
Scalable Search Platform: Improving Pipelined Query
Processing for Distributed Full-Text Retrieval

Simon Jonassen
Advised by Prof. Svein Erik Bratsberg and Adj. Assoc. Prof. Øystein Torbjørnsen

Norwegian University of Science and Technology, Trondheim, Norway
{simonj, sveinbra}@idi.ntnu.no, oystein.torbjornsen@microsoft.com

ABSTRACT
In theory, term-wise partitioned indexes may provide higher
throughput than document-wise partitioned. In practice,
term-wise partitioning shows lacking scalability with increas-
ing collection size and intra-query parallelism, which leads
to long query latency and poor performance at low query
loads. In our work, we have developed several techniques to
deal with these problems. Our current results show a sig-
nificant improvement over the state-of-the-art approach on
a small distributed IR system, and our next objective is to
evaluate the scalability of the improved approach on a large
system. In this paper, we describe the relation between our
work and the problem of scalability, summarize the results,
limitations and challenges of our current work, and outline
directions for further research.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
distributed query processing, optimization, inverted index,
scalability

1. INTRODUCTION
In the recent years query-based search became an essen-

tial component of any computer application. With a rapidly
increasing information volume and access demands, IR has
stepped from single-node to multi-node and even multi-site
systems [7]. In this discussion a central place is given to
index partitioning and query processing methods. Here, a
fundamental choice is whether the collection should be par-
titioned by term (TP) or by document (DP).

An IR system can be evaluated by three main aspects:
cost, result quality and performance. In this context, scala-
bility describes how good a system is to cope with an increase
in the data volume and the number of users, while maxi-
mizing the performance and result quality, and minimizing
its cost. During the last 20 years many different studies
have tried to evaluate the effect of the choice of partitioning
method on the performance and therefore scalability of a
distributed search engine. The only conclusion can be made

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

so far is that both TP and DP can be advantageous depend-
ing on a large number of system parameters, such as the
number of nodes, collection size, disk and network access
characteristics and the query processing model [16].

Rather than asking whether TP or DP is more scalable,
the question we address is how can we improve the scalability
of TP. The main reason to look at TP is that processing of a
query q containing |q| query terms involves only a small num-
ber of nodes, processing |q| posting lists in total (compared
to |q| posting lists on each of the n processing nodes with
DP). As there are many different ways to process a query
over a TP index, we chose to look at the pipelined query pro-
cessing approach [28] (PL), where each query is processed by
routing a query bundle through a set of nodes responsible
for the query terms, processing the corresponding posting
data and finally returning the k top-scored candidates as a
result. Compared to the ad-hoc TP, PL distributes the pro-
cessing task over all of the query nodes and tries to reduce
the amount of processed and transferred data.

According to Büttcher et al. [6] the main problems of
TP/PL are poor load balancing, inability to scale with in-
creasing collections size, limited intra-query concurrency and
term-at-a-time processing. Webber [36] shows that with
resolved load balancing issues, TP/PL outperforms DP in
terms of the maximum throughput and total I/O on a sys-
tem using the GOV2 corpus distributed over 8 processing
nodes. However, Webber admits that PL is inefficient at
light to moderate query loads due to its sequential nature.
A question that we can ask is what happens if we resolve all
of the problems, will PL become an ultimate highly-scalable
approach to distributed query processing?

In this paper we show that at this point we have developed
techniques to deal with most of the problems of TP/PL. The
task we face now is to scale the approach beyond a document
collection of a few millions of documents distributed across
a small number of nodes. At the same time, we discuss
the further extension and complementary alternatives to our
approach with a purpose to contribute to the development
and understanding of scalable query processing.

1.1 Research Questions
The original description of the PhD topic is as follows:

”The PhD student will focus the research activity in the
area of scalable search platforms. The research challenge
here is to develop methods to scale with respect to search
power and data volume to be indexed, and at the same time
give good performance and minimizing human management

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

145

during scaling or churn in the hardware resources”. This
description leads to three high-level research questions:

− ”What is the definition of scalability?”
− ”Which methods to make scalable search applications

exist today and which limitations do they have?”
− ”How can we extend these methods to compete with

intensively increasing document collections, user pop-
ulations, high result demands and frequent hardware
failures?”

The choice of the pipelined query processing approach as the
method of interest leads to more specific questions:

− ”What are the main challenges and limitations of the
pipelined query processing?”

− ”How can we resolve these issues?”
− ”How can we further improve the performance and

scalability of the method?”

2. STATE OF THE ART
Scalability has been the topic for several books and sur-

veys within IR. In the most recent work, Cambazoglu and
Baeza-Yates [7] have structured challenges and known tech-
niques for crawling, indexing and query processing into sev-
eral systems of increasing size, while Hölzle and Barroso [14]
have covered challenges and techniques for data center de-
sign and operation. In the following, we focus on the query
processing aspects and review only a limited number of tech-
niques related to our work. For a better overview we refer
to [6, 7, 14].

2.1 Scalability
We define scalability of a search engine in five directions:

− query arrival rate and throughput
− query processing time and latency
− document collection size
− amount and frequency of changes to documents
− cost of the system

According to Chowdhury and Pass [10], who define three
main performance indicators of a scalable search system as
query response time, throughput and utilization, there are
two ways to improve the performance. The first one is to per-
form index partitioning and replication using a large number
of nodes, and the other is to speed-up the processing itself.

2.2 Partitioning and replication
For a large document collection, an ad-hoc high-perform-

ance system uses a large number of independent commodity
computers [2] to process, analyse and index its content and
then use the resulting index to answer any incoming query.
To distribute the query processing, the nodes has to parti-
tion and replicate the underlying index and then cooperate
their work within each query.
Index partitioning. Two general strategies to inverted
index partitioning is to split it either by term or by document
ID. During the last 20 years, variants of TP and DP have
been compared by a large number of publications, which
show that both methods can be advantageous depending
on the system settings, query model and implementation
details. In particular, [1, 16, 30] demonstrate the efficiency
of TP in presence of fast network transfer, efficient pruning
and/or a large number of concurrently processing queries.

While [15, 16, 24] show that high network load, potential
bottleneck at the ranker node, and poor load-balancing can
make this method to be less preferable than DP. Finally,
[8] shows that TP gives higher throughput, while DP gives
shorter latency.

The method of our interest, PL was first introduced by
Moffat et al. [28]. Different from the traditional TP, PL dis-
tributes processing over all of the query nodes and reduces
processing and network load with space-limited accumulator
pruning [21]. The original paper has demonstrated a signifi-
cant improvement over the TP baseline, but the method was
outperformed by a corresponding DP approach. According
to the authors, poor load-balancing is the main problem of
PL. This issue was addressed in the following work by Mof-
fat et al. [27] and Webber [36]. Their final results [36] show
that with a query-log-based term-assignment and replication
method, PL is able to outperform TP.

Log-based posting list assignment within TP/PL was fol-
lowed by Zhang et al. [39], who presented a graph partition-
ing approach to reduce the communication cost, and Lucch-
ese et al. [23], who addressed the number of active servers
and load imbalance as an optimization problem. In both pa-
pers, the main objective is stated as an NP-complete prob-
lem solved by offline approximations, without accounting for
repartitioning cost or complexity.

Alternatively to PL, a series of publications by Marin et
al. (e.g.[25, 26]) presents a TP approach where queries are
processed by iterative retrieval a K-sized pieces of data from
each fetcher node and processing these by a ranker node.
The underlying inverted index is frequency-ordered. Further
they suggest to apply bulk-synchronous processing (BSP)
model, round-robin ranker assignment and switch between
synchronous and asynchronous query processing model de-
pending on the query load.

In a recent work, Feuerstein et al. [13] have presented
a hybrid approach, where the index is partitioned by both
terms and documents at the same time. This approach (2D)
is expected to have less overhead with a large number of
query processing nodes, but shorter posting lists and better
load-balancing. In the following work [12], the approach was
combined with the methods by Marin et al.
Index replication Index replicas can be used to process
several queries in parallel and to handle node failures. Ac-
cording to Risvik [31], a combination of DP and replica-
tion results in an architecture that can scale with respect
to both collection size and query rate. As an alternative to
this method, Marin et al. [26] have recently presented an ef-
ficient approach combining clustered 2D partitioning, BSP
and caching.
Multi-tier organization and static pruning Another
classical method for scalable distributed indexes is to par-
tition documents into several disjoint tiers. Processing of
each query starts at the top-tier and falls down one tier at
a time when necessary [31]. Similar effect can be achieved
by static index pruning, where a small portion of an index
can be processed before accessing a full index. Skobeltsyn
et al. [32] have presented results on efficient pruning of both
terms and documents in combination with caching.

2.3 Accelerated query processing
Alternatively to partitioning, replication and static prun-

ing, it is possible to speed-up the processing itself. A naive
solution is to order better hardware, which would increase a

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

146

system’s cost rather than performance. Instead, we focus on
speeding-up the processing on the existing hardware. Below
we briefly review the most interesting techniques.
Index organization. As already mentioned, frequency-
ordered lists can be used instead of document-ordered. Al-
though they have been demonstrated to be highly efficient
[33], document-ordered indexes are easier to maintain and
combined with careful document ID assignment [37] and
query processing optimizations can be efficient as well.
Compression and caching. Inverted file compression has
always been a central issue for efficient search engines. Cur-
rent research concentrates on super-scalar, branch- and loop-
optimized, word-level bulk-compression methods. Suel et
al. [38] have recently demonstrated efficiency of PFoR [40]
compression and came up with several improvements [37].

Due to a natural skew in term popularity and presence of
search trends, caching is an efficient method to improve pro-
cessing load and I/O. Traditional systems look at up-to three
levels of caching [22] – posting lists, intersection and result
caches. A large body of work has been done in the direc-
tion of cache eviction, admission and second chance policies
and static vs dynamic caching. More recent studies look at
5 cache levels [26] for distributed systems and a connection
between compression and cache methods [38].

Skipping, pruning and query optimizations. Self-
skipping indexes have been previously presented by several
papers [3, 5, 9, 29]. Skipping has been shown to be highly
efficient for conjunctive (AND) queries but is more computa-
tionally expensive for disjunctive queries (OR). Early query
processing optimizations have been discussed by Turtle and
Croft [35], who also presented an efficient pruning heuristic,
MaxScore, which avoids processing candidates that are guar-
anteed to be absent from the final result set. The authors
mention that this technique is highly efficient in a combi-
nation with skipping, but do not describe an exact imple-
mentation. Two other optimizations for partial evaluation,
Quit and Continue, have been discussed by Zobel and Mof-
fat [29] and later outperformed by a space-limited pruning
method by Lester et al. [21] (the method used by PL). Com-
pared to MaxScore, Lester’s method neither guarantees the
same results as a full evaluation or applies skipping, but re-
stricts the number of maintained accumulators and expects
the best results to be found among these. As another alter-
native, Broder et al. [4] have presented an efficient approach
principally opposite to MaxScore, WAND. This mehtod was
recently extended by Suel et al. [11].
Multi-core processing. Several recent publications look
at multi-core techniques for IR. Most recenly, Tatikonda
et al. [34] have studied fine-grained intra-query parallelism
within posting list intersection and reported a 5.75 times
speed-up on an eight-core CPU. However, their query pro-
cessing model is limited to intersection of memory-based
posting lists and skip-pointers used for task-scheduling are
stored as non-compressed arrays.
Other methods. Techniques outside our focus include
use of GPU and adaptations to the map-reduce framework,
column-stores and key-value stores.

3. METHODOLOGY
The work behind the thesis can be classified as an ex-

ploratory, experimental research based on a real implemen-
tation. Originally we intended to extend an existing open-
source search engine, such as Solr/Lucene, Terrier, Zettair

and MG4J. We chose Terrier because of its intuitive, well-
organized source code and being used by a large number of
academic publications. The initial work led to writing a dis-
tributed version of Terrier 2.3. However, due to performance-
oriented optimizations the most interesting features of Ter-
rier were removed and the search engine itself was used just
as an index manager. Our later work led to writing a cus-
tom inverted index. As being very lightweight and specifi-
cally optimized, it replaced Terrier in the rest of our work.
Worth to mention that many of the concepts used in our
final framework are inspired by Terrier, Zettair and MG4J.

For our experiments we use the 426GB TREC GOV2 cor-
pus containing 25 mil. documents, Terabyte Track Efficiency
Topics and TREC Adhoc Retrieval Topics and Relevance
Judgements, and the Okapi BM-25 similarity model. The
experiments are done using either a single node or a 9 node
cluster interconnected with a Gigabit network.

4. PROPOSED METHODS AND RESULTS
In this section we review the methods we have developed

and evaluated so far. We describe which problems they ad-
dress, the idea behind, the essential results and the relation
to our main problem. For a more detailed description of the
methods and results we refer to the original publications.

Combined semi-pipelined processing
In our first paper [17], we have addressed four observations
of the state-of-the-art PL method: First, non-parallel disk-
accesses and bundle processing result in long query latencies.
Second, accumulators have less compression potential than
inverted list postings. Third, PL is not always better than a
non-pipelined processing, where a single node receives and
processes complete compressed posting lists. Fourth, the
routing strategy does not minimize the number of trans-
ferred accumulators.

To resolve these issues, we presented an approach com-
bining three different techniques. First, a semi-pipelined
query processing – a combination of parallel disk-access and
pipelined processing, which is done by sending a bundle
replica to each of the query nodes instead of just the first
node. Each node receiving the bundle fetches and decom-
presses all posting data as soon as possible, but the following
query processing is done in a pipelined way. Second, we pro-
posed a decision heuristic to choose between semi- and non-
pipelined execution based on the estimated amount of data
to be transferred for each query. And third, we suggested to
route the query by the increasing longest posting list length
instead of the increasing smallest collection frequency.

According to the experimental results, the method com-
bines the advantages of the pipelined and non-pipelined query
processing and outperforms both methods in latency and
throughput. However, the query processing model requires
posting lists to be fetched and decompressed completely,
which is similar to the original implementation of PL [36],
but additionally it requires the posting lists in each sub-
query to be present in the main memory at the same time.
This results in a large memory footprint. Finally, the bit-
wise compression methods for posting data (gamma coding
of d-gaps and unary coding of frequencies) can be criticized
for being inefficient for a performance-oriented search en-
gine. These results led us to an investigation of compression-
efficient pruning methods for pipelined query processing.

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

147

Efficient compressed self-skipping index
In our second paper [18], we have addressed efficient skip-
ping for disjunctive queries on a monolithic system. Be-
cause of a large performance gap, practical search engines
have traditionally processed queries in a conjunctive (AND)
rather than disjunctive (OR) mode. Further, the previously
presented self-skipping indexes [3, 9, 29] do not account for
block-wise disk-access and bulk-compression methods. Here,
we proposed a new self-skipping inverted index designed
specifically for modern super-scalar bulk-compression meth-
ods (such as NewPFor[37]), and presented an updated ver-
sion of MaxScore (including a complete algorithmic descrip-
tion) and a skipping-adapted version of the pruning method
by Lester et al. From our results, both query processing
methods significantly reduce the number of processed ele-
ments and reduce the average query latency by more than
three times and significantly reduce the performance gap
between AND and OR queries.

Improving TP/PL with skipping
In the following work [20], we adaptated our skipping meth-
ods to a distributed system applying TP/PL. The main
problems addressed in this work are the poor scalability of
PL with respect to increasing collection size and the per-
formance gap between AND and OR queries. Here, we
have presented a skipping-adapted version of the original
PL approach applying Lester’s pruning method, and a novel
skip-optimized PL approach applying MaxScore heuristics.
Additionally, we suggested an alternative posting-list assign-
ment method, by MaxScore. From the results, our methods
significantly improve the latency and throughput, and elim-
inate the gap between AND and OR queries. Finally, both
MaxScore PL technique, which introduces document-at-a-
time (DAAT) processing of sub-queries, and the MaxScore
partitioning lead to several possible optimizations, which we
are going to explain below. These include intra-query con-
current processing, a hybrid combination with non-pipelined
query processing and possibility for dynamic load balancing.

Intra-query concurrent TP/PL
In the most recent paper [19], we have addressed the lack
of intra-query parallelism within PL by a further extension
of the pipelined MaxScore method from the last work. For
each query we suggested to divide the document ID space
into several sub-ranges, which we call fragments. Because
of DAAT sub-query processing, as soon a fragment is fully
processed on one node, it is possible to send the correspond-
ing accumulators to the next node, and therefore overlap
the execution of the same query on different nodes. Fur-
ther, at lower concurrency levels, different fragments of the
same sub-query can be processed concurrently on the same
node by maintaining a small number of executors associated
with each particular query and sharing a common pruning
threshold variable. Our experimental results indicate that
the final approach reaches a throughput similar to the pre-
vious method at about half of the latency, and on the single
query case the latency improvement is up to 2.6 times.

5. FURTHER WORK
Besides the presented ideas and results, our work had in-

troduced many new challenges and opportunities that can
be addressed both during the rest of this PhD work and far

beyond the dissertation time. We organize the further work
in three main directions: a) evaluation of the scalability, b)
further extension of the methods, and finally, c) addressing
open problems and considering alternative solutions.

5.1 Limitations of our current results
Our results indicate a significant performance improve-

ment over the state-of-the-art method. However, as the ex-
periments are done on a fixed system of 8 processing nodes
and a relatively small document collection, they do not eval-
uate the scalability itself. Therefore, further work has to
include an evaluation on a bigger cluster and using a signif-
icantly larger document collection. Further, we see a great
value in the evaluation of a system where both the number
of nodes and the document content change dynamically.

5.2 Further extension of our methods
With the MaxScore term assignment strategy, posting

lists are sorted by the MaxScore value and then divided
between the nodes, so node i receives the lists with the
maximum score above those stored by node i + 1 but be-
low i − 1. This provides several opportunities for further
improvements [20]. First, we can consider a dynamic load-
balancing method where some of the posting lists can be
moved to a neighbouring node in order to reduce the load
on the current node. In order to minimize the network and
I/O load, two consecutive nodes may share some of the post-
ing lists around the split value. Second, as the posting list
size is correlated to the maximum score, the posting lists
stored on the first few nodes are quite short. Therefore, we
can consider a hybrid strategy where for each query some
of the nodes may only read and transfer its posting lists to
a node later in the query route. The receiving node is then
the first node in the query pipeline. This can further be
extended by caching remote posting lists on the receiving
node. Third, we can also consider a multi-tier system where
the first tier stores only the most relevant terms and the last
tier stores the least relevant terms. Thus, query processing
involves the last tier only when the results returned by the
primary tier are not sufficient.

Within each node further improvement can be done by
caching, enhancing the skipping index and the processing
method, and finally optimizing for multi-core processing.

5.3 Alternative methods and open problems
Our current methods build on a document-ordered in-

dex and apply the MaxScore heuristic. Alternatively, the
pipelined approach could also be adapted to the techniques
by Marin et al., Suel et al. [11] and Tatikonda et al. [34].
However, at the present moment it is unclear whether impact-
or frequency-ordered indexes are significantly better than
carefully optimized document-ordered indexes, multi-level
WAND is any better than MaxScore, or intersection-first
approach is more efficient than early termination/pruning.

6. CONCLUSIONS
We have contributed to resolving some of the most chal-

lenging problems of the pipelined query processing in order
to make this approach truly scalable and highly efficient.
Our current results indicate a significant improvement over
the state-of-the-art approach. However, at this point, we
have not evaluated the scalability itself. Future work can be
done in the direction of a further extension of our methods,
scalability evaluation and addressing the open problems.

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

148

Acknowledgement.This work is supported by the iAd Cen-
tre and funded by the NTNU and the Research Council of
Norway.

7. REFERENCES

[1] C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and
N. Ziviani. Distributed query processing using
partitioned inverted files. In SPIRE, 2001.

[2] L. A. Barroso, J. Dean, and U. Hölzle. Web search for
a planet: The google cluster architecture. IEEE Micro,
23(2), 2003.

[3] P. Boldi and S. Vigna. Compressed perfect embedded
skip lists for quick inverted-index lookups. In SPIRE,
2005.

[4] A. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level
retrieval process. In CIKM, 2003.

[5] S. Büttcher and C. Clarke. Index compression is good,
especially for random access. In CIKM, 2007.

[6] S. Büttcher, C. L. A. Clarke, and G. V. Cormack.
Information Retrieval: Implementing and Evaluating
Search Engines. The MIT Press, 2010.

[7] B. B. Cambazoglu and R. Baeza-Yates. Scalability
challenges in web search engines. In Adv. Topics in
Inf. Retr., volume 33. 2011.

[8] B. B. Cambazoglu, A. Catal, and C. Aykanat. Effect
of inverted index partitioning schemes on performance
of query processing in parallel text retrieval systems.
In ISCIS, volume 4263, 2006.

[9] F. Chierichetti, S. Lattanzi, F. Mari, and
A. Panconesi. On placing skips optimally in
expectation. In WSDM, 2008.

[10] A. Chowdhury and G. Pass. Operational requirements
for scalable search systems. In CIKM, 2003.

[11] S. Ding and T. Suel. Faster top-k document retrieval
using block-max indexes. In SIGIR, 2011.

[12] E. Feuerstein, V. Gil-Costa, M. Mizrahi, and
M. Marin. Performance evaluation of improved web
search algorithms. In VECPAR, 2011.

[13] E. Feuerstein, M. Marin, M. Mizrahi, V. Gil-Costa,
and R. Baeza-Yates. Two-dimensional distributed
inverted files. In SPIRE, 2009.

[14] U. Hölzle and L. A. Barroso. The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines. 2009.

[15] B. Jeong and E. Omiecinski. Inverted file partitioning
schemes in multiple disk systems. IEEE Trans.
Parallel Distrib. Syst., 6(2), 1995.

[16] S. Jonassen and S. E. Bratsberg. Impact of the Query
Model and System Settings on Performance of
Distributed Inverted Indexes. In NIK, 2009.

[17] S. Jonassen and S. E. Bratsberg. A combined
semi-pipelined query processing architecture for
distributed full-text retrieval. In WISE, 2010.

[18] S. Jonassen and S. E. Bratsberg. Efficient compressed
inverted index skipping for disjunctive text-queries. In
ECIR, 2011.

[19] S. Jonassen and S. E. Bratsberg. Intra-query

concurrent pipelined processing for distributed
full-text retrieval. In ECIR, 2012.

[20] S. Jonassen, Ø. Torbjørnsen, and S. E. Bratsberg.
Improving the performance of pipelined query
processing with skipping. unpublished work.

[21] N. Lester, A. Moffat, W. Webber, and J. Zobel.
Space-limited ranked query evaluation using adaptive
pruning. In WISE, 2005.

[22] X. Long and T. Suel. Three-level caching for efficient
query processing in large web search engines. In
WWW, 2005.

[23] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri.
Mining query logs to optimize index partitioning in
parallel web search engines. In InfoScale, 2007.

[24] A. MacFarlane, J. A. McCann, and S. E. Robertson.
Parallel search using partitioned inverted files. In
SPIRE, 2000.

[25] M. Marin and V. Gil-Costa. High-performance
distributed inverted files. In CIKM, 2007.

[26] M. Marin, V. Gil-Costa, and C. Gomez-Pantoja. New
caching techniques for web search engines. In HPDC,
2010.

[27] A. Moffat, W. Webber, and J. Zobel. Load balancing
for term-distributed parallel retrieval. In SIGIR, 2006.

[28] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates.
A pipelined architecture for distributed text query
evaluation. Inf. Retr., 2007.

[29] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Trans. Inf. Syst., 1996.

[30] B. A. Ribeiro-Neto and R. A. Barbosa. Query
performance for tightly coupled distributed digital
libraries. In DL, 1998.

[31] K. M. Risvik. Scaling Internet Search Engines -
Methods and Analysis. PhD thesis, 2004.

[32] G. Skobeltsyn, F. Junqueira, V. Plachouras, and
R. Baeza-Yates. Resin: a combination of results
caching and index pruning for high-performance web
search engines. In SIGIR, 2008.

[33] T. Strohman and W. Croft. Efficient document
retrieval in main memory. In SIGIR, 2007.

[34] S. Tatikonda, B. B. Cambazoglu, and F. P. Junqueira.
Posting list intersection on multicore architectures. In
SIGIR, 2011.

[35] H. Turtle and J. Flood. Query evaluation: strategies
and optimizations. Inf. Process. Manage., 1995.

[36] W. Webber. Design and evaluation of a pipelined
distributed information retrieval architecture. Master’s
thesis, 2007.

[37] H. Yan, S. Ding, and T. Suel. Inverted index
compression and query processing with optimized
document ordering. In WWW, 2009.

[38] J. Zhang, X. Long, and T. Suel. Performance of
compressed inverted list caching in search engines. In
WWW, 2008.

[39] J. Zhang and T. Suel. Optimized inverted list
assignment in distributed search engine architectures.
Paral. and Dist. Proc. Symp., Int., 2007.

[40] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar ram-cpu cache compression. In ICDE,
2006.

WWW 2012 – PhD Symposium April 16–20, 2012, Lyon, France

149

