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ABSTRACT
The Web of Data is increasingly producing large RDF data-
sets from diverse fields of knowledge, pushing the Web to
a data-to-data cloud. However, traditional RDF represen-
tations were inspired by a document-centric view, which
results in verbose/redundant data, costly to exchange and
post-process. This article discusses an ongoing doctoral the-
sis addressing efficient formats for publication, exchange and
consumption of RDF on a large scale. First, a binary serial-
ization format for RDF, called HDT, is proposed. Then, we
focus on compressed rich-functional structures which take
part of efficient HDT representation as well as most appli-
cations performing on huge RDF datasets.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services-Data sharing

General Terms
Algorithms, Design

1. MOTIVATION. THE PROBLEM
Massive publication efforts have flooded the emergingWeb

of Data with very large RDF datasets from such diverse
fields as bioinformatics, geography or bibliography. This de-
mocratization in the creation of semantic data has mainly
been driven by the Linked Open Data (LOD) community,
which promotes the use of standards (such as RDF and
HTTP) to publish such structured data on the Web and
to connect it by reusing dereferenceable identifiers between
different data sources [13]. More than 30 billion RDF triples
are being shared and increasingly linked in the LOD cloud1,
which results in huge interconnected RDF datasets from dif-
ferent providers. Each provider should be responsible for
an efficient publication of their datasets in order to mitigate
inherent scalability drawbacks on interchange and consump-
tion. However, both providers and consumers are provided
with feeble serialization schemes; the mainstream RDF se-
rialization syntaxes (RDF/XML [2] N3 [1], Turtle [4] and
RDF/JSON [8]) were not thought up in this “data deluge”

1
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
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era and hence they share a document-centric view, providing
human-focused syntaxes, disregarding large data.

In a typical scenario within the current state-of-the-art,
efficient interchange of RDF data is limited, at most, to com-
pressing the verbose plain data with universal compression
algorithms. The resultant file has no logical structure and
there is no agreed way to efficiently publish such data, i.e.,
to make them (publicly) available for diverse purposes and
users. In addition, the data are hardly usable at the time of
consumption; the consumer has to decompress the file and,
then, to use an appropriate external tool (e.g. an RDF store
or a visualization software). This diminishes the potential
of RDF graphs due to the huge space they take up and
the large time required for consumption. Similar problems
arise when managing less RDF data but in mobile devices;
together with scalability and memory constraints, these de-
vices can face additional transmission costs [23]. This sce-
nario calls for an efficient (binary) RDF serialization format,
moving forward RDF syntaxes to a data-centric view.

This paper is organized as follows. Section 2 reviews the
state-of-the-art for publishing, exchanging and consuming
RDF on a large scale. In Section 3, a binary RDF represen-
tation is proposed together with efficient RDF dictionaries
and triples structures. The methodology of the on-going
thesis is described in Section 4. Current results are cited
in Section 5 and we conclude by setting out future work in
Section 6.

2. STATE OF THE ART
We can divide the scalability drawbacks of the Web of

Data into three correlated processes: publication, exchange
and consumption (query) of the information.

Publication. Besides RDF publication with dereference-
able URIs, data providers tend to expose their data as a
file to download (RDF dump), or via a SPARQL endpoint,
a service which interprets the SPARQL query language [3].
Except for some Linked Data recommendations [21], few
works address the publication of RDF on a large scale. The
Vocabulary of Interlinked Datasets (VoiD [9]) aims to pro-
vide a bridge between data publishers and data users. Pub-
lishers make use of the vocabulary to add metadata to their
datasets, e.g. to point to the associated SPARQL endpoint
and RDF dump, to describe the total number of triples and
to connect to linked datasets. Thus, consumers can look up
this metadata to discover datasets, both in a straightforward
way (consuming all the metadata) or through queries (typi-
cally SPARQL) which filter certain attributes of the dataset.
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Semantic Sitemaps [15] extend the traditional Sitemap Pro-
tocol for describing RDF data. They include new XML tags
so that crawling tools (such as Sindice2) can discover and
consume the datasets.

Exchange. RDF datasets are exchanged within plain RDF
formats. RDF/XML [2] was mainly designed to add small
metadata to documents such as web pages. Due to its
verbosity, it is good for exchanging data, but only on a
small scale. Notation3 (N3 [1]) is a compact and read-
able alternative. It reduces verbosity with some compact-
ing features such as abbreviations for URI prefixes (and
base URI), shorthand for common predicates, square bracket
blank node syntax and the use of lists. Turtle [4] is intended
to be compatible with Notation3, thus it inherits its com-
pact ability while also adding extra features, e.g. abbre-
viated RDF collections. RDF/JSON [8] resembles Turtle,
with the advantage of being coded in a language easier to
parse and more widely accepted in the programming world.
Although these formats present features to“abbreviate”con-
structions, they are still dominated by a document-centric
and human-readable view.
Universal compressors (e.g. gzip) are commonly used over

these plain formats in order to reduce their size. RDF/XML
is a valid XML format and thus XML interchange formats
might be used. For instance, the Efficient XML Interchange
Format (EXI [5]) is a compact representation for XML. It is
based on efficient encodings of XML event streams using a
grammar-driven approach.

Consumption (query). Efficient consumption in any sce-
nario is influenced by two factors: (1) the serialization for-
mat, due to the overall data exchange time, and (2) the
RDF indexing/querying structure. This latter factor affects
the consumption process in different ways: (a) for SPARQL
endpoints, the response time depends on the efficiency of the
underlying RDF indexes at the publisher. In any case, (b)
once the consumer has all the information, the most likely
scenario is to post-process the information by indexing the
obtained RDF data in order to operate with the graph at
the consumer.
Although diverse techniques provide RDF indexes, there

are still workloads for scalable indexing and querying opti-
mization [28, 27]. Some of the proposed techniques store
RDF in a relational database and perform SPARQL queries
through SQL, e.g. Virtuoso3. A specific technique, called
vertical-partitioning, groups triples by predicate and defines
a 2-column (S,O) table for each one [28, 7]. A different strat-
egy is followed in RDF-3X [26]; indexes are created for all
ordering combinations (SPO, SOP, PSO, POS, OPS, OSP).
Although it achieves a global competitive performance, the
index replication largely increases spatial requirements. Bit-
Mat [12] suggests a compressed bit-matrix structure for stor-
ing the graph, whereas other approaches emerge when using
distributed nodes with map-reduce operations [30].

3. PROPOSED APPROACH

3.1 Binary RDF Representation
The motivation and state-of-the-art call for a binary rep-

resentation for RDF aimed at reducing the high levels of

2
http://sindice.com/

3
http://www.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF

verbosity/redundancy and weak machine-processable capa-
bilities of the datasets. Our proposal, called HDT, succinctly
represents the information of an RDF dataset by organizing
and representing the RDF graph in terms of three logical
components: Header, Dictionary and Triples.

- Header. Although the binary representation is machine-
oriented, this component is aimed at gathering important
human-friendly metadata of the dataset. Whereas current
serialization formats do not provide the means on how to
publish metadata along with datasets, HDT makes meta-
data a first-class citizen. In practice, we propose the Header
to itself be an RDF graph containing information about the
provenance (provider, publication dates, version), statistics
(size, quality, vocabularies), physical organization (subparts,
location of files) and other types of information (intellectual
property, signatures). The Header, then, serves as an entry
point to the information, a mechanism to discover and (even
with SPARQL queries) filter the dataset, or parts of it.

- Dictionary. A generic dictionary maps each term used
in a dataset to a unique integer ID. RDF stores [26] make
use of this simple but effective decision for managing RDF:
all triples in the dataset can now be rewritten by replacing
long/redundant terms with their corresponding IDs; conse-
quently, the graph structure in triples can be indexed and
managed as an integer-stream.

We propose to incorporate the concept of dictionary into
the binary RDF representation. Besides compactness at
exchanging, the consumption performance can also be im-
proved; an advanced dictionary serialization can be quickly
parsed to provide basic operations of locate (get the corre-
sponding ID from a given string), and extract (get a string
from a given ID). In addition, it might help in query eval-
uation and resolution. For instance, FILTER operations in
SPARQL restrict the final result by a given condition. This
condition usually refers to a regular expression, language or
datatype selection which can be evaluated firstly over the
Dictionary, delimiting ranges to search in the structure of
triples. An advanced dictionary is proposed in Section 3.2.

- Triples. As stated, the mapping held by the dictionary al-
lows the graph topology to be managed as an integer-stream.
These ID-triples are encoded in the triples component, which
compactly represent the RDF graph, avoiding the noise pro-
duced by long strings. In turn, this is the key component to
accessing and querying the RDF graph. RDF indexing (tra-
ditionally performed at the time of consumption by an RDF
engine) can be moved to the HDT triples component, i.e.,
an efficient encoding of the triples might provide a succinct
index in order to allow some basic queries (e.g. SPARQL
triple pattern resolution) to be resolved natively on the ex-
changed component (without the need for decompression nor
re-indexing). The Triples component allows diverse configu-
rations and implementations, which can exploit the trade-off
between the compression ratio for exchanging and the na-
tively supported operations over the triples. We address a
specific triples configuration in Section 3.3.

3.2 Dictionary Encoding
An RDF dictionary can be optimized from two correlated

perspectives, space and functionality. On the one hand, a
dictionary technique which detects and compresses specific
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Figure 1: Dictionary organization.

URI, bnode and literal regularities4 allows spatial require-
ments to be optimized. On the other hand, the locate and
extract operations might take into account that the dictio-
nary mapping is not an assignment string-ID over a general
set of strings, but a set or terms which are playing a role
(subject, predicate, object) in a graph. Literal language and
datatypes can be also taken into account for SPARQL filter-
ing. We propose i) a specific organization which optimizes
this two perspectives, and ii) the use of compact structures
for efficient locate and extract performance.
Figure 1 illustrates the proposed organization. A role-

based partitioning is firstly considered and all terms in the
dictionary are organized according to the role they play in
the dataset: Predicates (P) maps all predicates, Com-
mon subjects and objects (SO) organizes all terms which
play both subject and object roles in the dataset, Subjects
(S) organizes all subjects which do not play an object role,
and vice versa for Objects (O). An internal subdivision is
then performed by attending to the classes (U,B,L) that
each partition can store. The O partition contains URIs
and bnodes, but also an area for literals in which specific
representations for general, lang-tagged and datatype-tagged
literals are maintained. A very small mapping structure
(referred to as ptrs) allows for integrating all partitions in
a single dictionary. Each cell in the first-level records 1) a
pointer to its corresponding sub-dictionary, and 2) the num-
ber of terms previously represented. In addition, ptrs stores
two simple indexes pointing to the beginning of each lan-
guage and datatype used in the dictionary.
This organization provides a set of interesting features:

• The SO partition allows terms playing subject and ob-
ject roles to be represented once. This decision achieves
spatial savings; up to 60% of the strings may be in SO

as shown in current results [24].

• Due to the limited number of predicates, their individ-
ual mapping allows for representing them with fewer
bits.

• The hierarchy delimits the ranges for a given language
or datatype, allowing string tags to be removed in the
final literal representation and filtering operations to
be performed on the dictionary.

Nevertheless, the most important property of this orga-
nization is that it allows to choose the best technique for

4
Note that RDF is typically formalized as follows. Assume infinite,

mutually disjoint sets U (RDF URI references), B (Blank nodes), and
L (RDF literals). A triple (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is
called an RDF triple [20].

each partition, i.e. to adapt each sub-dictionary in accor-
dance with its features. For instance, URIs and bnodes tend
to share long prefixes, whereas literal features are strongly
related to the knowledge represented in the dataset. Spe-
cific dictionary techniques might be used to represent the
terms for each class within each partition. This implies that
each dictionary handles its specific mapping, so each term
is locally identified within it.

We propose to adapt techniques for string dictionaries [14]
to the case of RDF. In particular, we highlight Front-Coding
compression [31], which takes advantage of the existence of
long common prefixes to obtain compact dictionaries; and
self-indexes [25] which are general compressed indexes suit-
able to be adapted for representing dictionaries.

3.3 Triples Encoding
As stated, several Triples encodings are feasible with dif-

ferent trade-offs between the compression ratio (exchang-
ing) and some natively supported operations over the triples
(consumption). We propose an intuitive technique called
Bitmap Triples (Figure 2). Starting from ID-triples (triples
after ID replacement according to the dictionary), predicate
and object adjacency lists can be created. These lists draw
tree-shaped structures containing the subject ID in the root,
the predicate IDs in the middle level, and the object IDs in
the leaves. Bitmap Triples implements a compact mecha-
nism which allows subjects to be implicitly represented by
considering that the i− th tree draws the adjacency list re-
lated to the i − th subject. The integer sequences, Sp and
So, are used for storing respectively the predicate and the
object IDs within the adjacency lists. Two additional bitse-
quences: Bp and Bo (storing list cardinalities) are used for
delimitation purposes.

Enhanced bitmaps [19], supporting rank/select opera-
tions in constant time, are required for accessing the graph.
These two operations enable graph structure traversing and
allow some SPARQL triple pattern queries to be performed.
For instance, the presented approach efficiently and natively
resolves the triple patterns (S, P,O), (S, P, ?O), (S, ?P, ?O),
and (S, ?P,O).

4. METHODOLOGY
We have devised an incremental cycle for our research,

grounded in five major subjects.

RDF structure in theory and practice. Skewed power-
law distributions present in RDF data [16] should estab-
lish the basis of any compact RDF solution. However, little
work has been done to understand the RDF essence before
researching or applying this data model [29, 22]. In this the-
sis, we firstly propose a detailed study of the most important
trends to get a global understanding of the real structure of
RDF networks. The main objective is to isolate common
features in order to achieve an objective characterization of
real-world RDF data. This can lead to better dataset de-
signs, as well as efficient RDF data structures, indexes and
compressors.

Binary RDF Specification. The main objective is to de-
sign, analyze, develop and evaluate a binary RDF format
with the following minimum requirements. For publishing,
i) the format should rely on a clear scheme, providing a stan-
dard way to add provenance and other metadata (such as in-
ternal structure and statistics or a summary of the content).
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Figure 2: Description of Bitmap Triples.

For exchanging, ii) the representation should be based on
compact structures, thus minimizing redundancy and saving
transmission costs. Finally, in order to improve large RDF
consumption, iii) the format should allow basic data oper-
ations (such as simple lookup operations) to be performed
natively on the compact representation.

Succinct Dictionaries. RDF dictionary design firstly re-
quires an empirical study characterizing the main features
in real-world RDF datasets, e.g. the growth rate w.r.t. the
number of triples, and the size of each dictionary subset
(URIs, bnodes, literals). As string dictionaries are the nat-
ural precedent of RDF dictionaries, a comparison of these
techniques should be performed, focusing on compressed dic-
tionary techniques [14]. Finally, specific configurable tech-
niques for RDF dictionaries must be proposed. The aim is
to achieve highly-compressed RDF dictionaries with very ef-
ficient performance. Real-world and micro-benchmark eval-
uation must be considered.

Triples Indexes. Different approaches for triples indexes
need to be proposed, studied and evaluated on real-world
scenarios. Bitmap Triples achieves an interesting trade-off
between compression and basic searching without the need
for decompression. However, it cannot provide efficient full
SPARQL resolution by itself. We plan to work on two as-
pects: i) there is much research on the application of com-
pressed indexes [10] to RDF triples which can be serialized
and included in the binary representation. ii) We also con-
sider the exchange of a smaller index, but not a fully func-
tional one for advanced querying, and to quickly construct a
complementary index at the consumer. This might fulfill the
lack of such indexes as Bitmap Triples, with no additional
network overhead. Whereas, in the first case, efficiency is
measured as a compressed ratio, in the latter, performance
must be evaluated as a limited in-memory store.

Practical deployment. Both for Dictionary and Triples
structures, there is a need to study the binary cost, i.e. the
cost of binary compression, exchanging and consumption
with respect to plain exchanging and consumption. Fur-
thermore, we should evaluate the impact of the studied RDF
structure features on both the binary representation and the
final consumption/querying.

5. RESULTS
To date, several results have been achieved. The HDT for-

mat has recently been accepted as a W3C Member Sub-
mission [6], highlighting the relevancy of “efficient inter-
change of RDF graphs”. The Submission specifies a vocab-
ulary for the metadata of the Header, extending the VoiD
vocabulary to the particularities of binary RDF. An open-
source HDT implementation has also been developed5.
The logical Header-Dictionary-Triples organization was

5
http://www.rdfhdt.org/

studied in [18], together with a specific algorithm which al-
lows to check&find triple patterns on top of the Bitmap
Triples representation. Latest results [24] involve the com-
pression of RDF Dictionaries. We propose a specific com-
bination of Front-Coding compression and self-indexes over
the dictionary organization presented in Section 3.2. This
achieves highly-compressed dictionaries supporting locate

and extract at the level of microseconds. Table 1 gives a
brief revision of the current achievements of HDT. We com-
pare the HDT effectiveness with respect to some universal
compressors directly applied on RDF datasets6 serialized in
N3. It is worth noting that our results (shown in column
HDT) are obtained by combining the dictionary encoding
from [24] and the Bitmap Triples representation from [18].
As can be seen, HDT always achieves the best compression
ratios and allows dictionary management and triples query-
ing to be directly performed without previous decompres-
sion. These on-going results can be tested through an end-
user prototype [11] which implements this HDT configura-
tion. It consumes RDF in HDT format and takes advantage
of its machine-friendly features to offer a 3D visualization of
the dataset and to support basic queries.

Last but not least, we showed in [17] that big RDF data-
sets are highly compressible due to the skewed structure of
RDF graphs and the inherent verbosity of URIs and textual
RDF syntaxes. This empirical analysis set the basic founda-
tions of the work above. We have also started an on-going
work of RDF structure characterization, proposing a set of
initial metrics [18].

6. CONCLUSIONS AND FUTURE WORK
Web of Data suffer from diverse scalability problems when

moving to an RDF data-intense processing era. Traditional
verbose RDF formats remain one of the main bottlenecks
for exchanging and post-processing. The on-going thesis ad-
dresses these problems by i) studying the underlying RDF
structure essence, ii) proposing a novel RDF binary format
(HDT) and iii) giving compact RDF dictionaries and triples
structures which can be both efficiently serialized for ex-
changing and queried without decompression at the time of
consumption.

Following the detailed methodology, our on-going work
is firstly focused on getting a global understanding of the
real structure of RDF networks. This study and character-
ization is intended to become a theoretical framework lead-
ing future researches. HDT format should also be strength-
ened to fulfill uncovered needs, such as a clear definition for
RDF streaming. An additional line of future work focuses
on evolving the compressed dictionary and triples to sup-
port full SPARQL at consumption, including filtering at the
dictionary level. The support of dynamic operations of in-

6
wikipedia (http://labs.systemone.at), dbtune and uniprot

(http://km.aifb.kit.edu/projects/btc-2010) and dbpedia
(http://wiki.dbpedia.org).
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Dataset Triples Size Compression (MB)
(millions) (GB) gzip bzip2 HDT

wikipedia 47.0 6.88 491.04 360.01 230.48
dbtune 58.9 9.34 924.85 630.28 462.31
uniprot 72.5 9.11 1233.25 739.76 481.34

dbpedia-en 232.5 33.12 3513.58 2645.36 2176.54

Table 1: Compression results of HDT for several datasets.

serting, deleting, and updating binary RDF is also essential
for efficient dynamic consumption.
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