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ABSTRACT
E-commerce has emerged as a popular channel for Web users
to conduct transaction over Internet. In e-commerce ser-
vices, users usually prefer to discover information via query-
ing over category browsing, since the hierarchical structure
supported by category browsing can provide them a more
effective and efficient way to find their interested proper-
ties. However, in many emerging e-commerce services, well-
defined hierarchical structures are not always available; more-
over, in some other e-commerce services, the pre-defined hi-
erarchical structures are too coarse and less intuitive to dis-
tinguish properties according to users interests. This will
lead to very bad user experience. In this paper, to ad-
dress these problems, we propose a hierarchical clustering
method to build the query taxonomy based on users’ explo-
ration behavior automatically, and further propose an in-
tuitive and light-weight approach to construct browsing list
for each cluster to help users discover interested items. The
advantage of our approach is four folded. First, we build
a hierarchical taxonomy automatically, which saves tedious
human effort. Second, we provide a fine-grained structure,
which can help user reach their interested items efficiently.
Third, our hierarchical structure is derived from users’ inter-
action logs, and thus is intuitive to users. Fourth, given the
hierarchical structures, for each cluster, we present both fre-
quently clicked items and retrieved results of queries in the
category, which provides more intuitive items to users. We
evaluate our work by applying it to the exploration task of
a real-world e-commerce service, i.e. online shop for smart
mobile phone’s apps. Experimental results show that our
clustering algorithm is efficient and effective to assist users
to discover their interested properties, and further compar-
isons illustrate that the hierarchical topic browsing performs
much better than existing category browsing approach (i.e.
Android Market mobile apps category) in terms of informa-
tion exploration.

Categories and Subject Descriptors
H.5.2 [Information Interface and Presentation]: User
Interfaces
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1. INTRODUCTION
Recent years have witnessed the rapid growth of e-commerce,

which refers to the buying and selling of products or services
over electronic systems such as Internet. An increasing pop-
ulation of Web users have started using e-commerce services
to conduct transactions on the Web. In e-commerce services,
users usually prefer to explore interested properties via cat-
egory browsing. Compare to searching, users only need to
choose among provided options, which will save users’s own
efforts of formulating queries, especially when they do not
exactly know what they are looking for. Besides, as more
and more e-commerce services accessible on mobile smart
phones, category browsing is more convenient than typing
queries on mobile devices.

As a result, many e-commerce services provide hierarchi-
cal taxonomies for users to explore. For example, Amazon1

provides different channels, e.g. books, electronics & com-
puters, kindle, toys, kids & baby, etc., for category brows-
ing beyond general search; Yahoo! shopping2 also divides
all items into several categories, like clothing & accessories,
flowers & gifts, computers, etc., and provides a category
browsing interface for users to explore. In these scenarios,
a user-friendly hierarchical structure is necessary for assist-
ing users to discover their interested items effectively and
efficiently.

Although hierarchical structures for category browsing have
been well-defined in some e-commerce services (e.g. books,
clothing, etc.), this invaluable information is still missing in
some other services, especially those emerging ones. For ex-
ample, with the rapid growth of smart mobile phone’s apps,
apps exploration has become a non-trivial task. Currently,
almost all existing app services only provide very coarse cat-
egories. As an example, the android market provides 26
categories for non-game apps, but there is no further clas-
sification within each category. The missing of well-defined

1http://www.amazon.com
2http://shopping.yahoo.com
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hierarchical structures will lead to bad user exploration ex-
perience considering the following aspects,

• There are a large amount of apps included in each cat-
egory. For example, hundreds of, and even thousands
of apps comprise of one category in Android Market3,
which makes it quite difficult for users to reach their
interested apps efficiently.

• In many cases, users intend to explore interested apps
without any specific target. However, they may feel
quite frustrated when facing so many apps with no
hint on what these apps are used for.

To address these problems, we propose building a hierar-
chical structure for emerging e-commerce products accord-
ing to users’ behavior preference, which can be recognized
from searching logs. Specifically, in order to identify users’
interests, we model the similarity between queries according
to users’ corresponding click-through information in their
searching log. However, since searching logs in e-commerce
are usually quite sparse and noisy, we combine them with an-
other two signals representing query similarity, i.e. term sim-
ilarity and click-through information in general web search.
Based on the derived query similarity, we propose a hybrid
hierarchical clustering approach for query clustering.
In addition to building the hierarchical structure for cate-

gory browsing, we further propose an intuitive approach to
classify items into each category automatically. Specifically,
we consider two information. First, those frequently clicked
items of queries in the category are classified as the cur-
rent category. Second, we also use popular queries of each
category to retrieval items, and those highly ranked items
are included in the category too. This approach is straight-
forward, while it saves tedious human efforts and machine
resource to conduct classification, and provides quite effec-
tive performance.
The hierarchical structure and classified items for each

category are integrated into a new user-friendly interface to
assist users to browse interested items. By using this new
interface, users can browse along hierarchical categories, in
each level of which we provide both hot clicked items and
highly ranked items for each cluster at current level, and
users can also narrow down their interests by clicking the
sub-cluster and entering the next level in the hierarchical
structure.
By using the new proposed hierarchical structure, we are

able to enhance users exploration experience with respect to
several aspects:

1. The provided fine-grained structure can help users reach
their interested items in a more efficient way.

2. Our hierarchical structure can provide explicit intu-
ition for users exploration as it is derived from users’
interaction logs. It also provides informative hints for
users who have a general interest without any clear
target, since we recommend them what most users are
interested in.

3. For each category, we provide both frequently clicked
items (which are highlighted) and highly ranked items
of popular queries in the category. This gives users

3http://market.android.com

more intuitive items and richer information about these
items, which help them judge whether they are inter-
ested in them.

We implement and deploy this hierarchical query cluster-
ing approach and the user-friendly interface to a real-world
mobile apps discoving system. The experiments on this sys-
tem demonstrate that our hybrid clustering approach has a
high success rate in providing a reasonable and user-oriented
hierarchical category. Further analysis illustrates that the
user-friendly interface based on the derived query taxonomy
can offer users better exploration experience than the cur-
rent category browsing one.

To sum up, our contributions include,

1. proposal of a hybrid query clustering approach, which
can build user-oriented hierarchical structures auto-
matically,

2. proposal of an intuitive approach to construct brows-
ing lists for derived clusters automatically,

3. verification of the proposed approach on an emerging
e-commerce area–mobile app browsing.

2. RELATED WORK
This study is related to two general areas, category brows-

ing in e-commerce and query clustering.

2.1 Category Browsing in E-Commerce
In mature e-commerce services, category browsing is a

popular way for users to explore interested items. As an
example, Amazon provides hierarchical categories to assist
users to browse products, as shown in Figure 1. As another
example, Yahoo! shopping also classifies items into different
dimensions, as shown in Figure 2. From these examples, we
can observe that a sound hierarchical structure can effec-
tively enhance user experience of exploring interested items
via online browsing.

However, such important hierarchical structure is still miss-
ing or not well-defined in many other e-commerce services,
especially those new emerging ones. For example, the cate-
gory browsing within mobile apps is so coarse that there are
too many items in each category, which makes it difficult
for users to explore and lead to bad user experience con-
sequently. What’s worse, as there have been large amount
of items in the new emerging services, it is quite expen-
sive and almost infeasible to define a hierarchical structure
by humans. To address these problems, in this paper, we
propose to conduct hierarchical clustering on user queries
to organize products in e-commerce service automatically,
and then apply the derived structure to a new hierarchical
category browsing interface.

2.2 Query Clustering
There has been much work on conducting query cluster-

ing. Many previous studies make use of users’ searching
log to define similarity between queries. For example, in [2]
Befferman and Berger propose building a query-url bipartite
graph according to the click-through log, and apply an ag-
glomerative clustering approach to conduct query clustering
and url clustering simultaneously. The derived query clus-
ters are employed for query suggestion. Wen et al. [10] also
leverage the click-through information. Besides, they add
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Figure 1: Category browsing in Amazon

Figure 2: Category browsing in Yahoo! shopping

three more signals: keywords similarity of queries, string
matching similarity, and query similarity derived from the
click-through signal and the distance between clicked urls.
They apply a density-based clustering approach DBSCAN
[6], and apply the clustering result to identifying frequently
asked queries.
Fonseca et al. [7] divide query log into sessions, where each

session contains a sequence of related queries in a time inter-
val. They propose discovering related queries based on as-
sociation rules. Zaiane and Strilets [12] propose using more
information including the similarity of clicked urls to detect
related queries. There are also some studies inferring related
queries by query expansion [1][11].
Most of existing works apply the query clustering result

to query suggestion, finding frequently used queries, or to
enhance search results. To our best knowledge, there has
been no work applying it for building e-commerce hierar-
chical product structure. To achieve this, there are some
special properties we need to consider. First, the searching
log data in e-commerce products is much sparser and noisier
compared to general web search. Second, since we aim at
enhancing users’ browsing experience, it becomes necessary
to build a user-friendly, and self-explanatory structure.

3. OVERVIEW
In this paper, we take mobile app exploration as an ex-

ample, and propose a general approach for optimizing user
exploring experience by providing a more intuitive taxonomy
for app browsing.

Figure 3: Category browsing in Android Market

3.1 Mobile App Exploration
As mobile devices including smartphones and tablet PCs

become more and more popular in our daily life, mobile apps
have exploded in popularity in the last three year. There
are only 28,000 apps in iTunes app store in March 2009,
while this number has grown to 500,000 in October 2011.
We can foresee that mobile app service has great potential
in the e-commerce market. In this paper, we use a newly
launched mobile app discovery service4 by Yahoo! as an
example to show how the multi-level clusters generated by
our proposed approach can improve the traditional category-
based browsing experience.

Most of current mobile app discovery services have pro-
vided search and recommendation functions. However, the
browsing methods are generally limited to looking through
category-based top apps. For example, users can only browse
the top free and top paid apps in about 30 pre-defined cat-
egories in Android Market, as shown in Figure 3. It is very
difficult to define a complete taxonomy for such a new mar-
ket. On one hand, mobile apps do not provide clear clues
in a semantic hierarchical structure. On the other hand,
thousands of new mobile apps emerge every day. It would
be a highly laborious task to maintain such a taxonomy by
manual work.

3.2 Approach and Evaluation
In this paper, we first propose to mine actual user queries

and click-through logs to build a user-friendly hierarchical
topic structure under the original app categories. The hier-
archy is built by adopting a hybrid query clustering approach
and can be further revised by editors.

Then we consider leveraging the derived hierarchy to as-
sist users discovering interested items. To achieve that, we
classify items for each cluster. In this paper we propose an
intuitive and light-weight approach to conduct classification.

Finally we incorporate the hierarchical cluster and classi-
fied items into a new explore interface, by which users can
take advantage of the fine-grained app categorization to nav-
igate through large numbers of various mobile apps.

We evaluate both quality of hierarchical topic structure
and actual usability of the proposed app exploration method.
The professional search editors were invited to modify the
hierarchical topic structure which was automatically gener-
ated by our clustering algorithm. We observe that only a

4http://apps.search.yahoo.com/
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small number of modifications were made by editors to form
a user-friendly app topic hierarchy. Furthermore, our app
browsing method based on the topic hierarchy showed obvi-
ous superiority over the traditional category based ones.

4. A HYBRID APPROACH FOR QUERY
CLUSTERING

4.1 Define Query Similarity
A critical issue for query clustering is how to define simi-

larity between queries. A natural idea is to leverage queries’
co-click information, which has been used in many existing
works [2, 10, 6, 12]. Compared to human-defined taxon-
omy, a hierarchical structure derived based on users’ click-
through log is more intuitive to users, and more likely to
catch users’ preference. For example, in our mobile app ex-
ploration experiments, we detect several sub-categories, like
“love”, “quotes”, “music”, “ringtone”, “yahoo”, etc. for cate-
gory “entertainment”, which are all obvious user interested
topics; while it is difficult for editors to define such taxon-
omy.
To take use of searching logs of new emerging e-commerce

services, we investigated the data, and have several observa-
tions as follows,

• The click-through information in the product search
of those emerging e-commerce services is very noisy
and sparse. Taking the mobile app search as an ex-
ample, we collected the click-through information of
our AppSearch5, and find that almost 85% query-app
pairs result in only one click. Using this information
directly will introduce too much noise, while filtering
out query-app pairs with small click number will make
the data too sparse.

• Keyword based query similarity yields many false pos-
itive example query pairs. For example, despite that
“google talk” and “talking tom cat” is similar in term
space, they belong to quite different topics. For an-
other example, “word search” and “words with friend”
are neither similar to each other though they yield
overlaped keywords.

• It is sound to define query similarity by combining
both co-click based and keyword based similarity. For
instance, according to the app searching logs, all of
three queries, “remote controller”, “remote desk con-
nection”, and “t-mobile”, result in clicks on the app
“PC Remote Controller”. However, “t-mobile” is not
similar to the other two, which can be detected by
checking keyword based similarity. In contrast, “re-
mote desk connection” and “remote controller” share a
word besides co-click an app, by which we can judge
they are similar to each other.

Based on above observations, we define query similarity
according to both their term similarity and co-click infor-
mation,

cts(q1, q2) = ts(q1, q2)cs(q1, q2), (1)

where q1, q2 are two queries, cts(q1, q2) denotes the similarity
between q1 and q2 derived from both click information and

5http://apps.search.yahoo.com

term similarity, ts(q1, q2) represents term similarity between
q1 and q2, and cs(q1, q2) represents co-click based similarity
between q1 and q2.

Term similarity is defined as

ts(q1, q2) =

{
1, if q1 and q2 share at least one word
0, otherwise.

(2)
And co-click based similarity is defined as

cs(q1, q2) =
∑
i

min{r(q1, di), r(q2, di)}, (3)

where di denotes document i, n(q1, di) represents the click
number of query q1 and document di, and r(q1, di) denotes
the normalized click number for (q1, di) pair, which is defined
as

r(q1, di) =
n(q1, di)∑
j n(q1, dj)

, (4)

similar normalization approach has been applied in previous
work [3].

In Eq. (1), if two queries share at least one word, and
both of them result in clicks at least one document, then
we can say they are quite similar to each other. This is in
accordance with our observation.

The similarity derived by Eq. (1) is much more reliable
than using only click or term similarity. However, it still
faces the challenge of sparseness, which means there are only
a small portion of query pairs yielding similarity larger than
zero. For example, in the AppSearch experiment, there are
12,191 queries, while only 6,263 queries have non-zero sim-
ilarity with others. To further alleviate the problem, we
consider using click-through log in general web search. We
investigate web clicks whose queries are from mobile app’s
searching log, and find that,

• The click numbers for query-url pairs are much larger
than those of emerging e-commerce searching log. For
example, we find that the click number of 26% query-
url pairs is larger than 5, while 51% query-url pairs
larger than 2, which indicates that web click is a good
signal to infer query similarity.

• The coverage of searching queries in e-commerce prod-
ucts is not very large in web search click log. In partic-
ular, we find that only about 50% queries in AppSearch
result in clicks on at least one same document with
other queries in general web search. Therefore, using
only web search clicks is too sparse to define query
similarity.

• About 84% query pairs derived from web search click
are not covered in those derived from the e-commerce
searching log. For example, we find that both query
“yahoo chat” and query “messenger” result in clicks on
the app“messenger”more than 50,000 times. However,
there is very few of such signal in e-commerce searching
log., which indicates that query similarity derived from
general web search is helpful to enrich that derived
from e-commerce searching log.

Based on above observations, we first filter query-url pairs
whose click number is smaller than 2, and then define query
similarity as follows,

wcs(q1, q2) =
∑
i

min{r(q1, ui), r(q2, ui)}, (5)
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where wcs(q1, q2) denotes the similarity between q1 and q2
derived from web search click, and

r(q1, ui) =
n(q1, ui)∑
j n(q1uj)

is the normalized clicked number for query q1 and url ui.
Finally, we combine these two similarities to compute the

final similarity between two queries,

s(q1, q2) = cts(q1, q2) + wcs(q1, q2). (6)

4.2 Hierarchical Query Clustering
In this section, we describe our hierarchical clustering ap-

proach. We first analyze the special properties of the clus-
tering problem in our application, then we propose a hybrid
hierarchical clustering approach, which can handle the prop-
erties.
Our hierarchical clustering problem has the following prop-

erties:

• Since we intend to employ the query clustering result
to guide users to explore their interested queries, ex-
clusive clustering is risky. For example, a user might
want to search “talking tom cat ringtone”, which is
clustered into “ringtone”; however, there might be an-
other cluster called “cat”. In this case, users might feel
unsatisfied with the cluster“cat”since they cannot find
“talking tom cat ringtone” in this cluster. On the other
side, if each query occurs in too many clusters, users
will not gain good exploration experience either since
it cannot tell apart different clusters and thus fails to
save users efforts. To balance users efforts and hitting
ratio is important.

• Usually there are two objectives for query clustering:
minimizing similarity between clusters, and maximiz-
ing similarity within each cluster. In our problem, the
second objective is more important than the first one.
In one aspect, to reduce user hitting error, we allow
one query belonging to multiple different clusters. In
another aspect, it is necessary to avoid clustering dis-
similar queries into one cluster as it will give rise to
bad exploration experience for users.

Based on above observations, we propose a two-step hier-
archical clustering approach,

1. Clustering queries into small clusters (referred to as
cluster L2);

2. Clustering cluster L2 into larger clusters (referred to
as cluster L1).

Table 1 lists an example of the clustering result. Next we
discuss how to conduct clustering in details.

4.2.1 Generating Cluster L2
In the first step, we apply the spectral clustering approach

to cluster user queries into cluster L2. Spectral clustering
[4][9] is a state-of-the-art approach to conduct clustering on
graph. It converts the clustering process into an integer opti-
mization problem, which is NP-hard. To conduct clustering
efficiently, one has to relax the integer constraints [8][9] or
make other approximation [5]. These relaxation or approx-
imation will introduce errors to clustering results.

Considering the problem introduced by relaxation or ap-
proximation, and our emphasis on maximizing similarity
within cluster, we conduct a postpone process. That is,
for each cluster resulted from spectral clustering, we check
whether the query similarity graph within each cluster has
only one connected component. If not, we split the cluster to
ensure that each cluster has only one connected component.

This will generate many small clusters (e.g. which has
fewer than 3 user queries). For example, a cluster L2 con-
tains queries“love tester”,“positive quotes”,“friendship quotes”,
and “missing you quotes”. We checked the similarity graph,
and found that“love tester”is not connected to other queries.
Therefore, we split this cluster into two clusters. Meanwhile,
we find there is another cluster containing “love test games”,
“love compatibility test”, “I love you”,“I love you sms”, which
are all very similar to “love tester”. In such a case, we will
merge the query “love tester” into the larger one.

To name each cluster L2, we take the following steps.
First, we build a vocabulary for each cluster, and select k
most frequent words. Then we re-order the selected words
according to its original order in queries within the cluster.
For example, for the cluster with queries “gta cheats ps2”,
“cheats for grand theft auto cheat codes ”, “cheat in gta”,
and “gta san andreas cheats”, we name it as “gta cheats”.

4.2.2 Generating Cluster L1
Now we consider clustering cluster L2 into cluster L1. As

discussed in the beginning of section 4.2, exclusive clustering
is risky for users to browse. We propose generating cluster
L1 as follows. First we generate a vocabulary according to
names of cluster L2. Then for each word in the vocabulary,
we build a cluster L1, which consists of cluster L2 whose
names contain the word.

The idea behind this approach is that, cluster L2 with
shared name words may talk about different aspects of the
same topic. For example, “birthday quotes”, “love quotes”,
“funny quotes”, and “famous quotes” all talk about quotes,
while they specify different aspects of “quotes”. Similarly,
“love letters”, “love poems”, “love quotes”, and “love songs”
are all related to “love”, but of different aspects of “love”.

Directly using above approach has some problems. First,
two words might have very similar cluster L2 sets. For exam-
ple, “angry” and “bird” both correspond to different aspects
of the similar cluster L2, i.e. “angry bird” games. Second,
some word might contain very few cluster L2. For example,
“4shared” only contains one cluster L2.

To address these problems, we also conduct a postpone
processing step. First, if subsets of two cluster L1 are very
similar to each other, we merge them together. Second,
those cluster L1 which contains fewer than two cluster L2
are all grouped into one cluster, which is named as “others”.

To sum up, we propose a hybrid hierarchical clustering
approach, which satisfies the following properties,

• It allows a cluster L2 belonging to multiple different
cluster L1, which can help users find their interested
queries quickly,

• It checks query similarity within each cluster, which
ensures that queries within each cluster are similar to
each other.

We also introduce the editorial intervention to ensure the
better readability and structure of clusters. The professional
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Table 1: An example part of our new hierarchical clusters
category cluster L1 cluster L2 user queries

Entertainment

movies

bruce-lee-movies
bruce lee

martial arts movies
...

netflix-movies
netflix movies instantly

netflix for tv
...

... ...

music

mp3-music
mp3 music
mp3 songs

...

yahoo-music
yahoo music

music
...

... ...

Table 2: Guidelines for cluster editing
Level Action Description

user queries delete Remove the queries which are supposed not to belong to the cluster L2

cluster L2
delete Remove the clusters which are supposed not to belong to the cluster L1
rename Rename the cluster name if the editor think the current name is not really suitable

or readable for this cluster.
merge Merge the highly similar clusters in the cluster L2 level into one

cluster L1
rename Rename the cluster name if the editor think the current name is not really suitable

or readable for this cluster
merge Merge the highly similar clusters in the cluster L2 level into one

search editors are asked to re-formulate the cluster names if
they think the automatically generated ones are incorrect
or not readable. In addition, two other cluster editing ac-
tions delete and merge are requested to make the hierar-
chical topics look like a neat mobile apps taxonomy. The
allowed editorial actions on each topic hierarchy level are
list in Table 2. The evaluation result in Section 6.2 indi-
cates that only minor editorial effort is needed to complete
a user-friendly taxonomy for mobile apps based on the gen-
erated query cluster hierarchy.

5. AUTOMATIC CONSTRUCTION
OF BROWSING LISTS

To assist users browsing interested items, there is still an-
other critical challenge, besides building an intuitive hier-
archical structure, about how to build browsing lists for all
clusters, i.e. grouping items into new generated clusters,
and ranking them within each cluster. Intuitively, this can
be viewed as a classification plus ranking problem. How-
ever, generic classification and ranking problems usually re-
quire great human effort and machine resource. Especially,
in our new hierarchical structure, each cluster takes indi-
vidual learning process to obtain its own dedicated model,
which is too expensive in practice. To address this chal-
lenge, we propose a straightforward approach for automatic
product classification and ranking, which requires quite little
effort.
Specifically, for each cluster, we include those items from

two sources. First, we rank frequently clicked items of queries
in the cluster on the top. Next, we retrieve highly ranked
items using queries in the cluster, and blend the results of all

queries according to each item’s position and the frequency
of its queries.

This idea is quite intuitive, since both frequently clicked
items and highly ranked items of top queries are relevant to
the corresponding cluster; meanwhile it succeeds in saving
tedious classification effort and providing sound results.

We then aggregate the multi-level clusters, which are gen-
erated by our proposed algorithm, and the classified items
into a hierarchical category based browsing interface. We de-
sign such an interface for mobile apps exploration to demon-
strate its practical potentials to enhance user exploration
experience. As shown in the Figure 4, we introduce a four
level hierarchy in the left panel, including category, cluster
L1, cluster L2 and user queries, to assist users to browse
the mobile apps by category. For each cluster in any level,
we list classified items in the right panel.

6. EVALUATION
In this section, we present several experiments to evalu-

ate the hierarchical structure derived in Section 4 and the
browsing lists constructed as in Section 5. The experimental
results demonstrate how effectively our new hierarchical top-
ics can organize queries according to user intent and actual
clicks, as well as how efficiently our new hierarchical topics
can assist users to discover their interested items. In particu-
lar, we first introduce the datasets we used in our experiment
in Section 6.1, then we present the quantitative evaluations
of our new hierarchical topics based on user query clusters
in Section 6.2; and finally we demonstrate a couple of quan-
titative evaluations of the efficiency that users can achieve
by using our new hierarchical topics in Section 6.3.
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Figure 4: Mobile apps category browsing interface
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Figure 5: Click number distribution

6.1 Datasets
We extracted user queries and click information from the

most recent user log of Yahoo! App Search (a vertical search
channel to find mobile apps), ranging from September 2nd
to October 12th in 2011. There are 12,191 queries, and
40,912 query-app pairs in total. The distribution of the click
number for query-app pairs is described in Figure 5. As
discussed in section 4.1, the click through data is highly
sparse since this vertical search channel is launched very
recently and still has not accumulated large amount of user
data yet.
We also extracted query-url pairs from Yahoo! Web Search6

click-through log. The distribution of click numbers is plot-
ted in Figure 5. We can find that the click number is much

6http://search.yahoo.com

larger than that of App Search, which indicates co-click in
web search is a good signal for computing query similarity.

We filtered App Search data according to Eq. (1), and re-
moved query-url pairs with click number less than 2 from
Yahoo! Web Search click-through log. The statistics of
query similarity derived from App Search and Web Search
are listed in Table 3. After filtering, there were 21,910 query
pairs for App Search, which include 6,263 queries. In addi-
tion, we extracted 54, 342 query pairs from the Web Search
log, which include 5,919 queries.

Table 3: Query similarity statistics
#query #query pair

AppSearch 6,263 21,910
Web search 5,919 54,342

6.2 Qualitative Evaluation of Hierarchical Clus-
ters

We use Graclus [5] to conduct spectral clustering. The
number of clusters was set to ensure that there are 5 queries
in each cluster L2 on average. The statistics of clustering
results are listed in Table 4. Our proposed clustering ap-
proach generated 3.0 queries per cluster L2 and 3.7 cluster
L2 per cluster L1 on average. The relatively small number
was selected to ensure items within each cluster are similar
to each other. There are on average 12.5 cluster L1 for each
category, indicating variety of topics within each category.

In order to evaluate the quality of the hierarchical clus-
ters automatically generated by our proposed algorithm, we
recorded the editorial cluster editing actions which are de-
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Table 4: Clustering statistics before and after edito-
rial intervention

Before After
#cluster L1 per category 12.5 11.8
#cluster L2 per cluster L1 3.7 3.7
#user queries per cluster L2 3.0 2.9

fined in in Table 2. As described in Section 4.2, the pro-
fessional search editors were requested to judge the quality
of each level of the generated hierarchical clusters based on
cluster names and the corresponding included queries. The
editors were able to perform three possible actions (rename,
delete and merge) in different levels to optimize the hier-
archical clusters and ideally build a complete taxonomy of
mobile apps. The editorial guidelines are shown in Table 2.
We compare the hierarchical clusters before and after ed-

itor intervention in Table 4. It shows that all statistics do
not change much after editorial modification. This indicates
that from editor’s point of view, only small modifications
on the clustering result are needed to make the category
structure readable and reasonable for user exploration.
To inspect the evaluation in details, we count the number

of each type of action on each level and compute the average
value over the category. Table 5 demonstrates the average
number of different types of actions per category on each
level.

Table 5: Average number of editors’ actions to op-
timize hierarchical taxonomy per category

Action cluster L1 cluster L2 user queries
delete - 0.27 23
rename 0.07 2.23 -
merge 0.03 0.1 -

From the table, we can find that the average number of
actions editors took to optimize the taxonomy is very small,
especially on cluster L1 and cluster L2 levels. In particular,
there is nearly no ‘rename’ or ‘merge’ actions on cluster L1;
and, the average numbers of ‘delete’ and ‘merge’ actions on
cluster L2 are also close to zero, which indicates that our new
hierarchical topics can effectively represent the users’ intent.
The table also illustrates that, on cluster L2, we need about
2.23 actions on average to rename the sub-cluster per cat-
egory. In most of cases, sub-clusters need to be renamed
because the user queries included in the sub-cluster are am-
biguous. Moreover, we find that the number of ‘delete’ ac-
tions on the level user queries (avg. 23) is also much smaller
than the average number of queries per category (avg. 139).

6.3 Side-by-Side Quantitative Evaluations Com-
pared with Android Market

We also conducted the side-by-side quantitative evalua-
tion, compared with category browsing interface in Android
Market, to demonstrate how the new hierarchical clusters
can assist users to more efficiently discover their interested
mobile apps. To minimize the possible biases in two app
browsing interfaces, we tried to adopt the same layout and
design as the ones in Android Market, including same cat-
egories, same app result tabs (top paid and top free), same

app icon sizes and same number of apps per page. The dif-
ference between the two interfaces is that Android Market
only has one level of flat category but our interface provides
three levels of hierarchies (cluster L1, cluster L2 and user
queries) under each category.

Four professional search editors (different editors from the
ones who were involved in editing hierarchical clusters) par-
ticipated in this side-by-side evaluation. They are from US
and all proficient Android app users. Three of them are
native English speakers. They had long experience in con-
ducting SBS evaluations for web search. They were invited
to browse the apps by category based navigation using both
Android Market interface 7 and our app browsing interface
designed in Section 5. The editors were asked to open two
interfaces side by side, finish a browsing session (2 minutes)
for a category on one interface and then start another brows-
ing session for the same category on the other interface. Two
editors first used Android Market’s interface to browse a cat-
egory while the other two used our interface first, in oder to
reduce the bias of possible stronger first impression.

6.3.1 Efficiency of Assisting Users to Discover Inter-
ested Apps

The first direct comparison we conducted is efficiency of
two types of category structures to assist users to discover
their interested apps. After two comparative browsing ses-
sions of a category, the editors were requested to record how
many apps which they actually scanned or clicked were not
their interested ones in the two interfaces separately, as well
as how many interested apps they found in the two inter-
faces.

We observe that, by using our interface, editors skipped
less apps on 56% of the categories and found more interested
apps on 60% categories. In both efficiency tests, the cate-
gories in which our interface shows superiority include ar-
cade&action, business, cards&casino, communication, enter-
tainment, finance, libraries&demo, lifestyle, news&magazines,
photography, sports games and tools. The categories in
which our interface performed worse for both tests are brain&puzzle,
education, medical, music&audio, shopping, social, travel&local
and weather.

6.3.2 Effectiveness of “Hot” App Symbols
In our category browsing interface, we added a new type

of information, the “hot” symbol, to represent the hotness
of apps based on the click number in our user log. To in-
vestigate whether this new information intrigues more user’s
interest, we asked the editors to provide their feedbacks on
the hot symbols. In total, the editors reported that those
hot symbols did affect and arouse their interests to click the
apps in 51.7% of categories. However, we notice the edi-
tors showed obvious discrepancy in this test. Two of them
showed the preference of the “hot” symbol in about 90% of
the categories while the other two didn’t show the interest
in near 90% of the categories. This initial result indicates
the “hot” symbol may be a highly user dependent feature
and would be more helpful as a personalized option.

6.3.3 Effectiveness of Sub-categories
Based on the hierarchical clusters, our interface provides

multi-level sub-categories under each original categories of

7https://market.android.com/apps/GAME
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Figure 6: Interfaces in the SBS evaluation
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Figure 7: Percentage of sub-categories preference

Android Market. The editors were requested to answer
whether the added sub-categories were helpful for their app
browsing. The editors reached general agreement on this
question. As shown in Figure 7, editors thought that the
added sub-categories are helpful on about 75% of the cate-
gories.

6.3.4 Overall Preference and Other Feedbacks
Besides the above quantitative questions, we also asked

the editors if they had an overall preference between the
two interfaces for each category browsing session. Figure 8
illustrates the respective percentage of categories in which
editors preferred one browsing interface to the other or had
no preference. From the figure, we can observe that editors
were more satisfied with our browsing interface in 36.7% of
the categories, with Android Market in 23.3% of the cat-
egories, and show no preference in 40% of the categories.
This clearly verifies superiority of our browsing interface.
We further questioned the reason why the editors pre-

ferred our browsing interface. Most editors mentioned that
the sub-category browsing “is quite helpful”. Since with so
many available apps, they “don’t want to search through all
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Figure 8: Percentage of browsing method preference

the irrelevant apps that come up in the broad categories”.
Some editors also said that they “like the Hot symbol”, and
sometimes they “skipped those apps without hot symbol”
when they were browsing a category.

7. CONCLUSION AND FUTURE WORK
In this paper we have proposed to optimize user exploring

experience in e-commerce services by providing users more
intuitive browsing categories. Specifically, on the backend,
we proposed to build hierarchical structure automatically
based on users’ searching log, while on the frontend, we pre-
sented users with both frequently clicked items and highly
ranked ones for each category, and incorporated the derived
structure and associated items for each category to a new
browsing interface. Experimental results on a real-world e-
commerce service verify the effectiveness of our hierarchical
clustering approach, and further comparisons also demon-
strate that our new interface is superior than the existing
category browsing service.

In the future, we are interested in investigating more query
similarity signals (e.g. similarity between retrieved results
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of queries) beyond the three proposed ones to further allevi-
ate the problem regarding the sparsity and noise of search-
ing log data. Besides, we aim at studying how to evaluate
the effectiveness and efficiency of the new browsing inter-
face automatically, rather than leveraging editorial human
judgement in our current work.
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