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ABSTRACT

The foundation of almost all web sites' information architecture is
a hierarchical content organization. Thus information architects put
much effort in designing taxonomies that structure the content in a
comprehensible and sound way. The taxonomies are obvious to
human users from the site's system of main and sub menus. But
current methods of web structure mining are not able to extract
these central aspects of the information architecture. This is
because they cannot interpret the visual encoding to recognize
menus and their rank as humans do. In this paper we show that a
web site's main navigation system can not only be distinguished by
visual features but also by certain structural characteristics of the
HTML tree and the web graph. We have developed a reliable and
scalable solution that solves the problem of extracting menus for
mining the information architecture. The novel MenuMiner-
algorithm allows retrieving the original content organization of
large-scale web sites. These data are very valuable for many
applications, e.g. the presentation of search results. In an
experiment we applied the method for finding site boundaries
within a large domain. The evaluation showed that the method
reliably delivers menus and site boundaries where other current
approaches fail.

Categories and Subject Descriptors

H.5.4 [Information Systems]: Information Interfaces and
Presentation — Hypertext/Hypermedia; H.3.1 [Information
Systems]: Information Storage and Retrieval — Content Analysis
and Indexing

General Terms
Algorithms, Experimentation, Languages

Keywords
Web structure mining, Site boundaries, Site hierarchies, Search
result presentation

1. INTRODUCTION

Information architecture is crucial for the success of a web site.
Engineering the information architecture means labeling hundreds
or thousands of resources, organizing them with coherent schemas
and developing understandable systems for accessing them. The
technical model of content organization are database schemas
while the human model is the information architecture.
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Information architecture is a way of communication. This is
because users must be able to decode the information architecture
in order to interact with the information system in the intended
way.

Decoding the information architecture means that humans are able
to understand content hierarchies, to distinguish navigation
elements from page content and to learn the purpose of navigation
systems. We can recognize entry pages of web sites and we notice
if we cross site boundaries. Because of the visual encoding these
structures are obvious to humans but not to machines. If a site
contains a reasonable number of pages it is usually not very
complicated for an average human to model the site map but it is
so for machines, even for Google]. For a site map to be included in
the search result presentation the site map has to be provided to
Google as XML-file. Displaying the position of a page in the
content hierarchy is supported by Google (Figure 1), but it works
currently only for a small amount of destination pages that contain
a similar presentation (“breadcrumbs™), which can be extracted”.

HTML & CSS - W3C
www.w3.org » Standards » Web Design and Applications =

HTML provides the structure of the page, CSS the (visual and aural) lay
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Figure 1. Google is able to display the position in the content
hierarchy only for a few pages.

Though research has focused on extracting hierarchies from web
sites (e.g. [11,[2],[3]), no solution has been found yet that could
compete with human judgment. The same applies for the problem
of mining web site boundaries or subsites (e.g. [4], [5]), site entry
pages [5] or compound documents [6]. There still is a semantic gap
between information architecture as perceived by humans and
structure information that can be retrieved by current approaches.
The seemingly simple problem of extracting the main navigation
elements of a site for reverse engineering the information
architecture is hard to solve in practice. The straightforward
approach of using heuristics for identifying the menus on all pages
of a site and then combining frequent structures is difficult and
error-prone [7]. Thus up until now very valuable semantic
information is not available for machine processing. The
hierarchical content organization of a web site is a human-made,
well-designed classification scheme for each page. Mining these
taxonomies would not only allow a search result representation as
shown in Figure 1 for all sites. For example, it would also allow
visualizing all results from a certain site as tree structure. The

1 . . .
Some tools exist to automatically generate sitemaps (e.g.
http://www.powermapper.com), but the quality of the results strongly
depends on the examined site

% The Official Google Blog: New site hierarchies display in search
results, http://googleblog.blogspot.com/2009/1 1/new-site-hierarchies-
display-in-search.html
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original site hierarchy can also be used to improve ranking, e.g. if a
search returns many hits from a certain branch of a site hierarchy,
the item at the root of the branch should be ranked first. A method
for mining the original content hierarchy of web sites will also
open new doors in research topics as web site abstraction and
classification, information architecture reverse-engineering and
automated usability testing. As a first application we demonstrate
how the problem of web site boundary detection can be solved by
using the MenuMiner-approach.

2. CONTRIBUTION

In this paper we show how the global and local menus that
represent the central concept of content access and the main
hierarchical structure of web sites can be mined. To our knowledge
until now no other method exists that solves this problem well
enough that the data can be used, e.g. for the presentation of search
results. The presented approach of analyzing maximal cliques for
mining menu systems is a novel and applicable solution that is
highly accurate and not prone to spam. It scales and the time
complexity is linear in the number of processed pages.

As first application we used the algorithm to solve a known
problem of web site structure mining: the detection of site
boundaries ([4],[5]). We used the algorithm to find site boundaries
in a collection of 10,000 pages retrieved from a large domain. A
method for manually validating and comparing site partitions is
described. The evaluation showed that the site boundaries
delivered by the MenuMiner-algorithm are much more precise than
the hierarchy contained in the URLs (subdomains and folders) and
those retrieved with clustering methods that performed best in a
previous experiment [4]. But the central finding is that the
MenuMiner-method extracts the main menus that distinguish sites
exactly as perceived by humans. In the evaluation section we also
point out by examples how the method described in this paper can
solve other problems of web site structure mining such as
hierarchy extraction, compound document mining and entry page
detection.

3. PROBLEM DEFINITION AND
APPROACH

The original content organization of web sites as perceived by
humans cannot be extracted today because a reliable method for
mining menu systems is lacking. This involves a method to
distinguish main or sub menus from other page content and a
method to identify recurring menus that are shared by a site or sub
section.

3.1 Mining Shared Menus

The straightforward approach is to first split all pages into smaller
content segments and to identify segments that represent
navigation elements. Then an inter-page analysis can be conducted
to find recurring navigation elements that are shared by a set of
pages. That is basically the method used in current works that
involve the mining of navigation elements (cf. Sect. 7). Our
previous work on this topic [7] was based on the same approach.
We used an extended set of heuristics to identify navigation
elements and conducted an experimental evaluation that was
lacking before. Although this method was able to detect most of
the shared menus correctly we found that it has inherent limitations
that prevent a really satisfying precision. The problem is that the
intra-page analysis is prone to errors if the page segmentation does
not precisely reflect the bounds of individual menus and sub
menus. Consider the example in Figure 9. The same menu has

April 16-20, 2012, Lyon, France

additional items (“Samples”, “Forums”) on the page “Home” that
are missing on the page “Library”. By comparing simply the
hyperlinks in navigation bars both elements could not be matched.
A case like this is not a rare exception but a rather common
situation.

Thus a better approach is to compute the percentage of shared
hyperlinks and applying a threshold. Rodrigues et al. [8] used a
threshold of 0.6 while we were using a threshold of 0.5 in
combination with two other metrics. But such a threshold leads to
the problem that often elements are matched that do not belong to
the same navigation system. Another problem is that sometimes a
menu can be distinguished from a submenu only by its visual
properties. Then even the most sophisticated algorithm will have
difficulties in providing the correct segmentation. With the
additional links of a submenu on one page that is not displayed on
another page the percentage of shared links can fall below any
threshold. Originally we were planning to apply machine learning
methods for adjusting the heuristics and improve the precision of
the method. Instead we found a different approach that completely
avoids the described problems.

Discover Buy

Jp Buy e

Discover
Opure Buy

-

Figure 2. S-menus define cliques in the web Graph. The bold
edges represent bidirectional links (example from
www.microsoft.com/windowsphone).

3.2 S-Menus

To avoid transitional volatility (cf. Sect. 6.2) the navigation
elements that play the key role for the content access are usually
invariable elements in page transitions. These global and local
menus allow not only navigating from one page to another but
navigating over a group of pages. By this we mean, that we can use
a single menu to traverse a group of pages. When we click on an
item in the menu and move to the next page the menu is still
present. According to [8] such menus will be referred to as
structural-menus or s-menus in this paper. Of course not all
navigation elements are s-menus. For example, a list of links
related to a certain resource or a group of external links do not
have the described characteristics. S-menus are the skeleton of the
information architecture of sites that are based on menus®. Because
of their invariability the function of s-menus is not only to provide
paths through the information space but also to communicate the
organization of the content. Thus s-menus are most suitable for
mining the organization of web sites.

3 Other sites are based on search. The MenuMiner-approach allows
distinguishing both types of sites as shown in Sect. 6.3
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The most common model of web structure mining is the web graph
whose vertices represent pages and whose edges are given by the
hyperlinks. As Rodrigues et al. [8] have observed before, s-menus
define cliques in the web graph — complete sub graphs in which
every two vertices are connected by an edge. This is because the
menu itself is also present on the linked pages. Figure 2 shows an
example where all pages that are linked in a menu contain the
menu itself and thus have links to the other three pages. Instead of
using a set of heuristics to identify navigation elements we propose
to mine page segments that form cliques in the Web graph.

While the figure only shows the four target pages of the menu, the
menu is present on many more pages. In general on almost all sites
the main menu is displayed on all pages. Conversely, s-menus
define the boundaries of the sites. Other s-menus that are present
only on a subset of the pages consequently represent sub sites.
Thus the inclusion relation on the sets of pages that share an s-
menu reproduces the hierarchical structure of a site.

3.3 Mining S-Menus by Analyzing Cliques

In this section we describe the problem that has to be solved to
recognize s-menus by the clique feature. To illustrate that this is
not a trivial task we have placed the screenshots in Figure 2 on top
of the real web graph. The web graph can be turned into an
undirected representation with fewer edges by only keeping
bidirectional edges. The graph would have a lower maximum
degree A and all maximal cliques — cliques that are not part of
larger cliques — could be enumerated in O(A*) time [9]. Still this
would not solve the problem of mining s-menus, because these
cliques can result from all links on the pages. Instead we need to
find page segments that form cliques. We will refer to this kind of
cliques as segment cliques, to distinguish them from cliques in the
web graph.

The page segment k of page p, can be considered as a set of M,
target pages of the hyperlinks it contains (we assume that all
hyperlinks that are unidirectional in the web graph are removed in
advance):

Sik = {Pkl:sz: ---'PkMi'k}

Let SE be the set of all S;; that are all segments of all pages of a
domain. SE defines a graph Gz whose nodes are the segments. For
a target page p, € S;; this graph contains edges from S;; to all
segments S,; of p,. We can define the set of candidate cliques as
follows:

C € .’P(SE):VSik,S'h eC
se= . |
[(pi#p; ©i #j)A (pi € Sjp)A(CI>2)]

SC contains sets of segments, each from a different page (first
condition). The sets in SC are cliques in Ggg because if a segment
of a certain page is part of a set, this page also has to be a target
page of all other segments in the set (second condition). And
finally in the context of s-menus we are only interested in cliques
with at least three nodes. Two segments on two pages that contain
a link to the other page define a clique of two and this is certainly
not enough to consider both segments as s-menus.

Of course not all cliques of page segments in SC represent s-
menus. Additional considerations are necessary to find a subset
SC* of SC that is a good representation of s-menus. One
consideration is that one certain link can surely be part of only a
single menu. On the other hand it should be allowed for a page
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segment to be part of more than one clique in SC*. Figure 3 shows
an example of page segments that represent a simple hierarchical
menu. The pages p;-p, are the top level pages and the pages ps-p;
are part of a submenu under page p,. In this example the page
segmentation algorithm has failed to separate the menu levels,
which is what often happens as described above. The light gray
edges are the edges of the web graph that have been removed
because they are not bidirectional. The menu defines two cliques
for each level and by the clique method we are able to separate the
s-menu of the first level from the s-menu of the second level.
While the Segment S is part of both cliques, the cliques do not
share an edge (hyperlink).

Figure 3. A menu can define multiple cliques

Another consideration is that larger cliques are more likely to be s-
menus than smaller cliques. For this reason larger cliques should
be preferred over smaller ones. Regarding cliques with the same
size we should prefer the clique whose segments are more uniform,
because it is more likely that the segments of this clique really
belong to the same navigation system.

Let r be a scoring function that rates the uniformity of a clique
based on the segments that define it. Resulting from the
considerations an iterative procedure to find a subset SC* can be
derived:

1. Find C;€ SC:
ve e sc (161 = |Gl a (iG] =gl = r(c) =7(C)))

2. AddC;toSC*
3. Update SC by removing C;and all subsets of C;:

SC = SC\ P(C)

4. Let Pc;be the set of pages, of which a segment is contained in
C;. Those are the pages that form the clique. Update SC by
removing all cliques from SC that share an edge with C;:

SC=SC\{¢; € SC:|Pe, n Pe,| > 1}
5. If|SC| > 0, go back to step 1

In step 1 the largest clique with the highest score is selected. C;
represents a set of page segments that belong to the same menu. Of
course all subsets of C; belong to this menu too and can be
removed from SC in step 3. This is necessary because SC is
formulated to contain not only maximal cliques but all cliques. The
reason for this is that subsets are relevant because in step 4 all
cliques are removed that share at least two nodes, and thus a
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hyperlink, with C; — since a hyperlink can only belong to one
menu. Subsets of the removed cliques can now become maximal
cliques and candidates for SC*.

The procedure above is an illustration and formalization of the
method we used to find sets of page segments that most likely
represent s-menus. In this form it is not an algorithm that can be
used to compute the sets. The problem is the generation of SC that
cannot be achieved by solely using the known algorithms for
solving the clique problem (e.g. [9]).

First the size of the graph whose nodes are given by all segments
of all pages exceeds the size of the web graph by far and the
computational costs would be high. Second, only cliques
consisting of segments from different pages are allowed in SC.
Thus the retrieved maximal cliques would still have to be split to
fulfill this condition somehow. In Sect. 5 we present an efficient
algorithm to generate SC* without computing SC.

4. PAGE SEGMENTATION

The proposed approach mines menus by finding segments on
different pages that define cliques in the web graph. Thus, the
method of page segmentation is crucial. It is important that two
different navigation elements are not merged into one segment. It
does not matter on the other hand if a menu and a submenu
belonging to the same navigation element are merged (cf. Figure
3). Other methods of page segmentation as described in [10] or
[11] use heuristics in combination with visual attributes as
background color or element size.

1. Leaves 2. Single Child | 3. Two Children 4. Multiple Children
P P P P P P P P
| — | | — | | — /N | — |
N N N Cy N c, G N N
N.Name = 2] | N\ AN N
P P Cy (S Cy w Cy G~ Cy
I — [C;.Name = a]
N [Co.Name # a]
[N.Name # a]

Figure 4. DOM transformation rules

The method we implemented in contrast does not depend on
heuristics and does not require any layout related information.
Since the DOM tree [12] reflects very well the visual and logical
organization of a page, our method transforms the DOM in a way
that only the hierarchical intra-page-structure of the hyperlinks
remains. For this all nodes of the DOM tree are processed bottom
up and four rules are applied to each node (Figure 4).

Because we are only interested in hyperlinks, leaves that are not
hyperlinks are deleted (rule 1). If a node has a single child, the
node is deleted and the child is appended to the parent node (rule
2), because these nodes do not provide structural information. If a
node has two children and the first one is a hyperlink while the
other is not, the node is deleted and both hyperlinks are appended
to the parent node (rule 3). Nodes with more than two children or
nodes with two children who do not fulfill the condition of rule 3
are left unchanged (rule 4). These nodes represent page segments.

Rule 3 covers special cases where rule 2 and rule 4 interfere and
destroy the logical structure. Figure 5 shows a typical DOM tree of
a menu with a submenu beneath the third hyperlink. Without rule 2
the third hyperlink is assigned to an additional segment even
though it logically belongs to the same segment as the other three
links of the first level. The inner nodes of the remaining tree
constitute the segments. Though the segments retrieved this way
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are organized hierarchically, this information is not necessary for
the proposed approach. Instead, a flat list of page segments is
created with each segment containing only its direct hyperlink-
children.

DOM-tree i Segmentation

without ru?e 2
dv —a i
' dv —a
div a a i
div < i

div £ a \
div —a a

with rule 2

Figure 5.‘ Necessity of rule 2
5. SEGMENT CLIQUE DETECTION

5.1 Overview

By applying the page segmentation algorithm we obtain a larger
graph Ggg (cf. Sect. 3.3) whose nodes represent segments instead
of pages. A single hyperlink in a segment defines multiple edges to
all segments of the target page. From the set SC that contains all
segment cliques the subset SC* shall be extracted according to the
described concept.

One observation that can be utilized for computing SC* efficiently
is that segment cliques in SC correspond to cliques in the web
graph. Given a set of segments from different pages, this set cannot
belong to SC if the pages do not form a clique in the web graph.
Thus the maximal cliques in the web graph can be computed and
afterwards decomposed in order to compute SC*.

The second observation is that SC* can be computed locally by
processing page after page. To find all the s-menus a certain page
belongs to, only its neighbors in the web graph have to be
considered because only they can be part of the same clique. We
preferred the local approach to reduce the memory requirements.
The pages indexed by the crawler are analyzed one after another.
Loaded pages are cached to avoid multiple requests for the same
resource.

For computing SC* locally our implementation proceeds as
follows:

1. Build local web graph from current page and all its neighbors.

2. Reduce local web graph. Hyperlinks that belong to segments
of the neighboring pages that do not contain a hyperlink the
current page are removed. Those segments cannot form a
clique with segments from the current page.

3. Remove unidirectional edges to obtain an undirected graph.

4. Compute maximal cliques. An implementation of the Bron-
Kerbosch algorithm [13] is used to enumerate all maximal
cliques.

5. Use the SegmentCliqueFinder algorithm (see next section) to
decompose the web graph cliques and compute the local SC*.

5.2 Decomposing Web Graph Cliques

The SegmentCliqueFinder algorithm returns the local SC* which is
the set containing all cliques representing s-menus to which a
segment of the processed page belongs. Given is the list of
maximal cliques in the partial web graph defined by the current

1028



WWW 2012 - LSNA'12 Workshop

page and all its neighbors. According to Sect. 3.3 the algorithm
successively computes the largest clique of segments from
different pages and removes all links that are part of that s-menu. It
terminates if no segment clique of a minimal size of 3 is found. If
multiple segment cliques with maximal size are possible the
algorithm returns the one whose segments are most uniform
concerning their placement in the DOM tree.

Py P,
SPOI0T = [1.1.1.0] — SPHIC] = [1,1.1.1
SE[ON0] = [0,00.0] gn [PoP:PP: 15 SB%W%O%:%0,0‘O‘O}
P1
SPIO] = [1,1,0.1] P Ps — SPHIMI=[1.1.01]
SBI)1] = [0.0.0.0] -k SBUIM = [0.0,04]

*
Linksis boundio
Py Pz

aciique of size 4
SPIZJ0)=[1.1.1.0] — Py [T [PoPeP: | ra [ SPRIOI= (11100
SB2]0]=[0,0,00] P, P, SB[3)[0] = [0,0,0,0]
SPRIMI=11.1.1.1 E Pl SPRIM=[1.011]
SB[2)[1] = [0,0,0,0] SE[31]=[0.0,00]

Figure 6: Four sample pages that form a clique in the web

graph
[Levelo/P,  [Level1/P, [Level2/P, [Level3/P, |
1. P=[1,1,1,0]
SPISB[1][0] B=[0.0,0.0]
P=[1,17 skip Py | P=(1.070]
0.00] <0,0,0,0]
SPISBHIN > [p-(1 1,01,
P=[1,10,1] 00.0]
B=(0,0.00]
2. P=[1,1,1.0]
B=0,00,0)
P=[1,1,01]
SPISB[1][0] B=[0,0,0,0]
P=11.0-1T|/Skip Py PZHOO'O}
0.00] o
SPISB[][1] | P=[1.10
.0,04]
3.
P=(1.1.1.0]
SPISB[2][0] B=[0.0.0.0]
P=[1,1 skip P, | P=[1,1:670]
000] =10.0.0.0]
SPISB[2][1] P=[1,147]
P=[1,1.0,1] 10000
B=[0,0,0,0]
4. etc.

Figure 7. Illustration of the SegmentCliqueFinder algorithm

One, multiple or no segment clique can be embedded in a web
graph clique. For each page of a web graph clique WC that
contains a segment clique SC, a segment on that page is either part
of SC or not, because SC can be smaller than WC. To avoid testing
all possible combinations a greedy approach can be used. Figure 6
shows an example of four pages p,-p, that form a clique in the web
graph. The menu in the upper left corner of each page is a typical
main menu with links to ps-p; and an additional link in p;. The first
page py is the page that is currently processed, so only segments
containing links to py have to be considered on the other pages.
The segments are encoded as a three dimensional array SP/i][j][k]
that has the value 1 if the segment j on page i contains a hyperlink
to page k and the value 0 otherwise. The segments on pages p;-p;
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can contain links that are already assigned to a segment cliques
when previous pages were processed. Since according to 3.3(3)
larger segment cliques are preferred, these links have to be
removed from the original clique and assigned to a new segment
clique if the new clique is larger. For this the array SB/i/[j][k]
contains the minimum sizes that a new segment clique must have
to include a hyperlink or target page respectively. In the example
shown in Figure 6 only the link to p; in segment 1 of p; is bound to
another clique, which has the size of 4. The other links can be
assigned to segment cliques of any size so SB has the value 0.

Each web graph clique is compared to all segments of p,. If the
web graph clique and the segment j share at least three pages, the
segment arrays SP/0]/j] and SB/0][j] become initial states of the
algorithm by removing from SP/0][j] the pages that are not shared.
The initial states, SP and SB are the input of the
SegmentCliqueFinder algorithm. The example includes only a
single web graph clique and both segments of p, are added to the
initial state list. The ordered list of pages represents levels that the
states have to pass to become end states. The initial states are
associated with level 0 or page p, respectively. In each iteration of
the algorithm one state is removed from the list and processed (line
04, function GetStateWithMaxScore). From the states with the
maximal number of pages the state associated with the smallest
level is selected.

In Figure 7 both initial states contain three pages and both states
are associated with level 0, so a random state is picked. A new
state is created that represents a segment clique that does not
contain the page of the next level (Algorithm 1, lines 10-12). New
states are also created for each segment of the page representing
the next level (line 13). If such a segment does not contain a target
page it is removed from the target pages of the state (line 16) and
the binding of all links is updated (line17). Before a new state is
added to the state list it is tested to see if links are already bound to
larger segment cliques. If that is the case these links are removed
(lines 21-23). If the segment clique represented by the state is still
larger than 2 and the state has not reached the final level, it is
added to the list States (line 25). The function AddToStateList
consolidates the state list by applying a scoring function that
measures the uniformity of the page segments that are included in
a state (to fulfill 3.3(3)). If an equal state (regarding SP and SB)
associated with the same level already exists only the state with the
higher segment uniformity is kept. To compute the uniformity we
align the DOM paths of all segments. Node names, class- or id-
attributes that differ are replaced by wildcards. A lower number of
wildcards indicated that the segments are placed at similar
positions in the page templates and it is more likely that their
visual representation is similar too. In the example shown in Figure
7(3) the state that is joined with SP/2]/0] is kept because its
segments are more uniform.

New states that have reached the maximal level are added to the
list of end states only if the list does not contain an end state that
represents a larger clique. If there are end states that represent
smaller cliques these end states are removed (lines 26-30). The
algorithm terminates if no other end states of at least the same
clique size than the current end states can be reached. The end state
with the highest uniformity is then returned (line 06) if one or more
valid end states were generated. For the finding of all segment
cliques of SC* in which the page is part of, SP has to be updated
by removing all links that are bound by the returned end state and
the algorithm has to be executed again until no more end states can
be found.
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Algorithm 1: SegmentCliqueFinder

Input:  States (initial states), SP (target pages of
segments), SB (clique binding of segments)
Output: Maximal clique of page segments

01: EndStates < new List; MaxEndScore « 0;
02: WHILE (States.count > 0)

03: NewStates «— new List;

04: S «— GetStateWithMaxScore(States),
05: IF (3 S.pages[j] < MaxEndScore)

06: RETURN BestState(EndStates);
07: NextLevel = S.level+1;
08: States.remove(S);
09: IF (S.level <M - 1)
10: SN « S.copy();
11: SN.pages[NextLevel] « 0;
12: NewsStates.add(SN)
13: FOR(all segments k of page PnextLevel)
14: SN « new State;
15: FOR(all Py)
16: SN.pages[j] «— min(S.pages[j], SP[NextLevel][k][j]);
17: SN.binding[j] «
max(S.binding [j], SB[NextLevel][k][j]);
18: SN.level « NextLevel
19: NewStates.add(SN);
20: FOR(all States SN in NewStates)
21: FOR(i=0...M)
22: IF(SN.binding[i] > >’ SN.pages[j])
23: SN.pages[i] < 0; i« 0;
24: IF (3 SN.pages[j] > 2)
25: IF (SN.level < M-1) AddToStateList(States, SN);
26: ELSE IF (3}; SN.pages[j] = MaxEndScore)
27: EndStates.add(SN);
28: ELSE IF (3; SN.pages[j] > MaxEndScore)
29: MaxEndScore «<— Y SN.pages[j];
30: EndStates < new List; EndStates.add(SN);

6. EVALUATION

To evaluate the proposed method we analyzed 10,000 pages
downloaded from microsoft.com. This domain was chosen because
of'its size and the diversity of the content and sub sites. Only pages
targeting the US audience were indexed by testing for the substring
“en-us” in the URL. The web crawler retrieved the pages in
breadth-first order. Since we did not perform a full crawl of the
domain and all neighboring pages are necessary for analyzing a
page, a total number of 74,198 pages were downloaded. This
overhead can be avoided if either a complete crawl of a domain is
performed or the boundaries of the crawled space are defined in
another way in advance.

6.1 Runtime Performance

The algorithms proposed in this paper are low resource consuming.
We were able to conduct the experiment with a single Pentium D,
3 GHZ machine equipped with 3 GB RAM. Running the Bron-
Kerbosch algorithm to enumerate the maximal local web graph
cliques only required a mean execution time of 0.15ms. For the
SegmentCliqueFinder algorithm, we measured a mean execution
time of 2.33ms. Interestingly there were few pages that required a
much longer processing time, up to a maximum of 371ms while for
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more than 87% of the pages the execution took no longer than
2ms. We measured the number of input pages, the number of input
segments, the number of input cliques and the number of output
segment cliques. We found that the number of input cliques
correlates most strongly with the execution time (Figure 8). The
mean execution time seems to increase almost linearly with the
number of input cliques. In our experiment there were very few
pages with more than 100 cliques but this might be different in the
general case. However, the algorithm is able to process a higher
number of cliques in a reasonable time as the plot shows. If we
assume a maximal complexity of the local web graph, the
algorithm has a linear-time complexity in the number of processed
pages because all pages are analyzed independently.

400 -
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300 -

280 -

200 -

150 F

SegmentCliqueFinder runtime in ms

e o wr A L 1 1 1 1 ]
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Number of maximal cliques

Figure 8. Number of input cliques vs. SegmentCliqueFinder
runtime in ms

6.2 Web Site Boundaries

To evaluate the reliability of the method and its potential for
solving problems in the field of web structure mining we applied it
to detect site boundaries. The result shows that the approach is
more accurate than existing methods and that the shared menus
found are exactly the site-wide navigation systems as perceived by
humans.

6.2.1 Definition and Approach

Often a number of different web (sub) sites are hosted under the
same domain. In the case of the domain microsoft.com there are
for example the Windows site, the Office site, the MSDN site and
many more. Identifying site boundaries is useful for processing
crawled domains in many ways ([4], [5]). But it is also one of the
tasks that are easy for humans but difficult for machines.
According to Nielson [14] a sub site is defined by three
characteristics:

a. A common style

b. A shared navigation mechanism

c. Anentry page
This definition was adopted by Rodrigues et al. [5] and the same
criteria for defining “site” was used by Alshukri et al. [4]. Sites and
sub sites refer essentially to the same concepts, except that a sub
site is part of another larger site / sub site. The criterion b is
obviously the strongest. It is hard to picture a site that does not
have some kind of global menu that is shared by all pages. From
the usability perspective we can argue that global menus are
necessary to avoid navigational volatility leading to disorientation
or at least forcing users to reorient [15]. From a technical
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perspective we can argue that today global page templates are
common and this includes global navigation templates. Thus we
can say that two pages that belong to the same site share at least
one menu.

Home M™Tibrary Leam  Downloads Support  Community

“msdn oing 3

Home Library Learn Samples Downloads Support Community Forums

PORTALS: i Home

Figure 9. Different styles within the same site.

On the other hand, we can argue that two pages that share a
menu always belong to the same site. The common style criterion
is not decisive as Figure 9 shows. The visual design of the two
pages from the MSDN website® is clearly different while they
share the same global menu. Also an entry page can always be
found. It often does not have any special characteristics, except
being the first item in the shared menu.

Based on these considerations, the MenuMiner-approach can be
used to detect site boundaries by identifying clusters of pages that
share an s-menu.

6.2.2 Experiment and Results

After executing the SegmentCliqueFinder algorithm the s-menus
represented by the extracted segment cliques are associated only
with the pages that are linked by this menu. Obviously a menu is
likely to be present on many more pages, at least, if it is some kind
of main menu. For the finding of all pages that contain a certain s-
menu, only those pages that link all pages of the s-menu clique
have to be considered because the links are defined by the menu.
To accurately identify an s-menu on a candidate page the method
for measuring segment uniformity described in Sect. 5.2 can be
used. This ensures that the segment is located in a similar position
in the DOM tree and has similar style attributes. The aligned DOM
tree paths of the s-menu segments are like signatures for menu
templates which are very robust because of the wildcards. The
obtained sets of pages that share an s-menu overlap because of the
different scopes of, e.g., a global menu and a local menu. We
retrieved a disjunctive set of 58 clusters by joining all overlapping
sets. The joined sets are a precise presentation of the Site
boundaries as our evaluation proves. We were not able to detect s-
menus on 591 pages but we assume that this due to the incomplete
crawl. We placed these pages in a single generic cluster.

Since we have observed that the URLs reflect the content
organization of this domain very well, we were planning to
compare our site segmentation to the folder structure. But it
showed that even in this case the site boundaries cannot be derived
from the URLs. So, we decided to conduct an additional manual
evaluation.

However, we were faced with the problem of having to manually
group 10,000 pages according to their site membership in a
reasonable time. Even with a subset that is large enough to be
representative, the task would be difficult for an assessor. It is
much easier and less error-prone to present two pages to an
assessor and ask him to decide if both belong to the same site or
not. By this method we were able to have 845 randomly selected
pairs compared by one person in approximately 10 hours. The

4 http://msdn.microsoft.com/en-us
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person was given no further information about the purpose of the
evaluation. We gave the hint that in case of uncertainty it should be
checked if the linked homepages are identical. The assessor
reported that he was able to decide in all cases without ambiguity.

The metric we used is based on the Rand index that measures the
agreement of two partitions [16]. Let S be a set of elements and X;
and X, two partitions of S. Let C = {(xq, x,) € S X S} be the set of
all tuples of elements in S2. 4 is the set of agreements that contains
the tuples of two elements that are either in the same cluster in
both partitions or are in different clusters in both partitions. D is
the set of disagreements. The Rand index measures the ratio of
agreements:

_ A

A+D

Instead of considering all tuples we were using the random subset
U of C from our evaluation for which the agreement set Ay and the
disagreement set Dy, are known as sample. For our partition of 58
clusters we computed a sample rand index Ry of 0.996. It is likely
that the remaining error rate results from generic cluster and would
be even lower for a complete crawl.

Three other clustering methods were used as benchmark. First we
were analyzing the hierarchical structure of the URLs. The first
level of the hierarchy was given by separating subdomains. The
subdomains were split up again by the first folder and the resulting
clusters again by the second folder. An Ry of 0.97 was computed
for the segmentation by subdomains but only 9 clusters were
extracted. This proves that subdomains contain multiple sites. By
including the folder structure, the number of clusters increases but
Ry drops to 0.95 and 0.87 (Figure 10).
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Figure 10: Rand index R, based on manually evaluated
samples for different segmentation methods

We were also implementing the methods for web site boundary
detection that performed best in a recent experiment [4]°. A
bisecting k-means algorithm was applied iteratively to split clusters
if they are large enough. Even though this method is not really an
alternative to the MenuMiner algorithm because the number of
clusters has to be known in advance, we wanted to see if a similar

5 We did not include the combination of eight features that was
evaluated in [4] too, because it did not perform significantly better than
the best individual features in the reported experiments.
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high value for R, can be reproduced. As features the internal
hyperlinks were used and the bag of words obtained by separating
URLs with the delimiters “.” and “/”. The hyperlink feature
performed better with a maximal Ry of 0.92 for 26 clusters
compared to a maximal Ry of 0.86 for four clusters achieved by
using the URL word feature. With these methods we were not able
to reproduce an Ry as high as the one computed for the
MenuMiner partition. The results showed the superiority of the
proposed approach when applied to detect site boundaries.

But even more important, the almost perfect agreement with the
human assessor relies on the very good performance of the
MenuMiner-algorithm in detecting the main navigation systems of
a site. This shows the reliability of the method in general.

6.3 Site Analysis

Without further analyzing the s-menus a basic hierarchical
structure is already revealed by the relations of the clusters defined
by the s-menus. If 4 and B are sets of pages that share an s-menu
and A € B while 4 #B, then A defines a subsection of a site.
Figure 11 shows the discovered relations together with the sizes of
the clusters. The connected components represent sites. One
interesting observation is that sites that consist of few, smaller
subsections are design-oriented sites focused on product
presentation, e.g., the sites identified by the root clusters J
(Microsoft Windows site), K (Windows Phone site) and M (Visual
Studio site). Large clusters contain resources that cannot be
accessed by a single hierarchical structure but can be so by facetted
search such as the Pinpoint marketplace (4 — cf. Table 1) and the
template library of the Microsoft Office site (B). The small
uniform nodes under the same root as 4 are compound documents
[6] that consist of three sections (Figure 12).

These first observations are meant to illustrate the structural
information gained with the proposed method based on clustering
with s-menus. A further analysis of the data including the s-menu
items promises a more fine-grained model of the information
architecture.
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Figure 11. Clusters of sites and subsites
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[= &Q Reviews & Company

Figure 12. Three section of a compound document (L-nodes in
Figure 11)

6.4 Main Menu Detection

Web site boundary detection is only a first application of our
method that we have chosen as a demonstration and to evaluate the
method. The s-menus delivered by the algorithm provide important
information about the site’s content organization and its menu
structure. As a demonstration we have listed all extracted items of
the main menu for the 10 largest clusters found in Table 1. Since
the site clusters are defined by overlapping s-menus, the s-menu
that is shared by the largest number of pages in each site can be
considered as main navigation. If there were multiple s-menus that
are shared by the same pages we were selecting one page and
picked the s-menu that was first found when traversing the DOM
tree in depth-first order. As Table I shows all main menus, and thus
the main categories, were extracted correctly for the listed sites.

Table 1. Menu items of the then largest clusters

#P. Entry Page Menu Items
A 4060 | pinpoint.microsoft.com/en- Applications, Professional
US/applications/search?q= Services, Companies
B 2313 office.microsoft.com/en-us home, products, support,
images, templates, downloads,
more
C 316 msdn.microsoft.com/en- Home, Library, Learn,
us/default Samples, Downloads, Support,
Community, Forums
D 227 technet.microsoft.com/en- Home, Library, Wiki, Learn,
us/default Downloads, Support, Forum,
Blogs
E 164 windows.microsoft.com/en- Windows Vista Help home,
US/windows-vista’help Top solutions, Using Windows
Vista, Getting started,
Community & forums, Contact
support
F 137 windows.microsoft.com/en- Windows 7 Help home, Getting
us/windows7/help started, Top solutions, How-to
videos, Community & forums,
Contact support
G 89 msdn.microsoft.com/en- Home, Library, Learn,
us/windows/aa904944.aspx Downloads, Gallery, Support,
Community, Forums
H 81 technet.microsoft.com/en- Home, 2008, 2003, 2000,
us/windowsserver/ Library, Forums
bb250589.aspx
1 79 windows.microsoft.com/en- Windows 7 home, What is
US/windows7/products/ Windows 7?, Compare,
home Features, Videos
J 70 http://windows.microsoft.co Home, Explore Windows,
m/en-US/windows/home Products, Shop, Downloads,
Help & How-to

7. RELATED WORK

Depending on the objectives two different research directions can
be distinguished in the field of web structure mining. The first
direction aims at generating new structures as rankings or topic
hierarchies based on web documents and their structure.
Algorithms such as PageRank or HITS and their variations belong
to this direction as well as approaches that cluster web documents
based on their content. The research presented in this paper
belongs to a second research direction that aims at mining existing
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structures that are difficult to retrieve as navigational hierarchies or
boundaries of web sites.

Mining Navigation Elements

Some work has been done on mining navigation elements. Li and
Kit describe an approach in [17] that is based solely on the web
graph. Frequent item set mining algorithms are applied on the sets
of outgoing hyperlinks of the pages to detect repeated menus.
However a more comprehensive evaluation of the approach would
be interesting. The work of Rodrigues et al. [S][8] on mining link
blocks for representing sites and finding site boundaries has been
described above. However the authors do not evaluate how well
the page segmentation into link blocks really reproduces the
navigation elements as perceived by humans. The ratio of linked
text to all text is a common method for recognizing navigation
elements or link lists [1][18] while in [19] other metrics as the text
length and the hyperlink targets are used. The performance of these
metrics is not reported. The work presented in [20] uses several
other metrics to find navigation elements on page level. An inter-
page analysis to find repeated navigation structures is not included.
An evaluation was conducted showing a high recall and moderate
precision. We used the link text ratio criterion in combination with
other metrics in our previous work which included an inter-page
analysis [7]. The evaluation showed that achieving a high accuracy
with this approach is difficult.

There are some approaches that do not mine navigation elements
explicitly but do take into account the structural information they
provide. For instance, the clustering method described in [3]
considers “parallel links” — links that are siblings in the DOM tree
of a page. Such links are likely to belong to the same navigation
element.

Clustering and Hierarchy Detection

Several approaches in this direction work solely on the web graph
model, whose vertices represent pages and whose arcs represent
hyperlinks. One of these is based on hyperlink co-citation for web
clustering as introduced by Pitkow and Pirolli [21]. It is based on
the idea that hyperlinks that frequently occur on a page together
point to semantically related resources. Other approaches
computed additional edge weights for the web graph in order to
improve the clustering results. Extracting a hierarchical structure
with standard graph algorithms based on the web graph is
described in [1]. The edge weights are computed by machine
learning methods that distinguish two link types based on eight
link features. In [22] the edge weights for the web graph are
computed based on text similarity and co-citation of hyperlinks.
Three algorithms (k-means, multilevel METIS and Normalized
Cut) are evaluated to partition up to 3500 documents. Normalized
Cut performs best in the evaluation, but the objectives of the
experiments are not the detection of Site boundaries but the
clustering of topically related documents. Other web graph
clustering methods consider hyperlink transitivity to compare
pages that are not connected by a direct hyperlink (e.g. [23]).

An evaluation of the performance of four clustering algorithms in
conjunction with several different features aside from the web
graph is described in [4]. The features include word co-occurrences
of the complete text as well as of the titles, hyperlinks, script-links
and the URLs that are split into components using delimiters as “.”
and “/”. A bisecting k-means algorithm on the URL components
performs best. Instead of using a clustering algorithm, the site
segmentation can be retrieved directly from the hierarchical
structure of URLs. Using the hierarchical structure of URLs seems
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to be a very common approach (used e.g. in [1],[2],[24]) but it was
not evaluated in [4]. However, it is well known that the
hierarchical structure of URLs does not reflect the Site
organization accurately [2].

An interesting approach of hierarchical web site segmentation is
presented in [2]. The algorithm requires an existing tree structure
on the resource, e.g., retrieved from the URL hierarchy and
knowing the class (topic) of each resource. The tree is segmented
into topically-cohesive regions, representing subsites. Also in the
end a similar problem is addressed, the approach is very different
from the work presented in this paper, which does not require a
given classification and hierarchy.

Evaluation

The existing work on web pages shows that the evaluation of
clustering methods for finding site boundaries and intra-site
structures is a challenge. The main problem is that a reasonably
large data set is necessary for meaningful results but the results
have to be evaluated manually.

In [4] four sets of pages from different university departments are
used, each representing a site and consisting of 500 pages. Thus
the number of Sites is low and they are selected in advance what
might bias the results. In [5S] Rodrigues et al. describe an
evaluation method that does not measure the aggregation of pages
to sites but the precision and recall of detected entry pages. This
allows considering sites as well as sub sites. They compare five
methods, two of which are based on their own approach. Although
the results are mixed and no method achieves a high F measure,
the authors show that their approach is able to detect entry pages
that are not found by other methods. In the experiments in [3] and
[24] a large number of pages are clustered, but no metrics are used
for evaluating the clustering quality. Instead the resulting clusters
themselves are listed in tables and figures.

8. CONCLUSION

We believe that the MenuMiner-method proposed in this paper is a
contribution that opens new doors for analyzing the structure of
domains and sites. The algorithm is fast and its time-complexity is
linear in the number of pages. It is solely based on analyzing the
HTML structure and no additional resources such as CSS style
sheets are required. A visual model is not necessary for identifying
the s-menus of a page. The evaluation shows that the approach
allows identifying with high precision the main menu systems that
are a common characteristic of all pages of a site and that represent
its central organization scheme. Applied to the problem of site
boundary detection the presented approach provides almost perfect
results in contrast to other current methods. The data obtained in
the experiment also gave interesting information about the
concepts of content access a site implements, based on which the
site can be classified. In our experiment it also allowed the
identification of compound documents.

The focus of the experiment and evaluation described was to show
the reliability of the MenuMiner method. We found that the
method is a very solid foundation that is ready to be applied in
practice. Thus further research can be done on the interpretation
and processing of the obtained data. S-menus can be considered as
the structural skeleton of web sites. We believe that it is possible to
retrieve the complete content hierarchy of web sites based on this
skeleton with high precision. This would close the gap between the
human perception of a site’s content structure and the model
generated by current structure mining methods. It would bring
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improvements in many areas as e.g. the representation of search
results, ranking, automated usability testing or web site reverse
engineering.
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