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ABSTRACT 
The foundation of almost all web sites' information architecture is 
a hierarchical content organization. Thus information architects put 
much effort in designing taxonomies that structure the content in a 
comprehensible and sound way. The taxonomies are obvious to 
human users from the site's system of main and sub menus. But 
current methods of web structure mining are not able to extract 
these central aspects of the information architecture. This is 
because they cannot interpret the visual encoding to recognize 
menus and their rank as humans do. In this paper we show that a 
web site's main navigation system can not only be distinguished by 
visual features but also by certain structural characteristics of the 
HTML tree and the web graph. We have developed a reliable and 
scalable solution that solves the problem of extracting menus for 
mining the information architecture. The novel MenuMiner-
algorithm allows retrieving the original content organization of 
large-scale web sites. These data are very valuable for many 
applications, e.g. the presentation of search results. In an 
experiment we applied the method for finding site boundaries 
within a large domain. The evaluation showed that the method 
reliably delivers menus and site boundaries where other current 
approaches fail. 

Categories and Subject Descriptors 
H.5.4 [Information Systems]: Information Interfaces and 
Presentation – Hypertext/Hypermedia; H.3.1 [Information 
Systems]: Information Storage and Retrieval – Content Analysis 
and Indexing 

General Terms 
Algorithms, Experimentation, Languages 

Keywords 
Web structure mining, Site boundaries, Site hierarchies, Search 
result presentation  

1. INTRODUCTION 
Information architecture is crucial for the success of a web site. 
Engineering the information architecture means labeling hundreds 
or thousands of resources, organizing them with coherent schemas 
and developing understandable systems for accessing them. The 
technical model of content organization are database schemas 
while the human model is the information architecture. 

Information architecture is a way of communication. This is 
because users must be able to decode the information architecture 
in order to interact with the information system in the intended 
way. 
Decoding the information architecture means that humans are able 
to understand content hierarchies, to distinguish navigation 
elements from page content and to learn the purpose of navigation 
systems. We can recognize entry pages of web sites and we notice 
if we cross site boundaries. Because of the visual encoding these 
structures are obvious to humans but not to machines. If a site 
contains a reasonable number of pages it is usually not very 
complicated for an average human to model the site map but it is 
so for machines, even for Google1. For a site map to be included in 
the search result presentation the site map has to be provided to 
Google as XML-file. Displaying the position of a page in the 
content hierarchy is supported by Google (Figure 1), but it works 
currently only for a small amount of destination pages that contain 
a similar presentation (“breadcrumbs”), which can be extracted2.    

 
Figure 1. Google is able to display the position in the content 
hierarchy only for a few pages. 
Though research has focused on extracting hierarchies from web 
sites (e.g. [1],[2],[3]), no solution has been found yet that could 
compete with human judgment. The same applies for the problem 
of mining web site boundaries or subsites (e.g. [4], [5]), site entry 
pages [5] or compound documents [6]. There still is a semantic gap 
between information architecture as perceived by humans and 
structure information that can be retrieved by current approaches. 
The seemingly simple problem of extracting the main navigation 
elements of a site for reverse engineering the information 
architecture is hard to solve in practice. The straightforward 
approach of using heuristics for identifying the menus on all pages 
of a site and then combining frequent structures is difficult and 
error-prone [7]. Thus up until now very valuable semantic 
information is not available for machine processing. The 
hierarchical content organization of a web site is a human-made, 
well-designed classification scheme for each page. Mining these 
taxonomies would not only allow a search result representation as 
shown in Figure 1 for all sites. For example, it would also allow 
visualizing all results from a certain site as tree structure. The 
                                                                 

1Some tools exist to automatically generate sitemaps (e.g. 
http://www.powermapper.com), but the quality of the results strongly 
depends on the examined site 
2 The Official Google Blog: New site hierarchies display in search 
results, http://googleblog.blogspot.com/2009/11/new-site-hierarchies-
display-in-search.html 
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original site hierarchy can also be used to improve ranking, e.g. if a 
search returns many hits from a certain branch of a site hierarchy, 
the item at the root of the branch should be ranked first. A method 
for mining the original content hierarchy of web sites will also 
open new doors in research topics as web site abstraction and 
classification, information architecture reverse-engineering and 
automated usability testing. As a first application we demonstrate 
how the problem of web site boundary detection can be solved by 
using the MenuMiner-approach.  

2. CONTRIBUTION 
In this paper we show how the global and local menus that 
represent the central concept of content access and the main 
hierarchical structure of web sites can be mined. To our knowledge 
until now no other method exists that solves this problem well 
enough that the data can be used, e.g. for the presentation of search 
results. The presented approach of analyzing maximal cliques for 
mining menu systems is a novel and applicable solution that is 
highly accurate and not prone to spam. It scales and the time 
complexity is linear in the number of processed pages.  
As first application we used the algorithm to solve a known 
problem of web site structure mining: the detection of site 
boundaries ([4],[5]). We used the algorithm to find site boundaries 
in a collection of 10,000 pages retrieved from a large domain. A 
method for manually validating and comparing site partitions is 
described. The evaluation showed that the site boundaries 
delivered by the MenuMiner-algorithm are much more precise than 
the hierarchy contained in the URLs (subdomains and folders) and 
those retrieved with clustering methods that performed best in a 
previous experiment [4]. But the central finding is that the 
MenuMiner-method extracts the main menus that distinguish sites 
exactly as perceived by humans. In the evaluation section we also 
point out by examples how the method described in this paper can 
solve other problems of web site structure mining such as 
hierarchy extraction, compound document mining and entry page 
detection. 

3. PROBLEM DEFINITION AND 
APPROACH 
The original content organization of web sites as perceived by 
humans cannot be extracted today because a reliable method for 
mining menu systems is lacking. This involves a method to 
distinguish main or sub menus from other page content and a 
method to identify recurring menus that are shared by a site or sub 
section.  

3.1 Mining Shared Menus 
The straightforward approach is to first split all pages into smaller 
content segments and to identify segments that represent 
navigation elements. Then an inter-page analysis can be conducted 
to find recurring navigation elements that are shared by a set of 
pages. That is basically the method used in current works that 
involve the mining of navigation elements (cf. Sect. 7). Our 
previous work on this topic [7] was based on the same approach. 
We used an extended set of heuristics to identify navigation 
elements and conducted an experimental evaluation that was 
lacking before. Although this method was able to detect most of 
the shared menus correctly we found that it has inherent limitations 
that prevent a really satisfying precision. The problem is that the 
intra-page analysis is prone to errors if the page segmentation does 
not precisely reflect the bounds of individual menus and sub 
menus. Consider the example in Figure 9. The same menu has 

additional items (“Samples”, “Forums”) on the page “Home” that 
are missing on the page “Library”. By comparing simply the 
hyperlinks in navigation bars both elements could not be matched. 
A case like this is not a rare exception but a rather common 
situation.  
Thus a better approach is to compute the percentage of shared 
hyperlinks and applying a threshold. Rodrigues et al. [8] used a 
threshold of 0.6 while we were using a threshold of 0.5 in 
combination with two other metrics. But such a threshold leads to 
the problem that often elements are matched that do not belong to 
the same navigation system. Another problem is that sometimes a 
menu can be distinguished from a submenu only by its visual 
properties. Then even the most sophisticated algorithm will have 
difficulties in providing the correct segmentation. With the 
additional links of a submenu on one page that is not displayed on 
another page the percentage of shared links can fall below any 
threshold. Originally we were planning to apply machine learning 
methods for adjusting the heuristics and improve the precision of 
the method. Instead we found a different approach that completely 
avoids the described problems.  

 
Figure 2. S-menus define cliques in the web Graph. The bold 

edges represent bidirectional links (example from 
www.microsoft.com/windowsphone).  

3.2 S-Menus 
To avoid transitional volatility (cf. Sect. 6.2) the navigation 
elements that play the key role for the content access are usually 
invariable elements in page transitions. These global and local 
menus allow not only navigating from one page to another but 
navigating over a group of pages. By this we mean, that we can use 
a single menu to traverse a group of pages. When we click on an 
item in the menu and move to the next page the menu is still 
present. According to [8] such menus will be referred to as 
structural-menus or s-menus in this paper. Of course not all 
navigation elements are s-menus. For example, a list of links 
related to a certain resource or a group of external links do not 
have the described characteristics. S-menus are the skeleton of the 
information architecture of sites that are based on menus3. Because 
of their invariability the function of s-menus is not only to provide 
paths through the information space but also to communicate the 
organization of the content. Thus s-menus are most suitable for 
mining the organization of web sites. 
                                                                 

3 Other sites are based on search. The MenuMiner-approach allows 
distinguishing both types of sites as shown in Sect. 6.3 
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The most common model of web structure mining is the web graph 
whose vertices represent pages and whose edges are given by the 
hyperlinks. As Rodrigues et al. [8] have observed before, s-menus 
define cliques in the web graph – complete sub graphs in which 
every two vertices are connected by an edge. This is because the 
menu itself is also present on the linked pages. Figure 2 shows an 
example where all pages that are linked in a menu contain the 
menu itself and thus have links to the other three pages. Instead of 
using a set of heuristics to identify navigation elements we propose 
to mine page segments that form cliques in the Web graph. 
While the figure only shows the four target pages of the menu, the 
menu is present on many more pages. In general on almost all sites 
the main menu is displayed on all pages. Conversely, s-menus 
define the boundaries of the sites. Other s-menus that are present 
only on a subset of the pages consequently represent sub sites. 
Thus the inclusion relation on the sets of pages that share an s-
menu reproduces the hierarchical structure of a site.  

3.3 Mining S-Menus by Analyzing Cliques 
In this section we describe the problem that has to be solved to 
recognize s-menus by the clique feature. To illustrate that this is 
not a trivial task we have placed the screenshots in Figure 2 on top 
of the real web graph. The web graph can be turned into an 
undirected representation with fewer edges by only keeping 
bidirectional edges. The graph would have a lower maximum 
degree ∆ and all maximal cliques – cliques that are not part of 
larger cliques – could be enumerated in O(∆4) time [9]. Still this 
would not solve the problem of mining s-menus, because these 
cliques can result from all links on the pages. Instead we need to 
find page segments that form cliques. We will refer to this kind of 
cliques as segment cliques, to distinguish them from cliques in the 
web graph.   
The page segment k of page pi can be considered as a set of Mi,k 
target pages of the hyperlinks it contains (we assume that all 
hyperlinks that are unidirectional in the web graph are removed in 
advance):  

 ௜ܵ,௞ = ,௞భ݌} ,௞మ݌ … ,   {௞ಾ೔,ೖ݌
Let SE be the set of all Si,k  that are all segments of all pages of a 
domain. SE defines a graph GSE whose nodes are the segments. For 
a target page px ∈ Si,k this graph contains edges from Si,k  to all 
segments Sx,l  of  px. We can define the set of candidate cliques as 
follows: ܵܥ = ቊ 	ܥ ∈ ∀	:(ܧܵ)࣪	 ௜ܵ,௞, ௝ܵ,௛ 	 ∈ ௜݌൫ൣ	ܥ ≠ 	௝݌ ⇔ ݅	 ≠ ݆൯ ∧	൫݌௜ ∈ 	 ௝ܵ,௛൯ ∧ |ܥ|) > 2)൧ቋ 

SC contains sets of segments, each from a different page (first 
condition). The sets in SC are cliques in GSE because if a segment 
of a certain page is part of a set, this page also has to be a target 
page of all other segments in the set (second condition). And 
finally in the context of s-menus we are only interested in cliques 
with at least three nodes. Two segments on two pages that contain 
a link to the other page define a clique of two and this is certainly 
not enough to consider both segments as s-menus.  
Of course not all cliques of page segments in SC represent s-
menus. Additional considerations are necessary to find a subset 
SC* of SC that is a good representation of s-menus. One 
consideration is that one certain link can surely be part of only a 
single menu. On the other hand it should be allowed for a page 

segment to be part of more than one clique in SC*. Figure 3 shows 
an example of page segments that represent a simple hierarchical 
menu. The pages p1-p4 are the top level pages and the pages p5-p7 
are part of a submenu under page p2. In this example the page 
segmentation algorithm has failed to separate the menu levels, 
which is what often happens as described above. The light gray 
edges are the edges of the web graph that have been removed 
because they are not bidirectional.  The menu defines two cliques 
for each level and by the clique method we are able to separate the 
s-menu of the first level from the s-menu of the second level. 
While the Segment S  is part of both cliques, the cliques do not 
share an edge (hyperlink). 

 
Figure 3. A menu can define multiple cliques 

Another consideration is that larger cliques are more likely to be s-
menus than smaller cliques. For this reason larger cliques should 
be preferred over smaller ones. Regarding cliques with the same 
size we should prefer the clique whose segments are more uniform, 
because it is more likely that the segments of this clique really 
belong to the same navigation system. 
Let r be a scoring function that rates the uniformity of a clique 
based on the segments that define it. Resulting from the 
considerations an iterative procedure to find a subset SC* can be 
derived: 
1. Find Ci ∈	SC: 

௝ܥ∀  ∈ 	ܥܵ ቀ|ܥ௜| ≥ หܥ௝ห ∧ ൫|ܥ௜| = หܥ௝ห ⇒ (௜ܥ)ݎ 	≥  ൯ቁ(௝ܥ)ݎ

2. Add Ci to SC* 
3. Update SC by removing Ci and all subsets of Ci: 

ܥܵ  ≔ ܥܵ ∖   (௜ܥ)࣪

4. Let PCi be the set of pages, of which a segment is contained in 
Ci. Those are the pages that form the clique. Update SC by 
removing all cliques from SC  that share an edge with Ci: 

ܥܵ  ≔ ܥܵ ∖ ቄܥ௝ ∈ :ܥܵ ቚ ஼ܲೕ ∩ ஼ܲ೔ቚ > 1ቅ 
5. If |SC| > 0, go back to step 1 
 
In step 1 the largest clique with the highest score is selected. Ci  
represents a set of page segments that belong to the same menu. Of 
course all subsets of Ci belong to this menu too and can be 
removed from SC in step 3. This is necessary because SC is 
formulated to contain not only maximal cliques but all cliques. The 
reason for this is that subsets are relevant because in step 4 all 
cliques are removed that share at least two nodes, and thus a 
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Algorithm 1: SegmentCliqueFinder 
 

Input:  States (initial states), SP (target pages of  
segments), SB (clique binding of segments) 

Output:  Maximal clique of page segments 

 
01: EndStates ← new List; MaxEndScore ← 0; 
02: WHILE (States.count > 0) 
03:      NewStates ← new List; 
04:      S ← GetStateWithMaxScore(States); 
05:      IF (∑j S.pages[j] < MaxEndScore) 
06:           RETURN BestState(EndStates); 
07:      NextLevel = S.level+1; 
08:      States.remove(S); 
09:      IF (S.level < M - 1)   
10:           SN ← S.copy(); 
11:           SN.pages[NextLevel] ← 0; 
12:           NewStates.add(SN)  
13:      FOR(all segments k of page PNextLevel)  
14:           SN ← new State; 
15:           FOR(all Pj) 
16:                SN.pages[j] ← min(S.pages[j], SP[NextLevel][k][j]); 
17:                SN.binding[j]  ←  

                      max(S.binding [j], SB[NextLevel][k][j]); 
18:           SN.level  ← NextLevel 
19:           NewStates.add(SN); 
20:      FOR(all States SN in NewStates) 
21:           FOR(i = 0…M) 
22:                IF(SN.binding[i] > ∑j SN.pages[j])   
23:                SN.pages[i] ← 0; i ← 0; 
24:           IF (∑j SN.pages[j] > 2) 
25:                IF (SN.level < M-1)  AddToStateList(States, SN); 
26:                ELSE IF (∑j SN.pages[j] = MaxEndScore) 
27:                     EndStates.add(SN); 
28:                ELSE IF (∑j SN.pages[j] > MaxEndScore) 
29:                     MaxEndScore ← ∑j SN.pages[j]; 
30:                     EndStates ←  new List; EndStates.add(SN);  

 

6. EVALUATION 
To evaluate the proposed method we analyzed 10,000 pages 
downloaded from microsoft.com. This domain was chosen because 
of its size and the diversity of the content and sub sites. Only pages 
targeting the US audience were indexed by testing for the substring 
“en-us” in the URL. The web crawler retrieved the pages in 
breadth-first order. Since we did not perform a full crawl of the 
domain and all neighboring pages are necessary for analyzing a 
page, a total number of 74,198 pages were downloaded. This 
overhead can be avoided if either a complete crawl of a domain is 
performed or the boundaries of the crawled space are defined in 
another way in advance. 

6.1  Runtime Performance 
The algorithms proposed in this paper are low resource consuming. 
We were able to conduct the experiment with a single Pentium D, 
3 GHZ machine equipped with 3 GB RAM. Running the Bron-
Kerbosch algorithm to enumerate the maximal local web graph 
cliques only required a mean execution time of 0.15ms. For the 
SegmentCliqueFinder algorithm, we measured a mean execution 
time of 2.33ms. Interestingly there were few pages that required a 
much longer processing time, up to a maximum of 371ms while for 

more than 87% of the pages the execution took no longer than 
2ms. We measured the number of input pages, the number of input 
segments, the number of input cliques and the number of output 
segment cliques. We found that the number of input cliques 
correlates most strongly with the execution time (Figure 8). The 
mean execution time seems to increase almost linearly with the 
number of input cliques. In our experiment there were very few 
pages with more than 100 cliques but this might be different in the 
general case. However, the algorithm is able to process a higher 
number of cliques in a reasonable time as the plot shows. If we 
assume a maximal complexity of the local web graph, the 
algorithm has a linear-time complexity in the number of processed 
pages because all pages are analyzed independently. 

 
Figure 8. Number of input cliques vs. SegmentCliqueFinder 

runtime in ms 

6.2 Web Site Boundaries 
To evaluate the reliability of the method and its potential for 
solving problems in the field of web structure mining we applied it 
to detect site boundaries. The result shows that the approach is 
more accurate than existing methods and that the shared menus 
found are exactly the site-wide navigation systems as perceived by 
humans. 

6.2.1 Definition and Approach 
Often a number of different web (sub) sites are hosted under the 
same domain. In the case of the domain microsoft.com there are 
for example the Windows site, the Office site, the MSDN site and 
many more. Identifying site boundaries is useful for processing 
crawled domains in many ways ([4], [5]). But it is also one of the 
tasks that are easy for humans but difficult for machines. 
According to Nielson [14] a sub site is defined by three 
characteristics: 

a. A common style 
b. A shared navigation mechanism 
c. An entry page 

This definition was adopted by Rodrigues et al. [5] and the same 
criteria for defining “site” was used by Alshukri et al. [4]. Sites and 
sub sites refer essentially to the same concepts, except that a sub 
site is part of another larger site / sub site. The criterion b is 
obviously the strongest. It is hard to picture a site that does not 
have some kind of global menu that is shared by all pages. From 
the usability perspective we can argue that global menus are 
necessary to avoid navigational volatility leading to disorientation 
or at least forcing users to reorient [15]. From a technical 
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high value for RU can be reproduced. As features the internal 
hyperlinks were used and the bag of words obtained by separating 
URLs with the delimiters “.” and “/”. The hyperlink feature 
performed better with a maximal RU of 0.92 for 26 clusters 
compared to a maximal RU of 0.86 for four clusters achieved by 
using the URL word feature. With these methods we were not able 
to reproduce an RU as high as the one computed for the 
MenuMiner partition. The results showed the superiority of the 
proposed approach when applied to detect site boundaries. 
But even more important, the almost perfect agreement with the 
human assessor relies on the very good performance of the 
MenuMiner-algorithm in detecting the main navigation systems of 
a site. This shows the reliability of the method in general.  

6.3 Site Analysis 
Without further analyzing the s-menus a basic hierarchical 
structure is already revealed by the relations of the clusters defined 
by the s-menus. If A and B are sets of pages that share an s-menu 
and A ⊂ B while A ≠ B, then A defines a subsection of a site. 
Figure 11 shows the discovered relations together with the sizes of 
the clusters. The connected components represent sites. One 
interesting observation is that sites that consist of few, smaller 
subsections are design-oriented sites focused on product 
presentation, e.g., the sites identified by the root clusters J 
(Microsoft Windows site), K (Windows Phone site) and M (Visual 
Studio site). Large clusters contain resources that cannot be 
accessed by a single hierarchical structure but can be so by facetted 
search such as the Pinpoint marketplace (A – cf. Table 1) and the 
template library of the Microsoft Office site (B). The small 
uniform nodes under the same root as A are compound documents 
[6] that consist of three sections (Figure 12). 
These first observations are meant to illustrate the structural 
information gained with the proposed method based on clustering 
with s-menus. A further analysis of the data including the s-menu 
items promises a more fine-grained model of the information 
architecture.  

 
Figure 11. Clusters of sites and subsites 

Figure 12. Three section of a compound document (L-nodes in 
Figure 11) 

6.4 Main Menu Detection 
Web site boundary detection is only a first application of our 
method that we have chosen as a demonstration and to evaluate the 
method. The s-menus delivered by the algorithm provide important 
information about the site’s content organization and its menu 
structure. As a demonstration we have listed all extracted items of 
the main menu for the 10 largest clusters found in Table 1. Since 
the site clusters are defined by overlapping s-menus, the s-menu 
that is shared by the largest number of pages in each site can be 
considered as main navigation. If there were multiple s-menus that 
are shared by the same pages we were selecting one page and 
picked the s-menu that was first found when traversing the DOM 
tree in depth-first order. As Table I shows all main menus, and thus 
the main categories, were extracted correctly for the listed sites. 

Table 1. Menu items of the then largest clusters 
 #P. Entry Page Menu Items 

A 4060 pinpoint.microsoft.com/en-
US/applications/search?q= 

Applications, Professional 
Services, Companies 

B 2313 office.microsoft.com/en-us home, products, support, 
images, templates, downloads, 
more 

C 316 msdn.microsoft.com/en-
us/default 

Home, Library, Learn, 
Samples, Downloads, Support, 
Community, Forums 

D 227 technet.microsoft.com/en-
us/default 

Home, Library, Wiki, Learn, 
Downloads, Support, Forum, 
Blogs 

E 164 windows.microsoft.com/en-
US/windows-vista/help 

Windows Vista Help home, 
Top solutions, Using Windows 
Vista, Getting started, 
Community & forums, Contact 
support 

F 137 windows.microsoft.com/en-
us/windows7/help 

Windows 7 Help home, Getting 
started, Top solutions, How-to 
videos, Community & forums, 
Contact support 

G 89 msdn.microsoft.com/en-
us/windows/aa904944.aspx 

Home, Library, Learn, 
Downloads, Gallery, Support, 
Community, Forums 

H 81 technet.microsoft.com/en-
us/windowsserver/ 
bb250589.aspx 

Home, 2008, 2003, 2000, 
Library, Forums 

I 79 windows.microsoft.com/en-
US/windows7/products/ 
home 

Windows 7 home, What is 
Windows 7?, Compare, 
Features, Videos 

J 70 http://windows.microsoft.co
m/en-US/windows/home 

Home, Explore Windows, 
Products, Shop, Downloads, 
Help & How-to 

 

7. RELATED WORK 
Depending on the objectives two different research directions can 
be distinguished in the field of web structure mining. The first 
direction aims at generating new structures as rankings or topic 
hierarchies based on web documents and their structure. 
Algorithms such as PageRank or HITS and their variations belong 
to this direction as well as approaches that cluster web documents 
based on their content. The research presented in this paper 
belongs to a second research direction that aims at mining existing 

WWW 2012 – LSNA'12 Workshop April 16–20, 2012, Lyon, France

1032



structures that are difficult to retrieve as navigational hierarchies or 
boundaries of web sites.  
Mining Navigation Elements 
Some work has been done on mining navigation elements. Li and 
Kit describe an approach in [17] that is based solely on the web 
graph. Frequent item set mining algorithms are applied on the sets 
of outgoing hyperlinks of the pages to detect repeated menus. 
However a more comprehensive evaluation of the approach would 
be interesting. The work of Rodrigues et al. [5][8] on mining link 
blocks for representing sites and finding site boundaries has been 
described above. However the authors do not evaluate how well 
the page segmentation into link blocks really reproduces the 
navigation elements as perceived by humans. The ratio of linked 
text to all text is a common method for recognizing navigation 
elements or link lists [1][18] while in [19] other metrics as the text 
length and the hyperlink targets are used. The performance of these 
metrics is not reported. The work presented in [20] uses several 
other metrics to find navigation elements on page level. An inter-
page analysis to find repeated navigation structures is not included. 
An evaluation was conducted showing a high recall and moderate 
precision. We used the link text ratio criterion in combination with 
other metrics in our previous work which included an inter-page 
analysis [7]. The evaluation showed that achieving a high accuracy 
with this approach is difficult.  
There are some approaches that do not mine navigation elements 
explicitly but do take into account the structural information they 
provide. For instance, the clustering method described in [3] 
considers “parallel links” – links that are siblings in the DOM tree 
of a page. Such links are likely to belong to the same navigation 
element. 
Clustering and Hierarchy Detection 
Several approaches in this direction work solely on the web graph 
model, whose vertices represent pages and whose arcs represent 
hyperlinks. One of these is based on hyperlink co-citation for web 
clustering as introduced by Pitkow and Pirolli [21]. It is based on 
the idea that hyperlinks that frequently occur on a page together 
point to semantically related resources. Other approaches 
computed additional edge weights for the web graph in order to 
improve the clustering results. Extracting a hierarchical structure 
with standard graph algorithms based on the web graph is 
described in [1]. The edge weights are computed by machine 
learning methods that distinguish two link types based on eight 
link features. In [22] the edge weights for the web graph are 
computed based on text similarity and co-citation of hyperlinks. 
Three algorithms (k-means, multilevel METIS and Normalized 
Cut) are evaluated to partition up to 3500 documents. Normalized 
Cut performs best in the evaluation, but the objectives of the 
experiments are not the detection of Site boundaries but the 
clustering of topically related documents. Other web graph 
clustering methods consider hyperlink transitivity to compare 
pages that are not connected by a direct hyperlink (e.g. [23]).  
An evaluation of the performance of four clustering algorithms in 
conjunction with several different features aside from the web 
graph is described in [4]. The features include word co-occurrences 
of the complete text as well as of the titles, hyperlinks, script-links 
and the URLs that are split into components using delimiters as “.” 
and “/”. A bisecting k-means algorithm on the URL components 
performs best. Instead of using a clustering algorithm, the site 
segmentation can be retrieved directly from the hierarchical 
structure of URLs. Using the hierarchical structure of URLs seems 

to be a very common approach (used e.g. in [1],[2],[24]) but it was 
not evaluated in [4]. However, it is well known that the 
hierarchical structure of URLs does not reflect the Site 
organization accurately [2]. 
An interesting approach of hierarchical web site segmentation is 
presented in [2]. The algorithm requires an existing tree structure 
on the resource, e.g., retrieved from the URL hierarchy and 
knowing the class (topic) of each resource. The tree is segmented 
into topically-cohesive regions, representing subsites. Also in the 
end a similar problem is addressed, the approach is very different 
from the work presented in this paper, which does not require a 
given classification and hierarchy. 
Evaluation 
The existing work on web pages shows that the evaluation of 
clustering methods for finding site boundaries and intra-site 
structures is a challenge. The main problem is that a reasonably 
large data set is necessary for meaningful results but the results 
have to be evaluated manually.  
In [4] four sets of pages from different university departments are 
used, each representing a site and consisting of 500 pages. Thus 
the number of Sites is low and they are selected in advance what 
might bias the results. In [5] Rodrigues et al. describe an 
evaluation method that does not measure the aggregation of pages 
to sites but the precision and recall of detected entry pages. This 
allows considering sites as well as sub sites. They compare five 
methods, two of which are based on their own approach. Although 
the results are mixed and no method achieves a high F measure, 
the authors show that their approach is able to detect entry pages 
that are not found by other methods. In the experiments in [3] and 
[24] a large number of pages are clustered, but no metrics are used 
for evaluating the clustering quality. Instead the resulting clusters 
themselves are listed in tables and figures.  

8. CONCLUSION 
We believe that the MenuMiner-method proposed in this paper is a 
contribution that opens new doors for analyzing the structure of 
domains and sites. The algorithm is fast and its time-complexity is 
linear in the number of pages. It is solely based on analyzing the 
HTML structure and no additional resources such as CSS style 
sheets are required. A visual model is not necessary for identifying 
the s-menus of a page. The evaluation shows that the approach 
allows identifying with high precision the main menu systems that 
are a common characteristic of all pages of a site and that represent 
its central organization scheme. Applied to the problem of site 
boundary detection the presented approach provides almost perfect 
results in contrast to other current methods. The data obtained in 
the experiment also gave interesting information about the 
concepts of content access a site implements, based on which the 
site can be classified. In our experiment it also allowed the 
identification of compound documents. 
The focus of the experiment and evaluation described was to show 
the reliability of the MenuMiner method. We found that the 
method is a very solid foundation that is ready to be applied in 
practice. Thus further research can be done on the interpretation 
and processing of the obtained data. S-menus can be considered as 
the structural skeleton of web sites. We believe that it is possible to 
retrieve the complete content hierarchy of web sites based on this 
skeleton with high precision. This would close the gap between the 
human perception of a site’s content structure and the model 
generated by current structure mining methods. It would bring 
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improvements in many areas as e.g. the representation of search 
results, ranking, automated usability testing or web site reverse 
engineering.  
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