a series of modules. Last
but not least, we develop an efficient technique for reusing
negative instances across campaigns. Both our offline and
online results show that these techniques bring a substantial
improvement in the efficiency of the pipeline.

We use a large scale real world benchmark to show how the
proposed approach scales in terms of number of customized
campaigns and conducted a rigorous empirical study of dif-
ferent modeling techniques aiming at addressing the main
challenges faced by our platform. We model the perfor-
mance of different feature weighting schemes such as fea-
ture weighting based on actual user daily activity counts
and feature weighting based on recency (to favor short term
or long term history). Our results show the relative higher
importance of short-term over long-term user history when
it comes to targeting. Additionally, we develop a feature se-
lection mechanism based on both mutual information and &1
regularization that achieves a substantial reduction in both
the resulting model sizes and the end-to-end running times
without affecting the targeting accuracy of our platform.

Acknowledgment
The authorship of this paper reflects the contributions of the
authors to the paper. The work presented in this paper is a
result of a large team effort across multiple organizations at
Yahoo!, including the Yahoo! Labs, Yahoo! Advertising En-
gineering and Product Management groups. We are thank-
ful for the opportunity to have worked with those teams to
deploy this state-of-the-art display advertising platform to
production.

10. REFERENCES
[1] S. Pandey, M. Aly, A. Bagherjeiran, A. O. Hatch,

P. Ciccolo, A. Ratnaparkhi, and M. Zinkevich.
Learning to Target: What Works for Behavioral
Targeting. In Proceedings of the 20th ACM Conference
on Information and Knowledge Management, 2011.

[2] A. Ahmed, Y. Low, M. Aly, V. Josifovski, and
A. J. Smola. Scalable Distributed Inference of

Dynamic User Interests for Behavioral Targeting. In
Proceedings of the of the 17th SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2011.

[3] A. Bagherjeiran, A. O. Hatch, and A. Ratnaparkhi.
Ranking for the Conversion Funnel. In Proceeding of
the 33rd SIGIR conference on Research and
development in information retrieval, 2010.

[4] A. Bagherjeiran, A. O. Hatch, A. Ratnaparkhi, and
R. Parekh. Large-Scale Customized Models for
Advertisers. In ICDM Workshops, 2010.

[5] A. Hatch, A. Bagherjeiran, and A. Ratnaparkhi.
Clickable Terms for Contextual Advertising. In
ADKDD, 2010.

[6] N. Archak, V. S. Mirrokni, and S. Muthukrishnan.
Mining Advertiser-Specific User Behavior using
Adfactors. In Proceedings of the 19th International
World Wide Web Conference, 2010.

[7] Y. Chen, D. Pavlov, and J. Canny. Large-Scale
Behavioral Targeting. In Proceedings of KDD, 2009.

[8] I. Click Forensics. Click Fraud Index.
http://www.clickforensics.com/resources/
click-fraud-index.html, 2010.

[9] Google, Inc. Google Analytics.
http://www.google.com/analytics.

[10] I. Nielsen Company. Nielsen Claritas PRIZM.
http://en-us.nielsen.com/tab/product_families/
nielsen_claritas/prizm.

[11] Y. Peng, L. Zhang, M. Chang, and Y. Guan. An
Effective Method for Combating Malicious Scripts
Clickbots. In Proceedings of the 14th European
Symposium on Research in Computer Security, 2009.

[12] B. J. Pine. Mass Customizing Products and Services.
Strategy & Leadership, 21(4):6 – 55, 1993.

[13] F. Provost, B. Dalessandro, R. Hook, X. Zhang, and
A. Murray. Audience Selection for Online Brand
Advertising: Privacy-Friendly Social Network
Targeting. In Proceedings of the 15th SIGKDD
international conference on Knowledge discovery and
data mining, 2009.

[14] B. Rey and A. Kannan. Conversion rate based bid
adjustment for sponsored search auctions. In
Proceedings of the 19th International World Wide
Web Conference, 2010.

[15] X.-R. Wang, K.-W. Chang, C.-J. Hsieh, R.-E. Fan,
G.-X. Yuan, H.-F. Yu, F.-L. Huang, and C.-J. Lin.
Liblinear – A Library for Large Linear Classification.
http://www.csie.ntu.edu.tw/~cjlin/liblinear/.

[16] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and
Z. Chen. How Much can Behavioral Targeting Help
Online Advertising? In Proceedings of the 18th
International Conference on World Wide Web, 2009.

[17] L. Zhang and Y. Guan. Detecting Click Fraud in
Pay-Per-Click Streams of Online Advertising networks.
In Proceedings of the 28th IEEE International
Conference on Distributed Computing Systems, 2008.

WWW 2012 – Industrial Track April 16–20, 2012, Lyon, France

12

