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ABSTRACT
Models of information diffusion and propagation over large
social media usually rely on a Close World Assumption: in-
formation can only propagate onto the network relational
structure, it cannot come from external sources, the network
structure is supposed fully known by the model. These as-
sumptions are nonrealistic for many propagation processes
extracted from Social Websites. We address the problem of
predicting information propagation when the network diffu-
sion structure is unknown and without making any closed
world assumption. Instead of modeling a diffusion process,
we propose to directly predict the final propagation state of
the information over a whole user set. We describe a gen-
eral model, able to learn predicting which users are the most
likely to be contaminated by the information knowing an ini-
tial state of the network. Different instances are proposed
and evaluated on artificial datasets.

Categories and Subject Descriptors
I.m [Computing Methodologies]: Miscellaneous

Keywords
Diffusion, Social Networks, Machine Learning

1. INTRODUCTION
The diffusion and propagation of information over large

social media has been an active research domain recently.
Propagation models are often inspired from earlier work on
epidemiology or marketing. Most of them consider that a
node is either active or inactive and that active nodes can
contaminate or propagate the information to other nodes.
The different models differ on the assumptions upon the way
information spreads from one node to another. Besides pro-
viding models for the propagation process, these techniques
can be used for tasks like opinion leader detection [3]. Most
models rely on strong assumptions:

1. the propagation network is completely known,

2. information can only propagate onto this network and
cannot come from external sources,
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3. only one type of information is considered.

For many practical cases, these assumptions are hardly met.
The network might be partly known or even completely
unknown. Most often, it is impossible to characterize the
whole network due to its size and to the difficulty of tracking
the different events characterizing the relational structure.
In social networks, information often comes from external
sources so that the same information may appear at differ-
ent places and times in the network without being prop-
agated through the network [1]. Users in a network will
propagate information differently according to their profile
or to their domain of interest. They will then play different
roles according to the nature of the information to be prop-
agated. Models generally attempt to mimic the diffusion/
propagation behavior at the node level in order to reproduce
cascades of information observed at different places in the
network or to reproduce the global contagion mechanism.
Their main goal is then to explain or analyze the actual dif-
fusion process.

We consider here the problem of information propagation
prediction on social media: given a state of contamination
of the network at a given time t what will be the state of
contamination at time t′ > t? This is related to, but differ-
ent from the problem of diffusion modeling. For the former,
the goal is to predict the state of the network at a given
time, while for the later, the goal is to model each step of
the diffusion process. We present a prediction model which
does not rely on hypothesis 1 and 2. The model does not
require the knowledge of the network structure, although it
could take benefit from a partial or complete knowledge of
this structure. This model is based on a regression frame-
work. It can incorporate the effect of external information
sources so that the information is not restricted to propa-
gate onto the network only. Extensions of this model can
also deal with multiple sources (hypothesis 3) but are not
detailed here. The paper is organized as follows. In Section
2 we introduce notations and define the prediction task. In
Section 3 we present our model. In Section 4 we describe
large scale experiments made to evaluate the model. In sec-
tion 5 we review related work.

2. NOTATIONS AND TASKS DEFINITION

2.1 Notations
We introduce here notations used throughout the paper.
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• A social network is modeled as a graph G = (N , E),
where N = (n1, ...nN ) is a set of nodes or users, and
E = {ei,j ∈ [0; 1]} denotes edges representing relations
between users, such that ei,j is the weight of the rela-
tion between nodes. i and j, ei,j = 0 means that there
is no link between user i and user j.

• Information propagation is modeled here as a discrete
process, so that at each step of this process, the net-
work state may be represented as a vector of contami-
nation. Let Mk be a contamination matrix represent-
ing the propagation of an information1:

Mk =

⎛
⎜⎜⎜⎜⎝

mk
1,1 mk

1,2 . . . mk
1,Tk

mk
2,1 mk

2,2 . . . mk
2,Tk

...
...

. . .
...

mk
N,1 mk

2,2 . . . mk
N,Tk

⎞
⎟⎟⎟⎟⎠

mk
i,t is the contamination of user i at time t. Clas-

sically mk
i,t ∈ 0; 1, i.e. user is contaminated or not.

We will also consider the case mk
i,t ∈ [0; 1] when our

knowledge about the contamination is uncertain. T k

corresponds to the duration of the contamination pro-
cess: after time T k no more individuals will be con-
taminated. We use here a relative datation i.e t = 1
corresponds to the first time a user has been contam-
inated for information k - e.g. the date of the first
apparition of a particular tweet on a microblog site for
example and T k is the time where the propagation has
finished. For a given network, different information
cascades will be observed corresponding to different
Mks.

The model parameters will be estimated from samples of
propagation cascades. We denote by

(
M1, ...,M �

)
a set of

training propagation matrices used for estimating the model
parameters and by

(
M �+1, ...,MM

)
a set of test matrices

used for evaluation. For example,
(
M1, ...,M �

)
may corre-

spond to past observations and
(
M �+1, ...,MM

)
to future

observations to be predicted.

2.2 Prediction task
Existing propagation models are used to model how in-

formation spreads over a social network. These models may
also be used for predicting the information propagation:
given an initial state of the network, the model is run and
predicts at each step the propagation at each node. They
usually make Closed World Assumptions 1 and 2 : they con-
sider that the diffusion network is known and that informa-
tion can only propagate through the network without inter-
action from the external world. In many cases, this is not
realistic. We propose here a prediction model which does
not rely on these assumptions. For this, we will focus on the
following task: predict the final contamination state of the
network given an initial contamination. This task amounts
at learning a correspondence between the initial and final
states of the network without considering the intermediate
steps:
1For simplification, we consider that all information follow
the same propagation process (assumption (iii), i.e. we do
not differentiate the propagation according to the message
content.

(
G,mk

1

)
⇒ mk

1,Tk (1)

where mk
1 = (mk

1,1, ...,m
k
N,1)

T 2 is the vector of initial con-
tamination i.e the contamination of all the users by a given
information the first time this information appears in ob-
served data, mk

Tk = mk
1,Tk , ...,m

k
N,Tk )T is the vector repre-

senting the final state of contamination we want to predict,
G denotes the social network, which might be partially ob-
served or even completely unknown.

3. PROPOSED APPROACH

3.1 General Model
The proposed approach directly predicts the final contam-

ination values without going through the modeling of the
whole diffusion process at each time step and at each node
like most models do. To compare the two methodologies,
one can make an analogy with the predictive and model-
ing or generative approaches for discrimination or regression
problems. Predictive approaches take a direct route to the
prediction problem, while modeling ones learn the genera-
tive process of the data. Both approaches have their own
advantages: generative methods work better when able to
capture the real data distribution or when only few training
data is available. If there is no hint about the distribution
of the data - predictive models generally achieve a better
performance. We will come back to this point in the exper-
iments section. As far as we know, this model is the first
attempt to use direct predictive models in the context of
information diffusion.

Let us denote by fθ a parameterized regression model
where θ is a set of parameters to be learned on the training
set. fθ will be trained to associate a final contamination
state, to any initial contamination state:

fθ
(
G,mk

1

)
⇒ mk

1,Tk (2)

Different types of predictors may be used. We focus here
on a family of predictors with the following form:

fθ,j(m1) = g

(
N∑
i=1

wj,iθj,imi,0

)
(3)

where wj,i is a predefined parameter that may be used to
represent the graph structure of the network when available,
g is a transfer function and {θi,j}i,j∈[1;N ]2 is the set of pa-
rameters to be learned.

3.2 Instances of the General Model
We present here different variants of the model that have

been used in the tests presented in the experimental sec-
tion. They correspond to different assumptions made on
the propagation schema that has to be learned.

• Linear Model (LM) The simplest model is a classical
linear regression:

fLM
θ,j (m1) =

N∑
i=1

θj,imi,1 (4)

2T is the transpose operator
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This model learns one influence weight θj,i between
each couple of users (uj , ui), these weights have real
values and can represent either positive or negative
influence between users. The number of parameters is
N2.

• Logistic Model (LoM) LoM is the logistic version of
the LM model. It can be written as:

fLoM
θ,j (m1) = logit

(
N∑
i=1

θj,imi,1

)
(5)

where logit is the classical logistic function. This model
forces the predicting contamination to be between 0
and 1. The number of parameters is also N2

• Positive Linear Model (PLM) The positive linear model
is a constrained version of the linear model where all
influence weights are forced to be positive. Here we
have used the following implementation of the con-
straint:

fPLM
θ,j (m1) =

N∑
i=1

θ2j,imi,1 (6)

where the θj,i are as before real values. The influence
of a user over another one can only be positive here
The number of parameters is again N2. The PLoM
model is the Logistic equivalent to this model.

• Graph Based Positive Linear Model (GPLM) None of
the above model considers the structure of the social
network G. The knowledge of this structure may be
easily taken into account in our general predictive for-
mulation. In the case of the PLM model, this variant,
denoted GPLM, takes the following form:

fGPLM
θ,j (m1) =

N∑
i=1

wj,iθ
2
j,imi,1 (7)

where wj,i is the weight of the edge between ui and uj

in the network. When there is no edge, this weight is 0
and there is no propagation between the graph nodes.
GPLM thus restricts the propagation to the known
graph structure. One advantage of this model is that
it only learns |E| parameters instead of N2, resulting in
a faster algorithm. A drawback is that when the closed
world assumption is false, it will usually do worse than
the more general models above.

3.3 Learning
Learning the predictor is performed classically by mini-

mizing a loss function on the training set over the model
parameters. Let Δ(a, b) measure the cost of predicting a
when the target is b, the global loss function takes the form:

L(θ) =
l∑

k=1

Δ(fθ(mk
1),m

k
Tk

) + λ ‖θ‖2

where l is the number of cascades (examples) in the training
set, ml

1 is the initial state of the network for cascade l, ml
Tk

is
the corresponding target state, and λ ‖θ‖ is a regularization
term. Here again different loss functions Δ(., .) could be
used. In the experiments we have been using a classical
square loss. The training problem then amounts at solving

θ∗ = argminθL(θ)

This is solved using a gradient-descent method. While most
of our models have a complexity O(N2), note that this com-
putation can be easily done using GPU − based computers,
resulting in models that are able to learn quickly with a very
large amount of training data.

3.4 Complexity
We give here an overview of the learning complexity of the

different models and discuss the consequences. Concerning
the general model, we aim at learning one parameter for each
pair of users resulting in N2 parameters. On a network of
1,000 users, it means that our approach needs the evaluation
of 1 million parameters. This is a major drawback of the pro-
posed model which resulting complexity is O(N2) and thus
which cannot be applied on very large networks, even using
implementation tricks or GPU. The GPLM model, which is
based on the structure of the graph as a lower complexity of
O(|E|) where |E| is the number of edges in the original net-
work. It is easier and faster to train, but it cannot modeled
complex diffusion processes due to the closed world assump-
tion it is based on. The work presented here is a prelimi-
nary work and we plan to study different way to reduce the
complexity of the general model. The first simple idea is
to consider a GPLM model that learns one parameter for
each pair of users that are connected by a path of length
maximum = L. In this case, the number of parameters to
estimate is greater than |E|, but lower than N2 - depending
on the structure of the graph - and the model is able to learn
long-term propagation. In that case, the value of L > 1 is
used to determines the mix between the complexity and the
expression power of the model. The other perspective is to
rewrite the model using sparse L1 regularizers that will en-
courage the algorithm to find a sparse solution, where many
of the θ.,. parameters will be set to 0. This can be done by
writting the objective function as:

L(θ) =
l∑

k=1

Δ(fθ(mk
1),m

k
Tk

) + λ|θ|

where λ is the meta-parameter that is used to choose the
sparsity of the model. The higher λ, the more sparse and
fast will be the resulting solution. This solution will be
explored in a future paper.

4. EXPERIMENTS

4.1 Datasets
Experiments have been performed using artificially gener-

ated cascades over real social networks. Since capturing real
representative cascades is not trivial, this allows perform-
ing extensive experiments on many different situations and
to compare with baseline propagation models in situations
where they can be used. We have captured social graphs
from different Web sites - We provide here results for two
of these sites: UsAir97 (direct flights between airports) and
PolBlogs (Political blogs). The statistics for the two sites
are provided in Table 1 - these graphs are then representa-
tive of real diffusion structures. We have then used classical
Independent Cascade models (ICM) and Linear Threshold
Models (LTM)in order to generate artificial cascades over
these structures. Different structures and different param-
eterization of the Independent Cascade Model (IC) and the
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Network Nb. Nodes Nb. Links
UsAir97 332 2 126
PolBlogs 1 493 19 091

Table 2: Statistics over the UsAir97 and PolBlogs
datasets

Linear Threshold Model (LTM) 3 have been used in order
to provide a variety of training and testing situations. The
generated cascades are then considered as the gold standard
and the goal is to predict the propagation on these data. For
each experiment, the ICM or LTM model is used to generate
2 000 contamination matrices: 1 000 for training and 1 000
for testing. From these graphs we have also extracted partial
graphs by keeping 50%, 75% et 100% of the original nodes
- 100% corresponds to the full network. This will allow us
to compare generative ICM and LTM approaches with pre-
dictive models in situations where the known graph only
imperfectly reflects the true diffusion structure usec for gen-
erating the data and also to analyze how the ICM and LTM
models degrade when the graph structure is only imperfectly
known. These partial graphs are generated as follows. Out
of a complete graph G with N nodes, one selects N ′ ≤ N
nodes and build a subgraph G′ consisting of these nodes plus
the edges between the nodes from the original graph G.
By varying the parameters of the models and of the gen-

eration processes, we have performed a large set of exper-
iments. We will present here only some representative re-
sults. Note that the behavior of the models is very similar
on the different datasets.

4.2 Evaluation
Prediction models produce scores at each node. The pre-

dictive models directly produce real final contamination scores.
ICM and LTM models can be used with Monte Carlo simu-
lation in order to estimate the final probability for each user
to be contaminated: starting from an initial contamination
state for a given graph, the diffusion process for the model
is simulated on the graph structure until it stabilizes and
produces the final contamination state. LTM models are
deterministic so that they produce only one final state for
a given initial condition. The contaminated nodes will have
a value of 1 while for the others it will be 0. ICM models
are stochastic (see Section 5) so that different runs from the
same initial state will produce different propagation values
on the nodes. For estimating the node scores, 1000 propa-
gations are run for the same initial contamination state and
the scores obtained at each node after stabilization are aver-
aged over all the runs, giving a probability of contamination.
The scores produced are thus real values which will play the
same role as the scores obtained with the predictor models.

For the performance measure we have been using precision-
recall (P-R) curves [5]. The node scores obtained with a
given model are ordered in decreasing order of their values
(in the case of binary scores all nodes with score 1 are above
the nodes with score 0), and then P-R curves are computed
from these ranked lists as it is classically done for example
for lists returned by search engines. This avoids defining de-
cision thresholds for the contamination values and provides

3A description of the IC and LTM models used in the ex-
periments is provided in the Section 5

a richer information on the systems’ behavior. P-R curves
reflect the ability of the prediction model to produce a high
rank for users that are susceptible to be contaminated given
an initial network state.

4.3 Experiments
Figure 1 illustrates the performance of the predictive mod-

els for the UsAir97 dataset for cascades generated by an ICM
model and Figure 2 for the Polblogs dataset with cascades
generated with an LTM model. In all the figures, are plot-
ted the R/P curves for the model used for generating the
cascade (respectively ICM and LTM), for the best predic-
tive model, for the alternative generative model (LTM if
data have been generated via ICM an vice versa). For com-
parison, we have also plotted the performance of a random
prediction model which predicts a random score and of an
Identity model which predicts the initial input state. Figure
1-1 to 1-3 give respectively the performance for the partial
graphs with 50% and 75% of the initial graph nodes and for
the complete graph. In all cases, the predictive models does
not take into account the graph structure and learns or pre-
dict only by considering the initial and final contaminations.

For ICM generated data, the predictive model is almost
as good as the ICM model for the complete graph (Figure
1-3). ICM performance slightly degrades on partial graphs
but remains good meaning that on these datasets, ICM is
robust to a degradation of the graph structure. The predic-
tive model performance on the other sides does not degrade
and progressively becomes higher than the one of the gener-
ating model (Figures 1-2 and 1-1). The less is known about
the graph, the higher is the difference between the two mod-
els. Although the predictive model has learned on complete
graphs, it is extremely robust to missing information and
predicts well in all situations. The performance of the best
LTM model is rather low for all the situations: LTM cannot
predict cascades generated by ICM and is sometimes worse
at that than the simple identity model.

Figure 3-1, 3-2 and 3-3 compare different predictive mod-
els on the ICM and LTM generated cascades. Models with
positive constraints behave better than unconstrained pre-
dictors. There is no negative interaction between nodes in
all the data generated for the experiments and the positivity
constraints help the model to learn solutions that generalize
better. Note that our predictive models are however able to
learn both positive and negative interactions which is an in-
teresting property since negative interactions do happen in
many cases [2]. ICM or LTM inspired models can also han-
dle negative interactions [2], however they must be adapted
for such case, whereas the same predictive model can handle
both cases since it only relies on the data to be predicted
and does not make any hypothesis on the way it propagates.

Table 2 provides F1 scores for the UsAir data set for the
different models. It can be seen that predictive models are
better than ICM or LTM as soon as the network information
is incomplete and close to the performance of the model used
for generating the data when the full graph is known to this
model.

Another set of experiments has been performed by incor-
porating the knowledge of the graph or of the partial graph
in the predictive model. Figures 5-1 to 5-3 compare predic-
tion with and without this graph knowledge for predictive
models. Performances are quite similar for both models for
all cases and even slightly lower sometimes in the case of
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Prediction Model Partial Network 50% Partial Network 75 % Full Network
IC 0.1% 62.7 64.9 74.7
IC 0.3% 83.1 85.2 89.0
IC 0.5% 87.0 87.1 87.4

LTM 0.1% 86.9 86.9 86.1
LTM 0.3% 69.9 74.3 71.4
LTM 0.5% 47.2 47.6 44.1
Identity 36.4 37.6 37.0
Random 60.2 59.9 60.0

LM 87.8 86.6 86.6
PLM 88.7 88.2 88.6
LoM 88.7 88.8 88.1
PLoM 86.4 85.6 86.1

Table 1: F1 measure on the UsAir97 Corpus with a generating model IC 0.3 (i.e. the probability for a node
to activate any of its neighbors is 0.3 - see Section 5)
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Figure 1: P-R Curves obtained on the UsAir97 network, with a simulation model IC 0.3 for different size of
the partial network. Only the best model of each family( IC,LTM and Discriminant) has been illustrated.
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Figure 2: P-R Curves obtained on the PolBlogs network, with a simulation model LTM 0.5 for different size
of the partial network (i.e. the threshold for being contaminated at a node is 0.5 - see Section 5). Only the
best model of each family(ICM,LTM and Discriminant) has been illustrated. For the full network, LTM 0.5
gives perfect results.
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Figure 3: P-R Curves obtained on the UsAir97 network, with a simulation model IC 0.3 for different size of
the partial network and for the different discriminant models described in the paper.
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Figure 4: P-R Curves obtained on the PolBlog network, with a simulation model LTM 0.5 for different size
of the partial network and for the different discriminant models described in the paper.
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Figure 5: P-R Curves obtained on the PolBlogs network, with a simulation model LTM 0.5 for different size
of the partial network. Comparison between PLM and the graph based GPLM
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partial graphs. There is no performance gain obtained by
exploiting the graph structures for predictive models. How-
ever the complexity of the graph-based predictive model is
lower than the one of full predictive models which might be-
come advantageous in the case of large or very large graphs.

5. RELATED WORK
Most LTM and ICM inspired models make use of pre-

defined parameters. Recently, some papers have proposed
to learn the model parameters from data using maximum
likelihood [9, 4, 8]. An interesting problem also recently
addressed by learning from observations is the inference of
diffusion networks [7, 6]. Finally, modeling the diffusion over
unknown networks is addressed in [10], this paper focuses on
modeling the temporal dynamics of the diffusion and global
statistics like the volume of infection.

We provide here a brief description of the Independent
Cascade (ICM) and Linear Threshold (LTM) models used
in this paper. ICM and LTM are two basic reference models
which have been widely studied and for which many exten-
sions have been considered. [3] describes a unified view of
these models and several extensions. Both models operate
on a directed graph G. A node may be active or inactive.
Starting from an initial set of active nodes, a discrete pro-
cess is unfolded in time where at each time step more nodes
may become active under the influence of their neighbours.
In both models, an active nodes remains active, although in
variants or in related models, a node may recover and be-
come again inactive? Information propagates on the graph
until no more node can become active.

ICM operates in a push mode. It start from a set of active
nodes A(0). When a node v becomes active at time t, it will
get a unique chance to active each of its neighbours w. w
will become active at time t + 1 according to a probability
pv,w. Whether or not w becomes active, v is not allowed to
attempt activating w in later steps. The pv,w are parameters
of the model. In the experiments performed here, all nodes
have the same probability p to contaminate their neighbors.
ICM 0.3 for example will denote a model with p = 0.3.

LTM operates on a pull mode. Each node v is given a
threshold tv which may be chosen at random uniformly in
[0, 1], although related models use fixed threshold values.
Edges (w, v) in G, with w a parent of v are weighted by
a positive value bvw such that

∑
w∈N(v) bvw ≤ 1. Starting

from an initial set of active nodes A0, the contamination
process unfolds as follows: at time step t, if v is active, it
remains so, otherwise it will become active if the weight sum
of its parents in G is above its threshold tv:

∑
w∈N(v) bvw ≥

tv. The bvw are parameters of the model. In the experiments
all the nodes have the same threshold t and LTM0.3 denotes
a model with t = 0.3.

6. CONCLUSION
For predicting the final information propagation state over

information networks, we have introduced a new approach
which directly aims at predicting this final state without
modeling the whole diffusion process over the network. This
approach does not make closed world assumptions familiar
to most information diffusion models. We have proposed
a general predictive model implementing this approach and
different instances of this model. Tests have been performed
on different artificially generated cascades over real social

network structures. These experiments have shown that the
predictive approach is able to learn predicting final contam-
ination states from data generated by different models and
outperforms these models as soon as the information about
the network structure becomes unreliable. Future work will
examine the behavior and performance of theses predictive
models over real propagation processes observed from large
size datasets.
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