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ABSTRACT

Users frequently express their information needs by means of
short and general queries that are difficult for ranking algo-
rithms to interpret correctly. However, users’ social contexts
can offer important additional information about their infor-
mation needs which can be leveraged by ranking algorithms
to provide augmented, personalized results. Existing meth-
ods mostly rely on users’ individual behavioral data such as
clickstream and log data, but as a result suffer from data
sparsity and privacy issues. Here, we propose a Community
Tweets Voting Model (CTVM) to re-rank Google and Yahoo
news search results on the basis of open, large-scale Twitter
community data. Experimental results show that CTVM
outperforms baseline rankings from Google and Yahoo for
certain online communities. We propose an application sce-
nario of CTVM and provide an agenda for further research.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords

Twitter, news ranking, community interest

1. INTRODUCTION

Many news search engines, like Google and Yahoo, al-
low users to search across thousands of news sources with
a single search query. Given the scale of online informa-
tion, any given query can match vast numbers of news re-
sults. Search engines therefore use ranking mechanisms to
prioritize search results to favor those that are estimated
to be most relevant to users. The quality of their rankings
has therefore become an important criterion to measure the
performance of a news search engine.

Unfortunately, existing topology-based ranking algorithms,
like PageRank or HITs, may not be appropriate for news
ranking. News information is frequently not well-embedded
in the hyperlink topology of the web. In addition, it is
by definition highly dynamic, and designed to respond to
rapidly changing user preferences. An effective news search
engine is thus charged with providing personalized ranking
results that are not solely based on document relevance and
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hyperlink connections, but also take into account dynamic
user information needs.

However, users’ information needs are difficult to gauge
from individual search queries which are mostly short and
succinct, and provide few details on an individual’s personal
preferences. A concrete example is shown in Fig. 1, where
Alice, Bob and Carl are interested in the latest news about
President Obama and submit the query “obama” to Yahoo
News. However, they each care about different topics related
to “President Obama”, represented by differently colored ar-
rows. However, the search engine will not be able to capture
such contextual information from the users’ queries. The fi-
nal ranking will thus be the same for all of the three users,
represented by unified gray arrows.

Will Obama
sing at the
next American

’( Idol?
>\
A, O 5
Alice
What's
Will Obama Obama's
lower YaHOO!

policy towards

Figure 1: Different information need with the same
short query

Considerable effort has been invested in providing per-
sonalized search and ranking services, but the prevalence
of short search queries, in the absence of any other user-
provided information, has long been a critical challenge for
IR ranking algorithms. Existing methods attempt to pro-
vide a more detailed assessment of users’ interest by analyz-
ing past user behavior, e.g. by means of the analysis of query
logs [10], clickstream data [11], and users feedback [7]. Al-
though promising results are obtained from the above meth-
ods, they only perform well when sufficiently large amount
of user data is available and may raise significant privacy
issues.

A promising direction in this domain has been the enrich-
ment of short user queries with the users’ community social
context [12], which is based on the premise that information
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about the community that users are part of may help search
engines to disambiguate particular facets of their informa-
tion needs. Search results and rankings are thus geared not
merely to respond to short, individual user queries them-
selves, but are enriched by information about the commu-
nity that the individual user is part of. Search results and
rankings are, in other words, “communitized”.

Thanks to the broad prevalence of social media, vast amounts

of user-generated, real-time information is now open acces-
sible online and can be used as a dynamic indicator of users’
interest. Many efforts have therefore focused on mining
users’ interest from different types of social media content,
such as Facebook [6] and Twitter [1] data. In particular, [12]
developed a Community Interest Model to improve both web
and news search rankings using blog data, and proved the
efficacy of this approach by comparing its results with those
produced by Google and Yahoo. However, blog data has
two significant limitations: (1) it only represents the global
community interest and does not take into account the dif-
ferences between geographical communities in the absence of
adequate geo-location information, and (2) blog data does
not respond well to rapid changes in user interest.

These limitations may be addressed by relying on data
generated by Twitter, presently the most popular micro-
blogging platform. Twitter data has a number of distinct
advantages for those seeking community-enriched, dynamic
information on news data. First, Twitter exposes users’ real-
time interest from their continuous stream of 140-character
“tweets”. Ten of million of Tweets are submitted on a daily
basis by hundreds of millions of users. Second, Twitter
provides explicit user geo-location data in its user profiles.
Third, [9] confirmed that most of the topics discussed on
Twitter are actually headline news in media, which is appro-
priate given Twitter’s design as a news sharing and dissemi-
nation service. In summary, the availability of large amount
of T'weets, enriched with timestamps and users’ geo-location
information, as well the close connection of its content to the
news media make Twitter a desirable indicator of users’ real-
time and localized interest towards news, which can be fully
leveraged to improve news ranking based on community in-
terest.

In this paper, we attempt to solve the above-mentioned
problem of data sparsity by using dynamic community inter-
est gauged from tweets submitted from within a particular
geographical community, defined as a US state. We show
how such information can be leveraged to improve the rank-
ings of news search results.

We propose a Community Tweets Voting Model (CTVM),
and assess its effectiveness in re-ranking search results gen-
erated by Google News and Yahoo News on the basis of
tweets collected from three US states, i.e., California (CA),
New York (NY) and Texas (TX). We assess the quality of
the various rankings by means of the Amazon Mechanical
Turk(MTurk)'. Our main findings show that CTVM can
improve news ranking from Yahoo and Google for CA and
NY, but does not seem to work well for TX.

2. COMMUNITY TWEETS VOTING MODEL

We hypothesize that if the content of a news item is very
similar to the tweets recently submitted by a particular com-
munity, it will be more in line with that community’s inter-

Thttps://www.mturk.com/mturk /welcome
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est, and therefore deserve a higher ranking in the gener-
ated search results for members of that community. Un-
like other traditional ranking algorithms, we send queries
to both Twitter and news search engines. For each news
item in a particular search result set, we analyze the most
recent tweets on that topic from the particular geographical
community. The tweets “vote” to increase the news item’s
importance score, which is used to determine its optimal
ranking. The localized tweets are used to optimize the news
ranking for each target community.

Given a list of queries Q = [q1, ..., gr], ﬁ'gr = [N1, ..., Ni]
represents top k documents containing g, returned from
news search engine, and ?ZT = [T4,...,T] represents all
tweets containing ¢, collected from state s on the same
data when news results are extracted. A voting score vector

s =V ﬁ’;r) = [V, ..., Vk] can be defined as:

qr

s
qr?

Vi = Vote(T5, — N;) = Sim(Ti, N;),j = 1,k (1)

i=1

In order to calculate Sim(T;, N;), we define the vector
space representation of T; and N;. Due to the 140-characters
space limit, a tweet generally contains very concise but top-
ical words that can be considered as a “short title”. There-
fore, we compare the entire textual body of a tweet with the
title of a news document, and define their vector representa-
tion as: T; = [wr(t1), ..., wr(tn)] and Nj = [wn (t1), ..., wn (€ )]
respectively, where t1, ..., ¢, is the common set of stemmed
words shared by 7T; and N; after removing stop words and
query words in ¢, wr(t;) represents the term frequency of
ty in T; and wn (t;) represents the term frequency of ¢, in
Nj;. Therefore, the similarity score between T; and N; can
be calculated as:

_ Yo wr(te) - wn (te)
\/ZZ:l w%(tT) : \/ZZ:l w?\] (t:c)

An example of CTVM (purposely partly fictitious) is il-
lustrated in Figure 2. The top 3 returned documents for the
query “obama” from Google News at 12:00pm on 2011-01-31
are shown in order from top to bottom. At the same time,
5 tweets matching the same query from CA are collected
on 2011-01-31. The similarity scores of every pair of tweet
and news document are calculated according to Equation 2,

and are shown on the arrows pointing from the tweets to

the news documents. Subsequently, OCbAama is calculated

according to Equation 1. The top 3 results are finally re-

Sim(Ti,Nj) (2)

ranked accordingly. VY —and VIX  can be calculated
In a similar fashion. Four different rankings are provided for
CA users: original search engine ranking (e.g. Google), a lo-

calized tweets ranking VS2 and two non-localized tweets
rankings VY and VIX . A similar process can be ap-

plied to other queries, other US states, and Yahoo News.

3. EXPERIMENT

3.1 Data

To test the performance of CTVM, four types of data
were collected: test queries, tweets from the three states,
daily ranking results from Google& Yahoo search engines and
users oriented interest judgement from MTurk.
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Computery

?
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Thomas Hitler
MSNBC.com: "Who sings better? Romney vs. Obama" Don't care.
Economy, anyone?

By Patrick Thibodeau Compulerwmid President Barack Obama faced perhaps his toughest and most
direct question ever on the H-1B program by a Texas woman .

Figure 2: An example of CTVM modifying news item rankings using CA tweets for the query “obama”.

3.1.1 Test Queries Collection

For our experiment, 50 initial test queries were selected
for evaluation because they were known to be popular dur-
ing the time period of evaluation. We singled out popu-
lar queries for two reasons. First, popular queries ensure
that a reasonable quantity of matching tweets can be col-
lected. Second, it is more likely that users understand pop-
ular queries well and can provide better judgements on the
relevance of retrieved results for that query. Popular queries
were manually identified by using Google Insights®. To in-
crease the number of relevant tweets, some queries use dif-
ferent expressions of similar semantics, e.g., “economics” vs.

“economy”, “gay” vs. “lesbian”, and “army” vs. “military”.

3.1.2 Tweets Collection

Daily tweets from CA, NY and TX were collected using
Twitter streaming API for 50 selected queries from 2011-12-
10 to 2011-12-24. Especially, the user location text returned
from the API can be used to judge whether the tweet is from
the three states, or not. If the full name or the capitalized
two-letter abbreviation of the three states is found in the
user location text, the corresponding tweet is collected. Fi-
nally, we collected 1,264,828 tweets from 250,549 CA users,
1,002,945 tweets from 195,637 NY users and 839,966 tweets
from 161,948 TX users.

3.1.3 Ranking Results Collection

Top 10 ranked retrieval results from Google News and Ya-
hoo News were collected every day at 12:00pm from 2011-12-
10 to 2011-12-24. The ranking position of each news doc-
ument was stored along with news title, snippet, HTML
content and date.

3.1.4 User Judgement Collection

We need real time users’ judgements to serve as the ground
truth to compare different ranking results for CTVM, Google
and Yahoo. Since use’s interest towards news is quite dy-
namic, we need to collect users’ judgement results in near

Zhttp://www.google.com/insights /search
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real-time. The evaluation task was setup by MTurk immedi-

ately after the news ranking lists were extracted from Google
and Yahoo.

Given query: nba, are you interested in:

Title: Great College Basketball Coaches Who Flopped in the NBA: Fan s Look

Summary: Some great college basketball coaches have gone on to have great NBA coaching careers.
coached the Portland Trail Blazers to the 1977 NBA Championship.

O Very Interesting
(O Interesting
O Just OK

(O Not Relevant

Figure 3: Amazon Mechanical Turk interface

With instruction and examples, MTurk users (Turkers)
were asked to provide real-time interest and relevance as-
sessments towards a list of 20 news documents (10 each from
Google or Yahoo) with respect to a specific query. For each
query and for each day, the documents were shown in ran-
dom order on one evaluation page, called a MTurk HIT. In
the judgement process, for each retrieved document, the HIT
presented the target query, the title with a hyperlink to the
actual page and a snippet from the search engine. Turkes
were required to choose one interest and relevant level from
four choices: Very Interesting, Interesting, Just OK and Not
Relevant. A screenshot of one document judgement in one
HIT for query “nba” is shown in Figure 3. To minimize
the unbalanced distribution of the amount of Turkers over
different queries due to potential individual bias, up to 5
different Turkers work on each HIT and up to 6 queries
were put on MTurk every day. For any HIT, if fewer than
three Turkers worked on it, the HIT was deleted from the
database and wasn’t used for evaluation. Each interest level
is attached to a score: Very Interesting(3), Interesting(2),
Just OK(1), Not Relevant(0). To make sure that Turkers
are from the three selected states, we set up a pre-filteration



WWW 2012 — MSND'12 Workshop

| CA | NY | TX

QY [GTY ] T [G[IY[ T [G[Y][ T

google | 20 | 20 | 2851 | 20 | 20 | 1760
egypt | 10 | 10 188
siri | 10 | 10 314
tax | 60 | 60 | 1439 | 60 | 60 | 1254 | 30 | 30 850
greece/greek | 10 | 10 | 314
election | 20 | 20 246 20 | 20 190 10 | 10 151
nba | 70 | 70 | 1714 | 80 | 80 | 1598 | 20 | 20 | 1407
education | 10 | 10 | 1090
financial/finance | 10 | 10 | 1108
kobe bryant | 80 | 80 | 1421 | 90 | 90 | 1272 | 30 | 30 960
military/army | 20 | 20 | 1640 20 | 20 | 1214
revolution | 30 | 30 350 30 | 30 281
economy /economic | 60 | 60 | 984 |80 | 80 | 753 | 30| 30 | 960
vacation | 20 | 20 889 20 | 20 [ 699
insurance | 10 | 10 783
obama | 50 | 50 | 2482 | 70 | 70 | 1794 | 20 | 20 | 1656
ncaa | 40 | 40 | 481 50 | 50 240
cnn | 20 | 20 487 20 | 20 468
christmas | 50 | 50 | 25099 | 70 | 70 | 19096 | 40 | 40 | 20529
iran | 20 | 20 323 20 | 20 307 10 | 10 177
discount | 60 | 60 | 477 | 60 | 60 | 1003 | 50 | 50 | 289
britney spears | 10 | 10 | 443
clinton | 10 | 10 409
debt | 10 | 10 | 473
republication | 70 | 70 | 1728 | 70 | 70 | 1320 | 40 | 40 | 1290
euro | 40 | 40 423 50 | 50 496 10 | 10 286
lady gaga | 60 | 60 986 60 | 60 | 1508 | 30 | 30 386
lebron james | 20 | 20 | 1082 | 20 | 20 | 902 10 | 10 | 484
stock | 50 | 50 | 1492 | 70 | 70 | 1461 | 20 | 20 | 1103
nfl | 60 | 60 | 2277 | 60 | 60 | 1225 | 40 | 40 | 1867
health care | 30 | 30 | 468 |30 | 30 | 243 |20 |20 | 280
china | 30 | 30 | 1317 | 40 | 40 | 945 |20 |20 | 797
gay/lesbian | 20 | 20 | 2887 | 20 | 20 | 2214 | 10 | 10 | 1835

Table 1: Data summary: G and Y indicate total
# of Google and Yahoo news results evaluated by
Amazon Turkers; T indicates # of tweets per day

process by checking the Turker’s ip-address and mapping
them into geo-lacation information using MaxMind GeolP
JavaScript®. The same HIT can be evaluated by Turkers
from three states and the final judgement score of each HIT
for each state is the mean of all Turkers’ scores from the
target state.

Finally, there were 105 distinct Turkers that participated
in this evaluation and a total of 5320 news documents were
judged for 33 queries from 2011-12-10 to 2011-12-24. The
rest 17 queries were removed because they were evaluated
by less than three Turkers.

3.1.5 Data Summary

Table 1 shows the total number of news documents re-
trieved from Google and Yahoo and interest judgements via
MTurk, along with the number of tweets collected per day,
for all three states and all 33 queries. The blank entries in-
dicate that no Turkers’ judgements are received for certain
queries and certain states. Obviously, the amount of CA
Turkers and CA tweets dominate over the other two states,
which corresponds to its 1st population size and Internet
users amount® in US.

3.2 Evaluation

The goal of evaluation is to compare four rankings men-
tioned in Section 2 for both Google News and Yahoo News:

http://www.maxmind.com/app/
“http://www.internetworldstats.com /unitedstates.htm
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engine ranking, localized community tweets ranking and two
non-localized community tweets rankings. Normalized Dis-
counted Cumulative Gain (NDCG) [5] is used to measure the
effectiveness of certain ranking method towards a ranking
list of news. The basic idea of NDCG is that a good ranking
method always ranks relatively more relevant documents at
higher positions. As we introduced in Section 2, given a list
of queries Q = [q1, ..., ¢r], ’;1, = [Ny, ..., Ni] represents top
k documents containing ¢; returned from news search engine.
Let R(g:i, N;j) be the relevance score assigned to document
Nj; for query g;, then

1 < k oR(qi,N;)—1
woean@ - LSy T
where Z;;, is a normalization factor calculated to make it
so that a perfect ranking’s NDCG@Qk for query g; is 1 and
R(g:, N;) is provided by Turkers from three states.

For each state, we calculated NDCG@3, NDCG@5, and
NDCG@10 for both Google and Yahoo retrieval results and
four ranking methods were compared: search engine rank-
ing, CTVM ranking with local state tweets and CTVM rank-
ing with two non-localized states tweets. The results for
three states are shown in Table 2, 3 and 4 respectively.

Google News NDCG@3 NDCG@Q5 NDCGQ10
Google 0.9031 0.8621 0.8148
CTVM with CA || 0.8930 0.8432 0.8168*
CTVM with NY || 0.8914 0.8547 0.8241%*
CTVM with TX || 0.8963 0.8518 0.8293*
Yahoo News

Yahoo 0.8801 0.8387 0.8101
CTVM with CA || 0.9156* 0.8762* 0.8370%*
CTVM with NY || 0.8992* 0.8716%* 0.8309*
CTVM with TX || 0.8950* 0.8628* 0.8254*

* denotes better than corresponding engine news ranking

Table 2: Ranking performance comparison for CA.
The ground truth comes from the CA Turkers. For
both Google News and Yahoo News, the first line
represents the engine ranking; The second line rep-
resents the localized (i.e., CA) tweets ranking and
the rest two lines represent non-localized (i.e., NY,
TX) tweets ranking. The rest two tables have the
similar data layout.

Google News NDCG@3 NDCG@5 NDCG@10
Google 0.9020 0.8628 0.8375
CTVM with NY || 0.9076* 0.8628 0.8412*
CTVM with CA || 0.9182* 0.8721%* 0.8436*
CTVM with TX || 0.8853 0.8588 0.8384*
Yahoo News

Yahoo 0.8869 0.8567 0.8314
CTVM with NY || 0.9255* 0.8874* 0.8639*
CTVM with CA || 0.9070* 0.8703* 0.8604*
CTVM with TX || 0.8990* 0.8671* 0.8449*

* denotes better than corresponding engine news ranking
Table 3: Ranking performance comparison for NY

The most illustrative observation about Yahoo news rank-
ing in both Table 2 and Table 3 is that CTVM with local-
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Google News NDCG@3 NDCG@5 NDCGQ10
Google 0.8630 0.8289 0.7976
CTVM with TX || 0.8203 0.7874 0.7859
CTVM with CA || 0.8535 0.8252 0.8067*
CTVM with NY || 0.8355 0.8058 0.7875
Yahoo News

Yahoo 0.8199 0.7865 0.7754
CTVM with TX || 0.7863 0.7448 0.7420
CTVM with CA || 0.7728 0.7461 0.7497
CTVM with NY || 0.8046 0.7682 0.7649

* denotes better than corresponding engine news ranking

Table 4: Ranking performance comparison for TX

ized tweets perform the best in re-ranking the news docu-
ments in CA and NY, especially for top 3 relevant news,
which has two implications: 1, CTVM is very effective in
improving news ranking for Yahoo; 2, compared with non-
localized information, localized tweets can further enhance
the 3 most relevant news ranking for Yahoo, by incorpo-
rating local community interest. Plus, CTVM with tweets
from any of the three states outperforms Yahoo, regardless
of NDCG@3, NDCG@5 or NDCG@10, implying that adding
users’ interest (even not localized) to the news ranking is al-
ways good for Yahoo.

The improvement of CTVM to Google news ranking is
also spotted in Table 2 and Table 3, although not as evident
as Yahoo. Specifically, CTVM with any of the three states
performs better than Google in top 10 news ranking but not
always as good as Google in top 3 and 5 news ranking. It
indicates that Google news ranking itself is a relatively ro-
bust ranking method which may have already utilized users’
interest information more or less, especially for the top 3
news. In addition, the observation that CTVM with local-
ized tweets does not perform any better than non-localized
tweets implies that the news document selected and indexed
by Google are generally universally interesting which mini-
mizes the regional difference.

By contrast, Table 4 shows that CTVM does not perform
well for TX users, because the original rankings are generally
better than those generated by CTVM. We speculate that
two possible factors may be responsible for this observation.
First, both the amount of Amazon Mechanical Turk work-
ers and the number of Tweets are lowest for TX among the
three states we investigated (see Table 1). Consequently, TX
data may be less reliable than that of the two other states.
Second, users’ interest mined from TX tweets may be incon-
sistent with TX users’ interest in headline news, violating
the main assumption behind the proposed CTVM. To in-
vestigate this possibility, we selected the query “china” and
manually examined a sample of tweets that contained the
term “china” for all three states. We found that CA and NY
tweets seem to be mostly about the economy and politics of
China, and contain hyperlinks that point to news sites. By
contrast, TX tweets seem to be mostly about Chinese prod-
ucts and artifacts, and as a result contain hyperlinks that
point to general websites (e.g. Amazon), instead of news
sites. Further investigation is required to determine whether
the mentioned reasoned can indeed explain the lesser per-
formance of CTVM for TX users, but it is clear that certain
geographical communities may have characteristics that are
at odds with the basic assumption underlying CTVM.
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3.3 Discussion

The evaluation shows that CTVM achieved good perfor-
mance in providing communitized, real-time news ranking
for CA and NY users, but not for TX users. In addition,
CTVM in particular improves Yahoo news rankings.

We now propose an application scenario for CTVM. The
low cost and barriers to implementation of the CTVM rank-
ing method can benefit a large number of local news provider;
it is easy to integrate CTVM into any search engines with-
out the requirement to obtain large-scale network topology,
query log, feedback, or clickstream data. Rather, search en-
gines that adopts CTVM need only to acquire daily tweets
from some selected states (or cities, countries). When users
enter their search queries, the search engine can conveniently
retrieve their IP-addresses, match them to the stored com-
munity model for the geographical location, and modify the
voting scores of the top k news documents using real-time
tweets from the users’ geo-location. The search engine can
offer users the options of whether to activate CTVM re-
ranking, choose their preferred k value, and use either local-
ized or non-localized tweets. If the amount of tweets from
a particular location is insufficient, tweets from adjacent lo-
cations can still be used to provide augmented rankings. It
is furthermore straightforward to extend CTVM with the
analysis of personal user data, such as query log and session
mining, clickstream analysis and users feedback analysis.

4. RELATED WORK
4.1 Ranking

The development and refinement of ranking mechanism
has been always at the core of IR research. Content-based
ranking and linkage-based ranking are two classical models.
Content-based methods rank documents according to how
their content matches a given search query, and may rely on
vector space models [17] and language models [13]. Linkage-
based methods rank documents according to their position
in the topology of hyperlink networks, e.g. PageRank [14]
and HITS [8]. These methods however do not take into ac-
count users interest that are not expressed in search queries,
document content or network topology.

Recently, researchers have explored applications of online
behavior data, query sessions, logs [10], clickstream data [11],
and users feedback [7] data, to generate personalized search
rankings. Although these have been proven to be effective,
they require large amounts of user behavioral data which can
be difficult to obtain and manage. [12] attempts to solve the
data sparsity problem by substituting personal data with
community data on the assumption that people from the
same community share similar interest. His work, however,
relies on global community interest. As an extension, our
work partitions different communities by geo-location to pro-
vide localized rankings.

4.2 Twitter data analytics

Several studies has leveraged the collective behavior of
Twitter users to gain insight into a number of real-life phe-
nomena. Analysis of tweet content has shown correlations
between users’ global moods and important worldwide events
[3]. Twitter can be also used to predict stock market fluc-
tuations [4] and earthquakes [16].

Since [9] has confirmed the close relation of Twitter to
headline news, we have seen numerous explorations of Twit-
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ter data to news analytics. [15] developed an system to de-
tect and track breaking news in real-time, and [1] modeled
user’s interest from Twitter and provided personalized news
for Twitter users. However, to the best of our knowledge few
studies have used Twitter data to optimize and augment
search engine rankings of news items generated by tradi-
tional search engines such as Google and Yahoo.

5. CONCLUSION

In this paper, we propose the CTVM to re-rank news
search results retrieved from Google and Yahoo using an
analysis of tweets from three states: CA; NY and TX, based
on the assumption that assessments of users’ interest in news
can be augmented on the basis of information about their ge-
ographical community. We validate our results by obtaining
ground-truth assessment of ranking quality from Amazon’s
Mechanical Turk. Preliminary experimental results show
that CTVM outperforms Yahoo in its top 3, 5, 10 news doc-
ument rankings and outperforms Google in its top 10 news
documents rankings. This is the case for both CA and NY
communities. In addition, in CA and NY, CTVM using lo-
cal tweets performs better than using non-local tweets for
Yahoo news ranking. This implies that users’ regional pref-
erences make a greater difference for Yahoo news rankings
than Google’s. TX is the exception on all CTVM perfor-
mance indicators. We hypothesize that this is either caused
by insufficient ranking evaluations and tweets from TX, or
the fact that TX tweets do not match the news interest of
TX residents.

In spite of these promising results, numerous issues merit
further investigation. First, we propose to further explore
CTVM’s poor performance for the TX community which
may result from interesting regional and social variations.
Second, the CTVM could employ Named Entity Recogni-
tion or other NLP tools to determine semantic instead of
word similarity to adjust voting scores. These methods need
to acknowledge the real-time, temporal dynamics of chang-
ing users’ interest. Third, our assessment relied on the av-
erage performance of CTVM over all queries and did not
consider the differences between queries in terms of their
general subject matter, e.g. politics, science, entertainment,
and celebrity news, and their different temporal properties
(i.e. hypes and fads vs. long-standing discussions). Finally,
CTVM may be extended beyond location-based communi-
ties to include other demographic factors, such as gender,
age, and even mood [2] which can equally be used to demar-
cate online communities, and may in fact provide a more
reliable definition of news-relevant communities.
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