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ABSTRACT

Removing redundant content is an important data process-
ing operation in search engines and other web applications.
An offline approach can be important for reducing the en-
gine’s cost, but it is challenging to scale such an approach for
a large data set which is updated continuously. This paper
discusses our experience in developing a scalable approach
with parallel clustering that detects and removes near dupli-
cates incrementally when processing billions of web pages.
It presents a multidimensional mapping to balance the load
among multiple machines. It further describes several ap-
proximation techniques to efficiently manage distributed du-
plicate groups with transitive relationship. The experimen-
tal results evaluate the efficiency and accuracy of the incre-
mental clustering, assess the effectiveness of the multidimen-
sional mapping, and demonstrate the impact on online cost
reduction and search quality.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval |: Search Pro-

cess, Clustering; H.3.4 [Systems and Software]: Distributed

Systems

General Terms

Parallel Algorithms, Performance

Keywords

Parallel Near Duplicate Analysis, Incremental Computing,
Scalability

1. INTRODUCTION

A large portion of pages crawled from the web have sim-
ilar content. Detection of redundant content is an impor-
tant data processing operation which facilitates the removal
of near duplicates and mirrors, and also other low quality
content such as spam and dead pages in search and web
mining applications. Duplicate comparison algorithms have
been studied extensively in previous work [5, 17, 6, 13, 8,
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15, 21]. Since the precision requirement is high for remov-
ing redundant content in a production search engine, it is
time consuming to use a combination of these comparison
algorithms and conduct accurate computation for billions of
documents in an offline system. As a web data collection
is updated continuously, it is even challenging to keep an
accurate and consistent view of near duplicate relations.

Major search engine companies have often taken a com-
promised approach: while a relatively small percentage of
duplicates can be removed conservatively in the offline pro-
cess, a large portion of duplicates are kept in a live online
database. Duplicates are detected and removed during on-
line query processing among those matched results. Such
an approach simplifies offline processing, but increases the
cost of online serving. From the cost saving perspective, it is
attractive to reduce and balance online and offline expense
because online expense is often proportional to the amount
of traffic. Cost reduction is important for companies in de-
veloping cost-conscious search applications.

This paper discusses our experience in developing scalable
offline techniques for removing a large amount of redundant
content and provides evaluation results on their effective-
ness. It addresses two technical issues arising in such a set-
ting. First, we study the balancing of distributed workload
on parallel machines by partitioning offline data. We use
document lengths to guide data mapping which helps in the
elimination of unnecessary machine communication for page
comparisons. Because web document length distribution is
highly skewed, we have developed a multidimensional map-
ping scheme to optimize load balancing and improve the
overall data processing throughput during parallel compar-
isons. Second, because it is easier and less expensive to
manage a cluster of duplicates instead of pair-wise duplicate
pairs, the design of our scheme uses a clustering approach
with incremental update and transitive approximation. We
present our experimental results to demonstrate the effec-
tiveness of our scheme and the impact on cost saving and
search quality.

The rest of this paper is organized as follows. Section 2
discusses some background and related work. Section 3 dis-
cusses our overall design considerations. Section 4 presents
the multi-dimensional mapping. Section 5 discusses incre-
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2. BACKGROUND AND RELATED WORK

Search services need to return the most relevant answers
to a query and presenting identical or near-identical results
leads to bad user experience. By removing duplicates, search
result presentation would be more compact, and save users’
time to browse results. Pair-wise comparison algorithms for
duplicate detection have been studied extensively in previ-
ous works [5, 17, 6, 13, 8, 15, 21].

In general duplicate removal can be conducted in an online
result displaying stage or in an offline processing stage. An
offline data processing pipeline includes 1) a crawling system
which continuously spiders pages from the web, 2) and an
online data generation system that parses crawled pages and
produces an inverted index for the online system to search.
Duplicate detection and other data processing subsystems
assist the main pipeline processing. The processing in the
main pipeline is continuous as existing pages need to be
refreshed to catch up with the updated content and new
web pages need to be included as soon as possible.

Removing redundant content in an offline system requires
a very high precision in duplicate judgment. Fast approxi-
mation algorithms [5, 17, 6, 8, 15, 21] are often not sufficient
to simultaneously deliver high precision and high recall. A
combination of these algorithms and increasing the scope of
feature sampling with additional features can improve pre-
cision (e.g. [13]). This increases processing cost, especially
for conducting accurate comparison with billions of pages.
Accurate offline duplicate analysis with both high precision
and recall can become a processing bottleneck and affect the
freshness of online index. As a result, major search engines
often resort to online duplicate elimination. In this online
process, duplicates are detected among top results matching
a query and only one result from duplicate pages is shown in
the final search results. The disadvantage of delaying dupli-
cate removal to the online process is that duplicates appear
in the live index, which increases the serving cost. Several
previous studies [10, 4] indicate that there are over 30% of
near duplicates in crawled pages. Our experience shows that
a significant engine cost saving can be achieved by removing
these duplicates as we discuss in Section 6.

A related area in the database field is to study a simi-
larity join operation which finds all pairs of objects whose
similarity exceeds a given threshold. An algorithmic chal-
lenge is how to perform the similarity join in an efficient
and scalable way. LSH [11] based approximation has been
used to map pages with similar signatures into the same
partition. Another study by Arasu et al. [2] shows that
exact algorithms can still deliver performance competitive
to LSH when using several candidate pair filtering methods
including inverted index-based methods [20]. Additional fil-
tering methods proposed are based on prefix and thresholds
by Bayardo et al. [3] and Xiao et al. [23]. Other related
work is sentence-level duplicate detection among web pages
studied in Zhang et al. [24] with MapReduce [9]. MapRe-
duce for parallel implementation is discussed in Lin [16] for
top-k similarity computation and demonstrated by Wang
et al. [22] for duplicate detection. The work by Peng and
Dabek [19] presents systems support for incremental page
processing using distributed transactions and notifications.
Duplicate detection is accomplished through key lookup us-
ing content hash of pages or redirection targets. This tech-
nique is effective for handling exact duplicates, but is not
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targeted for similarity and near duplicate detection where
complex all-to-all comparison is needed.

It should be mentioned that there are two types of dupli-
cates among web pages: 1) Content-based duplicates where
two web pages have near-identical content. This is measured
by the percentage of content overlapping between the two
pages. 2) Redirection-based duplicates when one web page
redirects to another, either through permanent or tempo-
rary HTTP redirect. Although the source and destination
of redirection have identical contents, the crawler may visit
them at different times and download different content ver-
sions. For two pages ¢1 and g2, they are considered dupli-
cates or near-duplicates if a pair-wise duplicate detection
function F(q1,q2) is true or if two pages redirect to each
other through a sequence of redirection. For content-based
duplicates, the similarity function between two pages ¢1 and
g2 is defined as Sim(qi1, g2). Let 7 be the control threshold of
near-duplicate similarity, F'(q1, g2) is true if Sim(q1,q2) > 7.
The primary metric for computing Sim(q1, ¢2) in the pre-
vious work [5, 17, 6, 13, 21] has been the Jaccard formula
while the Cosine formula can also be a choice [12, 15].

3. DESIGN CONSIDERATIONS

Our task is to shift the most of duplicate removal opera-
tions from the online engine to offline processing. The key
saving is that the online service does not need to host an
index with duplicated documents and an online engine can
collect more candidate results without duplicates in match-
ing a query when there is a limitation on the total number of
candidates selected. In this way, an online mult-tier serving
architecture can become more effective. We discuss evalua-
tion results in Section 6.

For offline near duplicate removal from a large dataset, we
first study parallelism optimization for task and data map-
ping to improve load balancing and reduce communication.
We assume exact duplicates are removed first in the offline
data processing using techniques such as representing each
page using one hash signature [19].

Our objective is to add an offline service with the following
functionality: given a set of newly crawled pages, this service
answers if a page is a duplicate of others or not. The result
of such a query is advisory in the sense that a page may be
indexed and delivered to the live online database before its
duplicate status is determined and in that case, the system
can decide if such a page should be removed from the online
database or not. In this way, the duplicate analysis does not
become a bottleneck for the main pipeline in delivering fresh
documents to the online database. On the other hand, this
duplicate analysis service needs to have a high throughput
so that the offline system can notify the duplicate status of
a page as soon as possible.

The focus of our optimization to improve the overall through-
put of an offline parallel near duplicate service is in two as-
pects: 1) data partitioning for load balancing; 2) distributed
duplicate information management and incremental update.
We will discuss these two issues in Sections 4 and 5.

4. LOAD BALANCING WITH MULTIDIME-
NATIONAL PARTITIONING

The duplicate service uses a pair-wise algorithm for iden-
tifying duplicate pairs. Since many web pages do not change
for a long period of time, we only compare a set of new or
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Figure 1: Size distribution for a web page collection.
The X-axis lists the page size ranged from 20 to 1686
words. The Y-axis is the number of pages with each
particular size.

updated pages with existing pages. In using a cluster of ma-
chines for a many-to-all comparison service, we need to map
data and computation to each machine.

We choose to use page based mapping which assigns each
page to one partition and assign one or few partitions to
a physical machine. Another option for machine mapping
is to use a fingerprint hash value based on shingling[4] or
LSH [11]. There are two reasons we did not use the later
mapping. First, such a method maps a page to multiple val-
ues and similarity computation counts the match over multi-
ple fingerprint computing functions for each page pair, which
increases inter-machine communications for result aggrega-
tion. Such overhead is significant considering the number of
near duplicate pairs is huge. Second, to deliver a high ac-
curacy and recall in near duplicate detection, a combination
of multiple methods with different types of features [13,
12] is needed in practice. For example, Henzinger [13] re-
ported 38% precision for the shingling algorithm by Broder
et al. [5] and 50% precision for Simhash by Charikar [6] and
a combined algorithm achieves 79% precision. Ask.com has
combined multiple pairwise comparison heuristics with vari-
ous features to reach high precision and high recall for offline
duplicate removal. Thus, it is not easy to map documents
to machines using a shingling or LSH based mapping.

We have the following design objectives for data and com-
putation mapping. 1) Pages assigned to different machines
should be less likely to be near duplicates so that we send
a new or updated page to least numbers of machines for
comparisons. 2) The number of pages assigned to each ma-
chine should be about the same. This helps load balanc-
ing of comparison computation because load generated on
each machine is approximately proportional to the number
of pages assigned. 3) As page content changes, page-to-
machine mapping may need to be changed. The algorithm
should minimize the chance of remapping as this causes an
overhead in data migration and service disruption.

We consider to use the page length to guide the map-
ping of data to machines. For similarity join, Arasu et al.
[2] describes the use of feature set size for dividing a gen-
eral similarity join instance by observing that two sets have
similar sizes if they have high Jaccard similarity. For near
duplicate detection on a single machine, Theobald et al. [21]
described a condition using the length of signatures to iden-
tify pages that cannot be duplicates. Motivated by such
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Figure 2: Examples of mapping a page with a 2D
length vector to partitions.

approaches, we initially have used the page length to map
documents. Our experiments find that one dimensional data
mapping based on the length of pages does not balance the
computations well across machines as web document length
distribution is highly skewed. Also it is not easy for ma-
chine load balancing to adapt to page length change. Fig-
ure 1 shows the sampled size distribution of 2 million pages
randomly selected from a 100 million page dataset. The X-
axis is the size value from 20 to 1686 words, and the Y-axis
is the number of pages in the corresponding page size. The
size distribution has certain spikes and high concentration at
sizes around 237. With a skewed distribution of web page
lengths, there are some partitions containing an excessive
amount of pages, which becomes a throughput bottleneck.
Often, one heavily-loaded partition has much more pages,
which significantly slows down the overall throughput of a
many-to-all comparison service.

4.1 A multidimensional mapping algorithm

We have developed a multi-dimensional algorithm that
maps data to machines with better load balancing while as-
signing dissimilar pages to different partitions as much as
possible. For simplicity of presentation, we first assume each
machine hosts one partition. When there are larger numbers
of partitions, we can evenly map partitions to machines.

This algorithm uses a combination of language and multi-
dimensional signatures to partition web pages. It first par-
titions pages with respect to their languages (this paper as-
sumes to deal with English documents only). It segments an
English dictionary into N disjoint subsets, and then splits
each page document into N subdocuments. Each subdocu-
ment only uses words in the corresponding dictionary sub-
set and has a feature length computed only based on these
words. Therefore, we can obtain IV length features for each
page, one for each dimension. Next, we describe how to
partition each dimension.

e We slice and divide values at each dimension 7 into
d; intervals. The slicing method is discussed in the
next subsection. We define a length range of N di-
mensions as a tuple containing a specific interval for
each dimension. The total number of N-dimensional
ranges is d1 X dz - - - Xdn. Each partition contains pages
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whose length vectors within a specific N-dimensional
range. For example, in a 2-dimensional setting illus-
trated in Figure 2, assume that each dimension is di-
vided into two intervals [0,300) and [300,00]. There
are 4 ranges: ([0,300), [0,300)), ([0,300), [300,c0)),
([300, 0), [0, 300)), and ([300, c0), [300,c0)). Thus, we
can create 4 corresponding partitions and every page
will be mapped to one of them.

When receiving a new or updated page, an N-dimension
length vector for this page (called A) is computed,
and this page will be further sent to machines that
host partitions with pages possibly similar to A. We
would like to send this page to the least possible num-
ber of partitions for comparison. For the example in
Fig. 2, when A = (100,500) with threshold 7 = 0.9,
only one partition containing length range ([0, 300),
[300,0)) is contacted for further duplicate compari-
son. If A = (280,500), then two partitions with ranges
([0,300), [300,0)), ([300,00), [300,00)) will be con-
tacted.

Formally, let A* denote a set of k-gram shingle sig-
natures derived from a page feature vector A. let
A} denote the subdocument in the i-th dimension of
Al and let L(A}) be the length of subdocument A}.
Notice that this length function is the summation of
frequencies of all words appearing in this subdocu-
ment. Let vector (L(A}), L(A3),---,L(AY)) be an N-
dimensional length vector of this document. We can
show that only documents whose length vectors fall
into a bounding space with the following i-th dimen-
sion range might be candidates of being near duplicates
to A:

L(ADT  L(ADp

(FET, 22 M

where p is an interval enlarging factor defined in the
next subsection.

Thus feature vector A only needs to be sent to ma-
chines that host partitions with ranges intersecting
with the above bounding space. Namely only those
partitions can contain pages which may be near dupli-
cates of A and a justification is provided below.

4.2 Similarity analysis

We analyze partitions that should be compared when iden-
tifying near duplicates of a page with feature vector A. We
use the Jaccard similarity of two pages represented by con-
secutive k-gram shingles as defined by Broder et al. [5, 4].
Let |A¥| be the set size which only counts its unique mem-
bers. In computing k-gram shingles of a page, we append
k — 1 dummy words at the end of this document. When k
is not too small, our experiments show that L(A') is rela-
tively close to |A*| and let e be the relative difference ratio

NELRP S T
L(AL) = :
There is a small length variation § in distributing words

in page A into N subdocuments. Namely

L(AY)
| N« L(A})

between these two terms satisfying 1 —e <

1<

(14+8)(1+¢)

We define the interval enlarging factor p = (e
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For another existing page B = (B1,Ba, -,
does not fall in the range defined in Expression
exists dimension ¢ such that

1
) < L(A)T

= I

B;) which
(1), there

L(AD)p

T

L(B} or L(B}) >

(2)

Note that the Jaccard similarity of these two pages with
respect to k-grams is
|A* N B¥|

Given the above terminology, we show that A and B
A¥| |B|

cannot be duplicate. Since % and gy are within
[1—¢€14¢, and
|A* 0 B¥| (IAI“\ IB'“I)
|A* U BF| | B[ [AF]
we have
. . |AF| | B . L(AY) L(BY) 14¢
< < .
Sim(A, B) < nlln(IBk'7 |Ak\) < mm(L(Bl)’ L(Al))l —

Thus, we can work on a multidimensional condition that
operates on unigrams. In our scheme, A is divided into N
subdocuments under N sub-dictionaries and each of them
produces a unigram signature set A, AL, ..., AL respec-
tively. The distribution satisfies the following inequalities

(1—68)N * L(A}) < L(A") < (14 8)N % L(A})
and
(1—6)N * L(B}) < L(B") < (14 6)N % L(B;}).
From the above two inequalities, we have

L(AY) L(BY) L(Ai) L(Bi)
L(B')" L(AY) L(B})’ L(A})

)1+6
1-46°

min(

) < min(

Based on condition (2),

. L(A}) L(BH, T
mnCE B Tan) = o
Thus,
. L(AY) L(BY 1—e
min( oy Tan) S TTxe

Hence the Jaccard similarity of these two pages with respect
to k-grams satisfies Sim(A, B) < 7. Namely A and B can-
not be a near duplicate pair.

The interval enlarging factor p is estimated from compu-
tation of 0 and €, which are sampled in our implementa-
tion with an approximation. Since the above analysis be-
tween vectors A and B uses worst-case bounds in inequality
derivation, there is a room to tighten p while still preserv-
ing the correctness approximately. We have tested a p value
between 1 and 1.3 and the above approximation may cause
some partitions not to receive pages to compare and this can
reduce duplicate recall. We evaluate its impact on accuracy
in Section 6.

4.3 Dimension slicing and partition mapping

We discuss how each dimension is sliced. For a 1D size
space, we first consider SpotSigs’ partitioning strategy [21]
which scans size values of all pages from smallest to biggest
and merge consecutive values to produce d intervals with the
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left bounds as p1, p2, - - - pa and those values satisfy pi’l <T.
For example, given a size list: 1, 2, 3,4, 5, 6, 7, 8, 9, and
10 with 7 = 0.8, the following intervals are produced: [1,2),
12,3), [3,4),[4,6), [6,8), [8,10]. We call these intervals fine-
grain intervals.

Next we consider page distribution under the above fine-
grain interval and merge them into coarse-grain intervals so
that the number of pages in each coarse-grain interval is
about the same. Given k fine-grain intervals, we consecu-
tively consolidate some of these intervals with their neigh-
bors and map them to targeted S intervals so that each
interval has close to M/S pages where M is the total of
documents to be mapped. For example, given a page distri-
bution 2, 3, 4, 5, 2, and 1 for the following fine-grain intervals
[1,2), [2,3), [3,4),[4,6), [6,8), [8,10], respectively. To produce
4 balanced intervals, we have [1,3), [3,4),[4,6), [6,10] so that
5, 4, 5, and 3 pages are distributed into each interval re-
spectively. If the original page distribution is 2, 3, 4, 10, 2,
and 1 for six fine-grain intervals, then the merged intervals
have the following distribution 5, 4, 10, and 3. This exam-
ple also illustrates that it is not easy to balance a skewed
distribution using a 1D mapping.

For an N size space, we apply the above 1D slicing and
merging method at each dimension to balance page distri-
bution at each interval. Multidimensional mapping is more
effective in dealing with distribution spikes compared to 1D
as the 1D page size is approximately divided by N at each
dimension. When the data set is updated and expanded, the
multi-dimensional mapping is less sensitive to size variation.

S. DUPLICATE CLUSTERING AND INCRE-
MENTAL UPDATE

Once duplicate pairs are detected, the offline system keeps
the winners of duplicates in the online database and remove
the losers. Winners are pages that need to be kept in the fi-
nal database while losers are pages that need to be removed.
There are a number of page features that can be used for
winner selection. For example, pages with a high link popu-
larity or frequently clicked in the search logs may be selected.
Such features are used in the query result ranking [18, 14, 7,
1]. When the popularity score of pages is about the same,
URLs with a long length may be less preferred compared
to a shorter one and a dynamic page may be less preferred
compared to a static URL. When pages are selected for a
different market, there could be additional rules imposed.
For example, a database produced for the United Kingdom
may prefer hosts ended with .uk domain instead of .com or
.org.

It is not easy to apply the above rules to duplicate pairs.
There are two reasons. 1) We often cannot get a consis-
tent or stable winner selection among duplicate pairs. Some
pages are initially considered as losers and can become win-
ners later on. For example, with two pairs of duplicates
(z,2), (z,y), if page x is the winner for the first pair, and
it is a loser for the second pair, then both x and y will be
kept. 2) When a winner becomes dead, we would need to
revisit its losers quickly and find a replacement for this win-
ner from these losers. Storing all duplicate pairs explicitly
is expensive as there are a huge number of duplicate pairs.

Given the above considerations, we choose to cluster du-
plicates in a transitive relationship, that simplifies duplicate
data management. Each page either does not have any du-
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Figure 3: Two-tier architecture for incremental du-
plicate clustering with continuous data update.

plicate or belongs to one and only one duplicate group. Two
duplicate groups are merged if there exists a duplicate pair
between one page from the first group and another page from
the second group. When answering a query on the duplicate
status of a page, if this page is a loser in a group, the sys-
tem verifies its similarity threshold with the group winner
to ensure detection precision.

This has three advantages. 1) Winner selection is always
conducted in a group of pages, which yields a relatively sta-
ble selection compared to a pair-wise manner. Once dupli-
cate groups are detected, a database generation scheme can
conduct winner selection and use the selected winners to
produce different online databases for different search mar-
kets. 2) Space cost for storing such duplicate groups has an
affordable linear complexity, proportional to the number of
pages. 3) Clustering also allows a simpler integration with
incremental computing. If content of a page is changed, the
previously computed duplicate status regarding this page
may not be valid any more. We can revise the previously
detected groups incrementally.

5.1 Distributed Group Management and In-
formation Serving

We discuss how duplicate groups are constructed and up-
dated as pages are added or updated to an offline data col-
lection. Given a set of pages recently updated or added, we
need to identify if they belong to existing duplicate groups,
or form new duplicate groups. As shown in Figure 3, we use
a two-tier scheme to detect and maintain duplicate group
membership as data is being updated.

e Tier 1 service is to manage duplicate groups detected
previously from all pages in the database and use such
information without performing extensive comparisons
to answer if a page is a duplicate of others or not.
There are a large number of duplicate groups to be
managed in Tier 1. We can distribute those groups
to a large number of machines so that each machine
is responsible for a subset of duplicate groups. Such
a cluster can quickly answer if a page belongs to an
existing duplicate group or not.

Tier 1 service examines if given page ¢1 has an existing
duplicate group. If ¢1’s content has not been changed
much, then the system can make a decision of whether
this page should still stay within this group without
going through a full comparison with other pages. To
facilitate this, we use a group representative signature
vector R to model the content characteristic of this
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group. An updated page ¢ stays within this group if
F(q1, R) is true.

This representative signature is normally the signa-
ture of the winner page in the group because such a
page tends to be more stable to stay within the group.
When a winner page has a content change, we will up-
date the representative signature. We don’t use feature
aggregation such as a centroid of all signature vectors
to represent a group. That is because it is more mean-
ingful to assess the impact over the relevancy when
using this winner to represent other losers in the on-
line search results. Since this winner will be in the live
index. Besides, it also allows us to impose a strict rule
to double check the winner’s signature with a loser and
reduce error caused by transitive clustering.

When there is no existing duplicate groups found for
a given page qi, or page content of ¢g; has been changed
significantly and it does not belong to its current group,
then this page needs to be compared with other pages.
We defer this operation to tier 2 detection service.

Tier 2 conducts a sequence of many-to-all comparisons
or all-to-all comparisons if needed to derive duplicate
information that Tier 1 does not have. This process
repeats while more data is being sent to the duplicate
service for processing. It accumulates a set of new
or updated pages sent from Tier 1 when tier 1 can-
not make a decision which group pages should belong
to as discussed above. If a duplicate of a page ¢i is
found through Tier 2 service, then Tier 1 updates its
duplicate groups by letting ¢1 join the newly-detected
group. If no duplicates of g1 are found, ¢1 forms a
new group which only contains one member. This tier
can use the multi-dimensional partitioning and map-
ping algorithm discussed in Section 4. The reason that
Tier 2 accumulates a set of pages before starting the
comparison is to reduce the excessive overhead such
as I/O in loading signatures of other pages from the
secondary storage to memory.

When pages are updated, duplicate groups among them
need be updated too. We describe group splitting and merg-
ing rules to maintain content-based and redirection-based
duplicates as follows. Given a page ¢1 crawled and added to
the database at time ¢, there are three cases to handle.

e Case 1: ¢ is an existing page with the updated content
and page g1 does not redirect to another page. Let
current duplicate group of ¢1 be g1, detected before
time t.

If g1 is found to be a duplicate of another page ¢2 in
group g2 through Tier 2 service after time ¢, then ¢
needs to be removed from g; and added to group go.
Other pages that redirects to g1 in the current group
g1 should also be moved to ga.

If g1 is not a duplicate of any existing page, then ¢i
forms a new group along with any other known pages
that redirect to ¢q1. For those pages in g1 that redirect
to q1, they need to be moved out and join this new
group.

e Case 2: page g1 does not redirect to another page, and
q1 is a new page.
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If ¢1 is found to be a duplicate of an existing page ¢
after time ¢ through Tier 2 service, then ¢; is added to
the current group of gs.

If g1 is not a duplicate of any existing page, then ¢i
forms a new singleton group.

e Case 3: page ¢1 redirects to another page ¢ directly or
indirectly through multiple levels. g1 = g2 — -+ = ¢
where ¢; has the real content. We apply the same rules
as described in Case 1 and Case 2 for ¢; to identify the
group that ¢: should join. In addition to this, any page
that redirects to page q; (directly or indirectly) need
to be moved to the new group of g;.

5.2 Tradeoff of Performance with Accuracy

Clustering and distributed duplicate data management
improves performance, but plays a tradeoff for accuracy. We
discuss the impact of these techniques on accuracy and ad-
ditional techniques used to reduce error. Two types of error
are discussed. A “relative error in precision” occurs in cases
when a pair of pages is classified as duplicate by our scheme
while the baseline disagrees. A “relative error in recall” oc-
curs in cases when a duplicate pair identified by the baseline
algorithm is not detected in this two-tier scheme.

e Transitive clustering. Pages clustered by transitive
relationship carries an approximation that affects de-
tection precision while it could improve the duplicate
recall.

e Distributed duplicate group management.

— Group splitting. When a duplicate group splits
according to the above design, the algorithm does
not recompute the duplicate relationship within
each divided group and sometime it may create a
false positive. Specifically, when F(q1,¢2) is true
and F(q2,q3) is true before time ¢, all of these
three pages are in one group. If content of g2
changes after t and it is moved out from the group,
pages ¢1 and g3 still stay as one group after time

t even there does not exist any page in this group
to connect ¢1 and g3 transitively.

— Similarity with group representatives. We
compute the similarity with group representatives
to reconfirm the group membership of a page with
small content change. That speeds up processing,
but can affect precision and recall. We discuss
two cases as follows. 1) There are two pages qi
and g3 such that F(q1,q2) and F(g2,q3) are true
before time t. After time ¢, the new version of ¢z is
similar to the group representative, but there is no
page to bridge the duplicate relation of ¢; and g3
transitively. 2) Also since the new version of page
q2 is found to be close to the group representative
signature in Tier 1, Tier 2 comparison is skipped.
However, there can exist pages stored in Tier 2
machines which are near duplicate to this new
version of ga.

e Content update latency. The detection scheme re-

lies on page features to conduct comparison. Given a
distributed architecture, there is a latency for receiv-
ing the latest version while the comparison tasks are
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conducted concurrently and continuously. Thus the
staleness of page content due to update latency causes
a certain degree of precision and recall loss.

The loss of duplicate recall only affects the scope of cost
reduction in the online engine because online duplicate re-
moval is still available. It is not critical for our goal as long
as the percentage of recall loss is small. The impact of pre-
cision loss can be significant to engine’s relevancy.

We have used two strategies to retain detection precision.
1) This duplication processing service is mainly used when
the offline indexing pipeline asks for the duplicate status
update of pages after they are recrawled or discovered. Thus
the system verifies again the similarity of a queried page with
its group winner. If the similarity falls below a threshold,
we will not report this page to be a duplicate of this winner.
2) When there is a significant number of reports indicating
member’s dis-similarity with the winner within a group, this
group needs to be repaired. One way is to recompute the
duplicate membership of this group. With these strategies,
our experience is that the above verification process rejects
less than 8% of clustered near duplicate pairs and the cost
of repairing duplicate groups is small in terms of frequency
and time. Thus these clustered near duplicates which satisfy
the required similarity threshold compared to winners can
be removed in offline.

6. EVALUATIONS

Our evaluation has the following objectives. 1) Demon-
strate the usefulness of incremental computation and the
effectiveness of using representative group signatures in sav-
ing computation cost. 2) Examine the impact of load bal-
ancing and compare 1D, 2D, and 3D mappings for parallel
comparisons, and demonstrate the speedup of the service
throughput as the number of machines increases. 3) Assess
the accuracy of the two-tier architecture, the overall impact
of aggressive offline duplicate elimination on the cost and
relevancy of the online search engine.

We have implemented an incremental offline duplicate han-
dling system with C++ at Ask.com’s platform and used it
for processing billions of web pages. This system uses a pair-
wise signature comparison algorithm developed internally
at Ask.com with multiple heuristics and a high threshold
to achieve high precision and recall rates. Because of the
high precision and recall requirement for offline duplicate
removal, an earlier implementation of all-to-all comparison
based on this pairwise algorithm is time consuming and has
become a bottleneck for the data processing pipeline. The
use of this incremental solution with the optimized mapping
and balancing scheme speeds up the overall data process-
ing by one order of magnitude. Clustered duplicate groups
are also used for various purposes including page selection
for online database for different markets, bad/spam page
removal, and crawling control. We discuss our experience
and evaluation results in this section. For the demonstra-
tion purpose, we have also used a subset of a data collection
crawled in three weeks with a size grown from 10 million
URLs to 100 million URLs. Some of those pages were re-
crawled several times during this period. The experiments
are conducted in a cluster of machines with dual-core Xeon
3GHz and 6G memory.
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6.1 Effectiveness of multi-dimensional mapping
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Figure 4: Load imbalance factor of 1D, 2D, and 3D
mapping when the number of machines varies from
2 to 64.

We assess the effectiveness of load balancing with 3D map-
ping as a dataset of 100 million pages is being updated. The
load imbalance factor is computed as the ratio of the max-
imum page numbers hosted in a machine over the average
number among all machines. Figure 4 shows load imbal-
ance factor of 1D, 2D and 3D mapping on the Y-axis with
a different number of machines on the X-axis. The rea-
son for 1D mapping has a higher load imbalance is that
the skewed size distribution caused a difficulty in assign-
ing pages evenly to partitions while satisfying the minimum
similarity overlapping condition. Both 2D and 3D mapping
can improve load balancing while 3D mapping gives more
flexibility and performance gains. As the number of desired
partitions (or machines) increases, the imbalance factor for
3D becomes relatively smaller than others. Increasing the
dimension number further does not offer significantly more
benefits and because of this reason, we have chosen 3D map-
ping for the production setting.
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Figure 5: Percentage of inter-machine communica-
tion reduced with 3D mapping.

Figure 5 shows communication saved with 3D mapping
and mapping. The X-axis is the number of machines and the
Y-axis is the percentage of reduction in terms of the num-
ber of web pages communicated using the 3D algorithm in
Section 4. To estimate communication saving, we compute
the total number of web pages that need to be exchanged
among machines and the total number of pages that need
not to be sent. With more machines, the communication
volume among machines increases for exchanging pages. 3D
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mapping considers partition dissimilarity and can still effec-
tively avoid unnecessary communication.

Figure 6 shows the throughput speedup ratio of a sin-
gle machine over a cluster setting with 2, 4, 8, 16, 32, 64
machines in processing parallel comparisons. In the single
machine setting, we record the maximum number of new or
updated pages it can handle per second for Tier 2 duplicate
comparisons. For each cluster setting, we record the overall
maximum number of new or updated pages it can handle
per second. The 3D scheme delivers much more speedup
than 1D scheme when the number of machines increases and
the 1D scheme faces more challenges in balancing workload
and thus overloaded machines slowdown the entire system
throughput significantly. For the case of 64 machines, the
throughput with 3D mapping is 3.3 times faster than 1D.
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Figure 6: Speedup of processing throughput when
the number of tier 2 machines increases from 2 to
64 for parallel comparisons.

3D mapping also has an advantage in adapting to page size
variation as the database content changes. Because mapping
of partitions to machines is based on the sampled data, we
compute the coefficient of variation (CV) of load imbalance
factors when datasets change. As an example, we use ten dif-
ferent datasets after initial mapping is determined through
a training dataset. CV is defined as the standard deviation
divided by the mean value of load imbalance factors. The
CV value is 4.5% for 1D mapping while it is 0.29% for 3D
mapping. Thus in addition to having a better load balance,
3D mapping can be less sensitive to size variation when con-
tent of a data collection changes.

6.2 Effectiveness of incremental computation

Figure 7 shows the processing time ratio of our incremen-
tal detection method over a non-incremental detection ap-
proach in a single server when a data collection hosted in-
creases from 0 to about 100 million URLs on 50 machines. X
axis is the time when the duplicate detection time is recorded
in comparing two approaches. Initially, the machine has a
very small data collection, the per-page response time in de-
tecting its duplicates non-incrementally is smaller than the
one with an incremental approach. Then the ratio in Y axis
is less than 1. As the database increases, it takes a longer
time to conduct comparison from scratch and thus per-page
response time using a non-incremental method is slower than
the incremental version. Thus the ratio in Y axis starts to
exceed 1 and reach a 24-fold improvement at the end.

Figure 8 illustrates the usefulness of incorporating rep-
resentative group signatures in tier-1 groups, which avoids

110

April 16-20, 2012, Lyon, France

20
18
16
14
12

o N B O 0
4

0 500 1000 1500 2000 2500

Figure 7: Ratio of non-incremental duplicate detec-
tion time over incremental detection time when the
data collection size increases from 0 to 100 million
URLs.
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Figure 8: Percentages of updated pages with signa-
tures similar to representative group signatures.

certain comparison cost. In this experiment, we start with
30 million URLSs crawled in one week, and then examine an-
other 30 million URLs crawled one week later. There are
about 50% of URLSs overlapping between these two sets of
URLs. In processing the second set of URLSs, we record the
percentage of updated URLs that have signatures similar to
representative group signatures within the defined threshold
as near duplicates. Figure 8 shows the percentage of updated
URLSs similar to group signatures when the number of pages
processed in the second batch is 2.5, 5, 10, 15, 20, 25, and
30 millions, respectively. The result shows that around 30%
of updated URLs do not have a significant content change,
and are still similar to group signatures. The computation
for those URLs is localized within tier 1 and comparisons
with tier 2 datasets are skipped to save cost and improve
the tier-2 service throughput.

6.3 Accuracy of distributed duplicate cluster-
ing and group management

Next we compare detection error of our offline analysis
service distributed on a cluster of machines with a single
node non-parallel setting where the proposed approxima-
tion techniques are not applied. In this experiment, our
data collection was crawled in three weeks with a size grown
from 10 million URLs to 100 million URLs. Some of those
pages were recrawled several times during this period. To
establish a baseline performance, we run a centralized com-
parison among all 100 million pages to establish duplicate
groups using the Ask.com’s pairwise comparison procedure.
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Then we replay the trace of crawling to send these 100 mil-
lion pages gradually to a two-tier system. When the data
collection size reaches each milestone in 10 millions, 20 mil-
lions, 30 millions, 40 millions, 75 millions and 100 millions,
we measure the relative error in precision and recall com-
pared to the single-machine solution. Table 1 show relative
error rates in percentages when the dataset grew from 10
millions, 20 millions, and up to 100 millions. Three con-
figurations are tested with 12, 24, and 36 machines in Tier
2 respectively. The result shows that the accuracy impact
of the approximation techniques in the distributed design is
fairly small.

Table 1: Percentage of relative error in precision (REP)
and in recall (RER) in duplicate clustering. The number
of partitions (machines) is 12, 24, and 36.

| | 10M | 20M | 30M | 50M | 75M [ 100M

RED, 12 | 0.8% | 0.85% | 0.9% | 0.85% | 1% | 1.3%
RER, 12 | 1.5% | 1.55% | 1.6% | 1.67% | 1.6% | 1.65%
RED, 24 | 1.1% | 1.2% | 1.22% | 1.29% | 1.3% | 1.25%
RER, 24 | 1.6% | 1.64% | 1.59% | 1.68% | 1.7% | 1.74%
REP, 36 | 1.2% | 1.07% | 1.09% | 1.1% | 1.1% | 1.1%
RER, 36 | 1.7% | 1.7% | 1.65% | 1.69% | 1.7% | 1.7%

6.4 Impacts on relevancy and cost

While the use of this offline duplicate removal solution has
increased the overall index processing speed by an order of
magnitude, this scheme does not affect the freshness of the
search engine index. The freshness is measured in terms of
the latency from the time a URL is discovered to the time
this URL appears in the live index if it is not a duplicate.
This is because the offline pipeline queries the duplicate stat-
ues of newly crawled and updated pages, and continues to
send URLs to the live search engine without waiting for a
response from the duplicate analysis service. The pipeline
uses the previously developed results stored in the pipeline
for online database update. Once the new duplicate status
is received for a set of pages, the pipeline updates the stored
duplicate information.

A number of tests have been conducted to evaluate the
accuracy of offline page removal and the relevancy impact
to the queries. One experiment was to collect top 10 results
from other search engines such as Google for 400K queries in
an extended period. These top results are considered to be
non-duplicate to each other. To assess if our duplicate han-
dling system removed some of them by mistake, those top
URLs from other engines which are classified as a loser in
our system were identified and their corresponding winners
selected by our system were checked to see if duplicate rela-
tion is true or not. Dividing the number of incorrect loser-
winner pairs found by the total number of URLs examined
gives the error rate of duplicate judgment. The monitoring
result showed that the daily error rate of duplicate judgment
was from 0.017% to 0.028%. Many of the failed cases have
Javascript/flash content which is difficult to handle accu-
rately.

We assess the cost saving by shifting most of near dupli-
cate removal from online to offline. We compare the fol-
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Figure 9: The saving ratio of total machine cost with
a fixed QPS target when the database size changes.

lowing two schemes after the exact duplicates are removed
first:

e A) The offline system first uses a conservative scheme
to remove about 5% of all pages and the online scheme
removes additional duplicates among the top results in
answering a query.

B) The offline system with our approach removes near
duplicates as much as possible (about 33% of all pages)
and the online scheme removes the remaining dupli-
cates on the fly.

Figure 9 shows the percentage of total machine reduction
by scheme B compared to A in accomplishing the same on-
line traffic capacity, which is measured by the number of user
queries that can be handled per second. The x-axis is the
database size processed in the offline pipeline, which varies
from 3 billions to 8 billions. The Y-axis is the percentage
of machines reduced: (1 — Cost_B/Cost_A). Cost_A is the
online cost in terms of the number of machines. Cost_B
includes both online cost and the extra offline cost for the
added duplicate analysis service. There are four curves dis-
played with 4 different configurations and we explain them
in details as follows.

In this evaluation, the replication degree of the online sys-
tem is chosen as 2. The database for the online system is
managed in two tiers. The first online tier contains 1.4 bil-
lions (marked as T1.4) in one configuration and 2.5 billion
(marked as T2.5) in another configuration. The URLs in the
first online tier are searched for each query and the second
tier is searched only if the results matched from the first on-
line tier are not satisfactory in reaching an internal relevancy
score. The selection of online tier 1 data is based on an of-
fline assessment of URL quality such as web link popularity
(if there are other web pages pointing such pages) and click
popularity (if users have visited such a page). The chance
that a duplicate appears in the first online tier is smaller
than the second tier, however, there is still a significant per-
centage of duplicates in the first tier.

Figure 9 indicates that the overall cost saving varies from
8.2% to 25.6%. The total saving increases as the replication
of online machines increases to handle more traffic. There
are factors contributed this saving using scheme B. 1) Save
machines needed for hosting duplicates. Even the second
tier receives about 1/3 to 1/4 of total traffic, the total num-
ber of machines to host near duplicates in Scheme A is still
significantly more than B. 2) Answer more traffic using Tier
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1 machines. Because online tier 1 has less near duplicates,
tier 1 machines in Scheme B can host more unique con-
tent and can answer 5% to 10% more traffic, which in turns
saves machine budget in Tier 1. 3) Reduce communication
overhead for result collection and improve query handling
throughput of the online engine. Since matched candidates
in scheme B in answering a query contain more unique re-
sults, scheme B collects less matched candidates for ranking
from each individual machine compared to scheme A. That
significantly reduces communication usage and increases the
online engine throughput.

It should be noted that one may consider the reduction of
words or position information indexed to save cost. We do
not choose this option because of relevancy concerns.

7. CONCLUDING REMARKS

The contribution of this paper is to present our experience
in developing a large-scale offline duplicate removal system
for processing billions of pages updated continuously. Our
parallel clustering scheme is supported by a two-tier archi-
tecture for detecting and managing near duplicate groups
with incremental computing and multidimensional data map-
ping. Transitive approximation simplifies duplicate informa-
tion management, reduces storage space, and avoids certain
comparisons.

Our evaluation shows that removing redundant content
in an offline system significantly reduces the overall engine
cost while sustaining relevancy quality. Incremental update
of duplicate groups in this offline two-tier architecture with
several approximation techniques greatly speeds up com-
puting time and processing throughput. Multidimensional
mapping offers a flexibility in improving load balancing and
processing throughput efficiency.
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