
Community Cores in Evolving Networks

Massoud Seifi
Pierre and Marie Curie University, LIP6
4, place Jussieu 75005 Paris, France

massoud.seifi@lip6.fr

Jean-Loup Guillaume
Pierre and Marie Curie University, LIP6
4, place Jussieu 75005 Paris, France

jean-loup.guillaume@lip6.fr

ABSTRACT
Community structure is a key property of complex networks.
Many algorithms have been proposed to automatically de-
tect communities in static networks but few studies have
considered the detection and tracking of communities in an
evolving network. Tracking the evolution of a given commu-
nity over time requires a clustering algorithm that produces
stable clusters. However, most community detection algo-
rithms are very unstable and therefore unusable for evolving
networks. In this paper, we apply the methodology proposed
in [14] to detect what we call community cores in evolving
networks. We show that cores are much more stable than
”classical” communities and that we can overcome the dis-
advantages of the stabilized methods.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Graph Theory

Keywords
Complex networks, community structure, community cores,
evolving networks

1. INTRODUCTION
The study of complex systems from a network perspective

has attracted much attention since the discovery of com-
mon structural properties among such networks. Complex
systems can be generally modeled by graphs, in which re-
lated entities are represented by nodes and relationships be-
tween these entities by edges. They may be encountered in
the real world in various fields such as social sciences (on-
line social networks, collaborative networks), computer sci-
ences (Internet, Web, peer-to-peer exchange networks), biol-
ogy (protein-protein interactions networks, neural networks),
transportation (road networks, airline networks), linguis-
tics (synonymy graphs, graphs of word co-occurrence in texts),
etc. (see [4] for a survey).

Most complex networks of the real world evolve over time.
Representing networks with graphs, this evolution can be
modeled as the creation or removal of nodes and/or edges

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

over time. For example, 700 000 new users register every
day on Facebook and at the same time many users delete
or deactivate their accounts. In addition, users may find
new friends or remove some people from their contact list
of. This dynamics plays an essential role and must be taken
into account in the analysis of such networks.

One important feature of complex networks is that they
are naturally composed of groups of nodes that are more
densely connected with one another than with the rest of
the network. These groups are generally called communi-
ties [7]. The identification of such communities can provide
a macroscopic view on the structure of the global network
but also a microscopic view inside these communities. Many
algorithms have been proposed to automatically detect com-
munities in static networks (see [10] for a survey) but few
studies have considered the detection and tracking of com-
munities in an evolving network, see [6] for instance. A typ-
ical approach for evolving networks consists in representing
the state of the system at different time steps: communities
are identified independently at each time step and are stud-
ied over time. Indeed, given two time steps t and t + δt in
the evolution of a graph, we can partition this graph into
communities at each of these moments. Each community of
the graph at time t may remain the same at the moment
t+ δt, disappear, split into sub-communities or merge with
other communities (or a combination of everything).

Tracking the evolution of a given community over time
requires a clustering algorithm that produces stable clusters
i.e. which do not significantly change under small perturba-
tions of the input data. However, in most community de-
tection algorithms, the output changes dramatically if the
input network is (even slightly) modified [1]. Some recent
work [1] proposes stabilized methods but they are generally
unable to track communities and to detect events because of
the non-determinism that is present in their initialization.

In this paper, we apply the methodology proposed in [14]
to detect what we call community cores in evolving networks.
We show that cores are much more stable than communities
and that they can overcome the disadvantages of stabilized
methods. In the next section we present related work on
community detection and tracking in evolving networks. We
briefly explain our methodology in section 3. Then, we de-
scribe our experiments and results concerning stability on a
simulated evolution and a real one in sections 4 and 5 before
concluding in section 6.

2. RELATED WORK
Two main approaches are proposed in the literature for

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1173

identifying communities in evolving networks. The first one
is based on tracking communities among different snapshots,
using a community detection algorithm suited for static graphs.
The major challenge after extracting communities at each
snapshot is to identify which community at time t has evolved
into which community at time t + δt. Many solutions have
been proposed to follow the communities which may merge,
split, appear or disappear over time. A simple approach to
follow communities at each time step is that a community
Ci at time t has become the community Cj at time t+ δt if
Ci and Cj share a certain number of nodes and have similar
sizes [9]. In [15], this idea is generalized by introducing many
rules to handle split, merge, etc. The other approach, which
has not been widely followed, consists in using temporal in-
formation directly in the detection process. For example,
in [3] the quality function is modified to take into account
dynamic features. Likewise, in [11] a probabilistic model in-
tegrating dynamic features is used to identify communities.

As mentioned before, the main underlying problem of
both above approaches described above is that small pertur-
bations of the input graph can greatly influence the output
of classical community detection algorithms. This instabil-
ity therefore makes such algorithms unusable for evolving
networks.

3. METHODOLOGY
The identification of community cores is based on the idea

that if several community detection algorithms, or multiple
executions of a non-deterministic algorithm, agree on certain
sets of nodes, then these sets of nodes are certainly more
significant. More precisely, given a graph G = (V,E) with
n = |V | vertices, we apply N times a non-deterministic com-
munity detection algorithm to G. In the following we use the
non-deterministic algorithm known as Louvain method [2].
At the end of an execution, each pair of nodes (i, j) ⊆ V ×V
can be classified either in the same community or in different
communities. We keep track of this in a matrix of size n×n,
which we denote by PNij = [pij]

N
n×n, where pij represents the

fraction of the N executions in which i and j have been clas-
sified in the same community. Note that pij = pji, and we
set pii = 0. From PNij , we create a complete weighted graph
G′ = (V,E′,W), where the weight of the link (i, j) is pij .
Finally, given a threshold α ∈ [0, 1], we remove from G′ all
links with pij < α to obtain the thresholded virtual graph,
G′′α. The connected components in G′′α obtained with a
given α are called α-cores, which are non-overlapping sets of
nodes (see [14] for more details).

3.1 Stability evaluation
Given a dynamic graph G, consisting of a sequence of

graphsGt for each time t of its evolution, we consider PNij Gt
=

[pijGt
]Nn×n the pij matrix of graphGt at time t and PNij Gt+1

=

[pijGt+1
]Nn×n the pij matrix of graph Gt+1 at time t+ 1 .

We can comprehensively assess changes between times t
and t+1 by calculating the Euclidean distance between these
two matrices:

d(PNij Gt
, PNij Gt+1

) =

√ ∑
ij∈(Gt∩Gt+1)

|pijGt
− pijGt+1

|2

In order to study local in a simpler way, we use the matrix
of changes in pij , denoted [∆pij]

N
n×n, where ∆pij = pijGt

−

pijGt+1
. Finally, if we consider a single node i, we can assess

the impact of the evolution on this node by calculating the
sum of absolute values of the i-th row of the matrix ∆pij =
pijGt

− pijGt+1
:

I(i) =

n∑
j=1

|pijGt
− pijGt+1

| =
n∑
j=1

|∆pij |

Note that when N = 1, the core detection algorithm leads
to a partition into communities that can be obtained with
the Louvain method. We can therefore evaluate the changes
in the community structure of the graph by setting N = 1.

4. SIMPLE DYNAMICS
Before studying real dynamic networks, we simulate dy-

namics from a real static network. This dynamics must be as
simple as possible, controllable and ensure that the network
community structure remains stable despite this evolution.
The method that we used consists in removing a single node
from a static network and to study the impact of this removal
on the community structure, as a function of the removed
node. Although this dynamics is not realistic, it can help us
estimate the cores stability and compare it with ”classical”
communities stability. We can also study the impact of the
removal of any given node on the network structure.

We applied this simple dynamics to an Email network con-
sisting of 1133 nodes and 5451 edges [8], and to the NetSci
collaboration network, which gathers 379 researchers in the
field of networks [12]. In both cases we have considered for
each node u the initial network before and after the removal
of this node. We note Gu = G\u the graph obtained by
simply removing the node u.

4.1 Cores stability
To assess the cores stability and to compare it with the

communities stability, we first calculated the pij matrix of
the initial graph G(V,E), denoted PNij G, and the matrices

of graphs Gu for all nodes u ∈ V , denoted PNij Gu
, by apply-

ing the core detection algorithm with N = 1000. Then we
calculated Euclidean distances between PNij G and all PNij Gu

matrices. Figure 1 shows the cumulative distributions of
these distances for the Email network. For N = 1 we exe-
cuted the algorithm five times to ensure that no pathological
case occurred. We may observe that distances between cores
matrices are much lower than those of the community struc-
ture.

In order to have a better understanding of these results, we
also calculated the distance between the pij matrices for two
different runs with N = 1 and N = 1000, see Figure 2. This
figure shows a scatter plot illustrating the similarity between
the results of two executions: each point corresponds to a
node and coordinates (x, y) imply that the deletion of this
node has had an impact of x in the first execution in terms of
distance and y in the second one. WithN = 1 there is a high
volatility: deleting a node has sometimes a strong impact
and sometimes a low impact, without any visible correlation.
Instead, for N = 1000 there is a strong correlation that
comes from the fact that pij values have nearly converged
when N = 1000.

However, core pij matrices contain real values between 0
and 1 while communities pij matrices are binary and contain
only 0 or 1. For a more accurate comparison of these two

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1174

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1

F
re

q
u

e
n

c
y

Distance between pij matrices of G and Gu

N=1000
N=1, ex. 1
N=1, ex. 2
N=1, ex. 3
N=1, ex. 4
N=1, ex. 5

Figure 1: Cumulative distributions of Euclidian dis-
tances between matrices before and after removing
a node for cores and communities in Email network.

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

D
is

ta
n

c
e

 b
e

tw
e

e
n

 p
ij

m
a

tr
ic

e
s

Distance between pij matrices

(a) Communities (N=1)

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

D
is

ta
n

c
e

 e
n

tr
e

 l
e

s
 m

a
tr

ic
e

s
 d

e
s
 p

ij

Distance entre les matrices des pij

(b) Cores (N=1000)

Figure 2: Correlations between two executions of
cores with N = 1 and N = 1000. Each point of coor-
dinates (x, y) corresponds to a node and means that
the Euclidean distance between the pij matrices be-
fore and after its removal is x for the first execution
and y for the second one.

types of matrices, we can transform cores matrices in binary
matrices using thresholds. For this, given a threshold α and
we assign 0 to all elements with a pij < α and 1 to all others:

P ′
N
ij Gu

= [p′ij]
N
n×n with p′ij =

{
0 pij < α
1 pij ≥ α

We computed the Euclidean distances between the thresh-

olded matrices of pij of G and Gu i.e. P ′
N
ij G

and P ′
N
ij Gu

for
all u ∈ V for different thresholds α. As illustrated in Figure
3, we observe that the variation of pij for cores is still lower
than the variation for communities (see Figure 1) but higher
than non-thresholded matrices. This means that threshold-
ing includes information loss.

In this experiment, the thresholds chosen for matrices of G
and Gu, α and αu were the same, but it is possible that the
cores of G with a threshold α are very similar to the cores of
Gu with a completely different threshold αu. We therefore
also studied the distances between matrices when α differs
from αu. In order to do this, we tested all combinations of α
and αu from 0.5 to 1.0 with an interval of 0.01. We computed
the distances between the thresholded matrices of pij of G
and Gu with α and αu for all u ∈ V . Figure 4 illustrates
distances for all α and αu for two graphs. This figure shows
that distance is generally minimal when α and αu are close.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y

Distance between pij matrices of G and Gu

α=0.75
α=0.80
α=0.90
α=0.95
α=0.99
α=1.00

Figure 3: Cumulative distributions of Euclidean dis-
tances between matrices before and after removal of
a node for thresholded cores in Email Network.

In our case, it is therefore more interesting (and easier) to
keep the same threshold to track communities.

50

 60

 70

 80

 90

 100

 50 60 70 80 90 100

G
u

G

D
is

ta
nc

e
be

tw
ee

n
p

ij
m

at
ric

es

(a) NetSci

50

 60

 70

 80

 90

 100

 50 60 70 80 90 100

G
u

G

D
is

ta
nc

e
be

tw
ee

n
p

ij m
at

ric
es

(b) Email

Figure 4: Distance between pij thresholded matrices
of G and Gu with different thresholds α and αu. The
clearer the color, the smaller the distance.

4.2 Impact on the structure of cores
We also calculated the matrix of variations ∆pij = pijG−

pijGu
and studied the distribution of values in this ma-

trix. We may observe two different types of distributions,
as shown in Figure 5 for a simulated dynamics of the Email
network. Figure 5(a) shows the first type of distribution of
pij variation before and after the removal a node. We see
that the ∆pij values in this figure are very close to 0, which
means that removing this type of nodes has little influence
on the structure of the cores. However, for some other nodes
(Figure 5(b)) we may observe much higher values, close to
−1 and 1.

A ∆pij value of 1 means that i and j have never been set
together before the removal and are always together after,
which means i joined the core of j or vice versa. Similarly, a
∆pij of −1 means that i and j have always been together be-
fore deletion and are no longer together after, which means
that the core containing i and j has been split. Many val-
ues close to −1 or 1 in the distribution thus mean that the
deletion of the considered node has a large impact on the
structure of the cores.

Automatic detection of strong impacts is not obvious, we
therefore decided to study the maximum and minimum val-
ues of the distribution. Figure 6 shows these extreme values
after removing a node, for all nodes in the Email network

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1175

 1e−06

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

−1 −0.5 0 0.5 1

P
ro

p
o

rt
io

n
 o

f
p

a
ir
s
 o

f
n

o
d

e
s

∆pij

 1e−06

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

−1 −0.5 0 0.5 1

P
ro

p
o

rt
io

n
 o

f
p

a
ir
s
 o

f
n

o
d

e
s

∆pij

Figure 5: Distributions of ∆pij values for (a) a node
with a low impact (distribution peaked around 0),
and (b) a node with a strong impact (distribution
with values close to 1 and −1).

and researchers network. We see cases where the removal of
a node has a strong impact (high extreme ∆pij values) and
others where the impact is limited and close to 0. In par-
ticular the average values are higher in the Email network
than in the collaboration network, where most impacts are
very low.

We can also observe specific behaviors for nodes that have
a strong impact in one direction only. For example, when
node 376 is removed from the researchers network, we only
see a positive variation of pij (it is not directly visible on
the curve given the scale). Figure 7(a) shows the distribu-
tion of pij variations before and after the removal of this
node. We observe that the majority of ∆pij values are close
to 0 and a few values are close to 1, which corresponds to
cores merging. Figure 7(b) shows the distribution of impacts
I(i) =

∑n
j=1 |∆pij | on nodes. We observe that 8 nodes are

very strongly impacted (with a total impact of 26) and a
number of nodes are quite severely affected (with a total
impact close to 7).

Figure 8 illustrates the cores identified with α = 0.75 be-
fore and after the removal of node 376 (pointed by an ar-
row). We can clearly identify the 8 nodes that are merged
with another core.

Figure 9 shows this result with a different type of visu-
alization and shows how a node is affected by the deletion
of another node in the graph. Each (i, j) pixel indicates the
total impact of the removal of node i on node j. A light hor-

−1

−0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400

∆
p

ij

Removed node

(a) NetSci

−1

−0.5

 0

 0.5

 1

 0 200 400 600 800 1000 1200

∆
p

ij

Removed node

(b) Email

Figure 6: Extreme variation of ∆pij values on the
Email network and the collaboration network. Each
bar connects the minium ∆pij to the maximum ∆pij.

izontal line for a node means that it is never impacted by
the removal of other nodes. These nodes are more resistant
to changes in the network. On the contrary, a dark horizon-
tal line for a node indicates that this node is more sensitive
and that whatever the deleted node, it is strongly impacted.
Conversely, a dark vertical line indicates the deleted node
has an important role in the structure of the core because
its deletion affects all other nodes. On the contrary, a clear
vertical line means that the deleted node does not impact
anything. There are no light or dark vertical lines, which
means that no node has an impact on all nodes, which seems
natural, but we see horizontal lines for important nodes.

4.3 Impact locality
We have shown that cores are much more stable than tra-

ditional communities when the graph is slightly modified,
although the removal of some specific nodes has a stronger
impact. We now study whether the changes in the structure
of cores and communities are local or not.

To illustrate the quality of cores versus communities, we
have removed an off-centered node of degree 1 (node 36).
Figure 10(a) shows the distribution of pij variation before
and after the removal of this node. Deleting this node should
not change the community structure of the network. How-

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1176

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

−1 −0.5 0 0.5 1

P
ro

p
o

rt
io

n
 o

f
p

a
ir
s
 o

f
n

o
d

e
s

∆pij

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

F
re

q
u

e
n

c
y

I(i)

Figure 7: (a) Distribution of ∆pij before and after
the removal of node 376 from the researchers net-
work. (b) Distribution of total impacts, I(i), for the
deletion of each node i.

ever Figure 10(b) shows that many nodes are severely af-
fected by this deletion for communities (N = 1) while no
node is affected for the cores (N = 1000).

Moreover, figure 11 shows the average impact of removing
a node on other nodes of the graph, according to their dis-
tance from the deleted node (for two different networks). We
observe that this impact is low for cores and occurs generally
near the removed node.

However, we sometimes see strong impact on more distant
nodes. For example, as illustrated in Figure 12, removing
the node 112 from the researchers network has a strong im-
pact on nodes that have a distance of 10 and 11 from it. Fig-
ure 13 shows this network where node colors indicate how
it is impacted by the removal of the node 112 (indicated by
an arrow). The more a node is impacted the more ”red” is.
The nodes in a distance of 10 and 11 from node 112, which
are significantly impacted, are displayed in a circle.

This result is both negative for cores and also very counter-
intuitive since cores are supposed to absorb non-local vari-
ations due to instabilities of the algorithm. We tried to
understand the cause and we have therefore studied several
cases of nodes whose removal causes a clearly non-local im-
pact. The conclusion is that what we observe here is related
to the problem of resolution limit [5]. This problem implies
that the larger the network, the larger the communities and
we see that this problem exists also for cores. As Figure 14
shows, nodes affected by the removal of node 112 split into

(a) Before

(b) After

Figure 8: Cores identified (a) before and (b) after
removing node 376, pointed by an arrow in the upper
left corner.

0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

N
od

es

Removed node

I(
i)

(a) NetSci

0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

N
od

e

Removed node

I(
i)

(b) Email

Figure 9: The pixel (i, j) indicates the total impact
of the removal of the node i on the node j, for two
networks.

two subcores. The same effect occurs with the removal of
other nodes of high degree. On the other hand, removing
low degree nodes does not cause this breakage.

Validating these results and defining a methodology to dis-
tinguish cases of resolution limit from cases of actual impact
is an important perspective of this work.

5. REAL DYNAMICS
Finally, we considered a more realistic case of dynam-

ics. One major application of our work consists in auto-
matically detecting events in the evolution of real networks.
Although it is difficult to clearly define what an event is,

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1177

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

−1 −0.5 0 0.5 1

P
ro

p
o

rt
io

n
 o

f
p

a
ir
s
 o

f
n

o
d

e
s

∆pij

N=1000
N=1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

q
u

e
n

c
y

I(i)

N=1000
N=1

Figure 10: (a) Distribution of pij variation be-
fore and after the removal of node 36 from the re-
searchers network. (b) Distribution of the number
of nodes with a given impact, for this removal for
N = 1 and N = 1000.

we aim at identifying fundamental, occasional and unusual
changes that do not conform to the ”expected behavior”. In
the context of cores it may be a significant variation in the
structure.

In this section, we use the mrinfo network as an example
of dynamic network. This network has the advantage of
having a quite slow evolution but with some clearly identified
events.

5.1 Mrinfo network
This network is a map of the topology of multicast routers

on the Internet, measured using the tool mrinfo. This tool
allows to request the list of neighbors from a multicast router.
Every day, mrinfo is launched on a first router then recur-
sively on each of its neighbors in a breadth-first search man-
ner. This measurement was conducted over several years
and resulted in a dynamic map of multicast routers (see [13]
for more details concerning the measurement). We studied
the data of 2005 which represent 365 time steps (days) con-
taining 3114 nodes and 7523 edges in average (see figure 15).

5.2 Evolution of cores
It is clearly shown in [1] that the direct application of clas-

sical community detection algorithms, such as the Louvain
method, independently at each time step is not suitable for
monitoring of communities because of their instability. We

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12 14 16 18

A
v
e

ra
g

e
 i
m

p
a

c
t

Distance from removed node

N=1
N=1000

(a) NetSci

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 i
m

p
a

c
t

Distance from removed node

N=1
N=1000

(b) Email

Figure 11: Node deletion. Average impact on the
nodes of distance k from the removed node depend-
ing on k.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12

I(
i)

Distance from removed node

Figure 12: Impact of removing the node 112. Each
point of coordinates (x, y) is a node i of distance x
from the node 112 where I(i) = y.

will compare our approach to the Louvain method and the
stabilized one proposed in [1].

Figure 17 illustrates the Euclidean distance between two
partitions of successive time steps for the Louvain method,
the stabilized Louvain method and cores. We observe that
cores are much more stable than the Louvain method, but

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1178

Figure 13: Impact of removing node 112 (pointed by
arrow) on the other nodes of the researchers net-
work. The color of a node indicates how strongly it
is affected by the deletion, the intense red indicates
the strongest impact.

(a) Before

(b) After

Figure 14: The cores identified before and after the
removal of node 112 with demonstration of the prob-
lem resolution limit for the brown cores at left.

less stable than the stabilized Louvain method. We chose a
threshold 0.86 for cores, which gives the better stability.

Although the stabilized Louvain method is more stable, it
has one major flaw which is that it uses the partition of the
previous time as the seed of the current time. This helps the
algorithm but simultaneously imposes a constraint because
it can be difficult to radically change the imposed partition.
The results of the algorithm can be strongly associated with

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300 350 400

N
u

m
b

e
r

Time

Nodes
Edges

Figure 15: Changes in the number of nodes and links
over time in the mrinfo network.

the first initial partition whose significance is limited. As
As illustrated in Figure 16, when applying the stabilized
Louvain method several times to the same network, some
peaks of modifications remain in place and others happen
at different instants in time. This means that the events
observed with this method are quite dependent on the first
identified partition and are therefore unreliable. For cores,
peaks indicating large variations are always located in the
same time steps since the calculations are time independent.

−0.1

−0.08

−0.06

−0.04

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250 300 350 400

E
u

c
lid

e
a

n
 d

is
ta

n
c
e

Time

Stabilized Louvain, exec. 1
Stabilized Louvain, exec. 2

Figure 16: Euclidean distance between two succes-
sive time steps for two different executions of the
stabilized Louvain method on the mrinfo network.
The results of the second execution are shown with
negative values to increase curves readability.

In all cases, we observe regular changes in the structure of
cores. We should then be able to eliminate the effects related
to the resolution limit that can pollute the results and then
to validate the quality of the obtained decompositions.

6. CONCLUSION
We have shown that classical community detection al-

gorithms are too unstable and therefore unsuitable to be
applied to dynamic graphs. Indeed, very low system dis-
turbances can produce a major transformation of the re-
sults. Stabilized approaches exist but are generally unable
to identify events and to follow communities because of non-
determinism in their initialization.

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1179

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 50 100 150 200 250 300 350 400

E
u

c
lid

e
a

n
 d

is
ta

n
c
e

Time

Louvain
Stabilized Louvain

Cores

Figure 17: Euclidean distance between pij matrices
of between two successive time steps for the mrinfo

network.

We studied the cores stability in dynamic graphs, first
with a simple and controllable dynamics where we showed
that cores are much more stable than communities. We also
showed that the influence of changes in the structure of the
cores is overwhelmingly local, with the exception of resolu-
tion limit, while impacts are usually global for communities
and therefore difficult to interpret. We then showed the ef-
fectiveness of our approach by applying it to real dynamic
graphs on which we have shown that cores are more stable
than conventional approaches and although less stable than
some stabilized algorithms, but at least they are determin-
istic.

Research on communities in dynamic graphs is still in
its infancy and many opportunities exist. First, we should
clearly validate cores dynamics, which requires finding for-
mal arguments to distinguish real changes from those due
to the resolution limit, or even find a way to eliminate this
problem. Second, we should validate the dynamics of real
cores on graphs, for example by comparing detected events
with high Euclidean distances to known and unknown events.
Of course this requires multiple graphs with several types of
dynamics (fast or slow, ...). Finally, it is possible to fol-
low other conventional approaches for community detection
in dynamic graphs and apply the methodology of cores to
them. For example the stabilized Louvain method is non-
deterministic and provides a partition per time step. Rather
than calculating cores at every moment, it would be possi-
ble to calculate dynamic cores seeking similarities between
different executions of the stabilized Louvain method for ex-
ample.

7. ACKNOWLEDGMENTS
This work is supported in part by the French National Re-

search Agency contract DynGraph ANR-10-JCJC-0202 and
by the DiRe project, funded by the city of Paris Émergence
program.

8. REFERENCES
[1] T. Aynaud and J. Guillaume. Static community

detection algorithms for evolving networks. In
Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt), 2010 Proceedings of the
8th International Symposium on, pages 513–519.
IEEE, 2010.

[2] V. Blondel, J. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008:P10008, 2008.

[3] D. Chakrabarti, R. Kumar, and A. Tomkins.
Evolutionary clustering. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 554–560. ACM,
2006.

[4] L. Costa, O. Oliveira Jr, G. Travieso, F. Rodrigues,
P. Boas, L. Antiqueira, M. Viana, and L. Da Rocha.
Analyzing and modeling real-world phenomena with
complex networks: A survey of applications. Arxiv
preprint arXiv:0711.3199, 2007.

[5] S. Fortunato and M. Barthélemy. Resolution limit in
community detection. Proceedings of the National
Academy of Sciences, 104(1):36, 2007.

[6] M. Giatsoglou and A. Vakali. Capturing social data
evolution via graph clustering. IEEE Internet
Computing, 99(PrePrints), 2012.

[7] M. Girvan and M. Newman. Community structure in
social and biological networks. Proceedings of the
National Academy of Sciences, 99(12):7821, 2002.

[8] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt,
and A. Arenas. Self-similar community structure in a
network of human interactions. Physical Review E,
68(6):065103, 2003.

[9] J. Hopcroft, O. Khan, B. Kulis, and B. Selman.
Tracking evolving communities in large linked
networks. Proceedings of the national academy of
sciences of the United States of America, 101(Suppl
1):5249, 2004.

[10] A. Lancichinetti. Community detection algorithms: a
comparative analysis. Physical Review E,
80(5):056117, 2009.

[11] Y. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. Tseng.
Analyzing communities and their evolutions in
dynamic social networks. ACM Transactions on
Knowledge Discovery from Data (TKDD), 3(2):8,
2009.

[12] M. Newman. Finding community structure in
networks using the eigenvectors of matrices. Physical
Review E, 74(3):036104, 2006.

[13] J. Pansiot, P. Mérindol, B. Donnet, and
O. Bonaventure. Extracting intra-domain topology
from mrinfo probing. In Passive and Active
Measurement, pages 81–90. Springer, 2010.

[14] M. Seifi, S. Iskrov, J.-B. Rouquier, I. Junier, and J.-L.
Guillaume. Stable community cores in complex
networks. In Studies in Computational Intelligence.
Springer, 2012.

[15] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and
R. Schult. Monic: modeling and monitoring cluster
transitions. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 706–711. ACM, 2006.

WWW 2012 – MSND'12 Workshop April 16–20, 2012, Lyon, France

1180

