
A Fast Algorithm to Find All High Degree Vertices in Power
Law Graphs

Colin Cooper
Department of Informatics

King’s College London
London, U.K.

colin.cooper@kcl.ac.uk

Tomasz Radzik
Department of Informatics

King’s College London
London, U.K.

tomasz.radzik@kcl.ac.uk

Yiannis Siantos
Department of Informatics

King’s College London
London, U.K.

yiannis.siantos@kcl.ac.uk

ABSTRACT
Sampling from large graphs is an area which is of great in-
terest, particularly with the recent emergence of huge struc-
tures such as Online Social Networks. These often contain
hundreds of millions of vertices and billions of edges. The
large size of these networks makes it computationally expen-
sive to obtain structural properties of the underlying graph
by exhaustive search. If we can estimate these properties by
taking small but representative samples from the network,
then size is no longer a problem.

In this paper we develop an analysis of random walks,
a commonly used method of sampling from networks. We
present a method of biassing the random walk to acquire a
complete sample of high degree vertices of social networks,
or similar graphs. The preferential attachment model is a
common method to generate graphs with a power law de-
gree sequence. For this model, we prove that this sampling
method is successful with high probability.

For t-vertex graphs G(t) generated by a preferential at-
tachment process, we analyze a biassed random walk which
makes transitions along undirected edges {x, y} proportional

to (d(x)d(y))b, where d(x) is the degree of vertex x and b > 0
is a constant parameter. Let S(a) be the set of all vertices of
degree at least ta in G(t). We show that for some b ≈ 2/3,
if the biassed random walk starts at an arbitrary vertex of
S(a), then with high probability the set S(a) can be discov-

ered completely in Õ(t1−(4/3)a+δ) steps, where δ is a very

small positive constant. The notation Õ ignores poly-log t
factors.

The preferential attachment process generates graphs with
power law 3, so the above example is a special case of this re-
sult. For graphs with degree sequence power law c > 2 gener-
ated by a generalized preferential attachment process, a ran-
dom walk with transitions along undirected edges {x, y} pro-

portional to (d(x)d(y))(c−2)/2, discovers the set S(a) com-

pletely in Õ(t1−a(c−2)+δ) steps with high probability. The

cover time of the graph is Õ(t).
Our results say that if we search preferential attachment

graphs with a bias b = (c − 2)/2 proportional to the power
law c then, (i) we can find all high degree vertices quickly,
and (ii) the time to discover all vertices is not much higher
than in the case of a simple random walk. We conduct ex-
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perimental tests on generated networks and real-world net-
works, which confirm these two properties.
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1. INTRODUCTION
The explosive growth of Online Social Networks (OSNs)

over the past few years and the relative power that peo-
ple have within these networks to affect the world around
them, is a phenomena whose importance is beyond dispute.
Recent developments in technology have allowed the cre-
ation of large networks, available globally via personal com-
puters, or more recently mobile phones. The original and
most outstanding example of such networks is the World
Wide Web (WWW), and the email network. Very recently,
many novel OSNs such as Twitter and Facebook, or on-
line video repositories such as YouTube have sprung up.
These networks, extensively interleaved with each other and
the WWW, have substantial impact on the way our lives
are lived. Nobody who was followed the political unrest in
North Africa during February of 2011 can be unaware of
the importance of Facebook and Twitter in galvanizing and
coordinating social behavior.

The very large size of these networks makes it a major
problem to get a good idea of their structure. This is espe-
cially true, given the limited amount of resources that are
usually available when accessing them for research purposes.
To solve this, a way to take small but representative samples
of these networks needs to be found, which gives the correct
idea of the structure of the entire graph.

While the intuition for modeling OSNs as a graph is rather
simple, one may discover that in interpreting the correct
structure, or proposing a generative model, even from large
samples, there are many questions that automatically arise.
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Some questions revolve around determining the best theoret-
ical generation model to simulate such networks and others
in discovering good methods of obtaining samples of small
parts of the networks, which are representative and thus
maintain the same properties as the entire network.

The area of graph sampling mentioned above is a develop-
ing topic, and many open questions exist. Finding effective
and efficient ways to sample online graphs are of great inter-
est, a useful tool for the community, and if successful should
have practical applications.

The problem we consider, is how to find quickly all high
degree vertices of a graph generated by preferential attach-
ment. Although the distribution of node degrees in such
graphs is heavy tailed and they have a larger number of
high degree vertices than a random graph of equivalent edge
density, the actual number of such vertices is small compared
to the total number of vertices in the graph. Any standard
sampling methods such as uniform sampling, simple random
walks, fixed depth BFS etc would find it difficult to locate
any, let alone all such vertices within a small sample.

2. RELATED WORK

2.1 Scale-Free and power-law graphs
The WWW graph in particular has received a great deal of

attention. This graph is the result of modeling the WWW as
a set of pages which are the vertices of the graph, and a set of
directed links between the pages which are the edges of the
graph [20]. There are some very interesting properties that
have been discovered in this graph, for example the degree
distribution observed follows a long-tail distribution [23] [9].
This is apparently a common attribute that is present in the
WWW graph, as well as the Internet (autonomous systems)
[16], citation graphs [25], OSNs [16] and many others.

The graphs with the above properties are commonly re-
ferred to as power-law graphs or scale-free graphs, however
the latter term is controversial. For simplicity’s sake we
will use the term power-law graphs and scale-free graphs in-
terchangeably to refer to all graphs which have power-law
degree distributions, and a diameter less than or equal to the
expected diameter of a small-world network. Additionally
we will require our scale-free graphs to have a scale invari-
ance where these basic properties remain true even at very
different sizes of the graph. According to the work of Dill
et al [14] the WWW graph exhibits a self-similar structure,
which may be the cause of the aforementioned scale invari-
ance of this graph. It may be reasonable to assume that
many other scale-free graphs observed such as OSN graphs
share this characteristic with the WWW graph.

2.2 Preferential attachment graphs
The preferential attachment model is a graph process used

to generate graphs with degree distributions which follow a
power-law. This process was proposed by Barabási and Al-
bert [4] as a generative procedure for a model of the www.
Surveys by Bollobás and Riordan [5] and Drinea, Enachescu
and Mitzenmacher [15] give many related generative pro-
cedures to obtain graphs with power-law degree sequences.
The general idea, is to begin with an initial non-empty graph
containing at least one edge. During each step, a new vertex
is added to the network and is then connected to a number
of existing vertices chosen according to probabilities propor-
tional to their degree.

2.3 Graph Crawling and Random walks
Generally speaking, graph crawling is a very underde-

veloped topic. Put simply, the big question is: ‘How can
one sample only a part of a graph and yet retain certain
structural information that is present on the entire graph’.
This question has many interpretations and shades of mean-
ing. In our case, for example, we are interested in getting a
crawled sample of a preferential attachment graph which is
a good model of the graph in its entirety. Thus, this sam-
ple studied on its own will have certain required properties
which need to hold for us. In particular we want the degree
distribution that is observed in the entire network to be, at
scale, observed in our crawled sample of the network. Other
typical examples might be clustering coefficient or diameter.

Work on efficient sampling of network characteristics arises
in many areas. In the context of search engine design, stud-
ies in optimally sampling the URL crawl frontier to rapidly
sample (e.g.) high pagerank vertices, based on knowledge
of vertex degree in the current sample, can be found in e.g.
[3].

Within the random graph community, traceroute sampling
was used to estimate cumulate degree distributions; and
methods of removing the high degree bias from this process
were studied in e.g. [1], [17]. Another approach, analysed
in [8], is the jump and crawl method to find (e.g.) all very
high degree vertices. The method uses a mixture of uniform
sampling followed by inspection of the neighboring vertices,
in a time sub-linear in the network size.

In the context of online social networks, exploration often
focused on how to discover the entire network more effi-
ciently. Until recently this was feasible for many real world
networks, before they exploded to their current size. It is no
longer feasible to get a consistent snapshot of the Facebook
network for example. (According to the Facebook statistics
page at www.facebook.com/press/info.php?statistics, re-
trieved on 2 June 2011, there were over 500 million active
users, and around 36 billion links.)

Methods based on random walks are commonly used for
graph searching and crawling, and such methods have been
used and analyzed extensively. Stutzbach et al [26] compare
the performance of breadth first search (BFS) with a simple
random walk and a Metropolis Hastings random walk on
various classes of random graphs as a basis for sampling the
degree distribution of the underlying networks. The purpose
of the investigation was to sample from dynamic Peer-To-
Peer (P2P) networks. In a related study Gjoka et al [18]
made extensive use of the above methods to collect a sam-
ple of Facebook users. As simple random walks are degree
biassed they used a re-weighting technique to unbias the
sampled degree sequence output by the random walk. This
is referred to as a re-weighted random walk in [18]. In both
the above cases it was shown the bias could be removed dy-
namically by using a suitable Metropolis-Hastings random
walk. This indicates that there are application or network
specific optimizations that can be done on random walks in
order to tune them to the required task.

An interesting experimental analysis on sampling methods
such as Respondent Driven Sampling (RDS) and Metropolis-
Hastings Random Walk has been done by Rasti et al [24],
which shows the effect of graph structure and size on the
efficiency of these methods. Several graph types were used
in [24], including the Erdos-Renyi random graph, the Small
World graph, the Barbasi-Albert (preferential attachment)
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graph and the Hierarchical Scale-Free graph (a scale-free
graph which has a structure of clusters within clusters). It
was shown that the above sampling methods had a reduced
efficiency when applied to the Hierarchical Scale-Free graph.

In a related study by Leskovec et al in [21] it is mentioned
that there are two distinct goals in sampling a network: the
back in time goal, where we would be interested in a sam-
ple which would look like a snapshot of the graph in an ear-
lier epoch or time period, and the scale-down goal, where
we would be interested in a sample of the graph in which
properties of the current state of the graph are preserved in
proportion to the sample size.

In most cases we are just interested in a very specific prop-
erties of the graph. In that respect scaled down sampling of
the graph may be focused primarily around obtaining these
properties. For example, if we need to know the degree dis-
tribution of the network, it may be sufficient to get a subset
of vertices sampled uniformly at random, and examine the
proportion of vertices of each degree appearing in the sam-
ple. Even in this simple case however, different properties of
the degree sequence may need several distinct sampling pro-
cesses in order to get a good overall picture. For example,
a sample with the same average degree as the graph may
give no information about high degree vertices. Obtaining
information about average distance between vertices might
require a completely different process.

Our work differs from the aforementioned work with re-
spect to the sampling goal. We wish to obtain all high degree
vertices which are rare but significant vertices in such net-
works and therefore are hard to sample but important to
have obtained.

3. OUR CONTRIBUTIONS
Preferential attachment graphs have a heavy tailed degree

sequence. Thus, although the majority of the vertices have
constant degree, a very distinct minority have very large de-
grees. This particular property is the significant defining
features of such graphs. A log-log plot of the degree se-
quence breaks naturally into three parts. The lower range
(small constant degree) where there may be curvature, as the
power law approximation is incorrect. The middle range, of
large but well represented vertex degrees, which give the
characteristic straight line log-log plot of the power law co-
efficient. In the upper tail, where the sequence is far from
concentrated, the plot is a spiky mess.

In our work we will focus on sampling the higher degree
vertices, both the middle range and upper tail. Our aim is
to sample all these vertices, and we propose a provably effi-
cient method of obtaining those vertices in sub-linear time
using a weighted random walk. Our reason for sampling all
the higher degree vertices is that the upper tail is not con-
centrated, so no sample will be representative. We consider
a weighted random walk because, as there are few vertices
even in the middle range, a simple random walk may take
too long to obtain a statistically significant sample. Cou-
pled with this is the impression that in many networks, for
example the WWW, it is the high degree vertices which are
important, both as hubs and authorities, and for pagerank
calculations.

The simplest way to generate a graph with a power law
degree sequence is the preferential attachment method de-
scribed by Albert and Barabási [4]. In this model, the graph
G(t) = G(m, t) is obtained from G(t − 1) by adding a new

vertex vt with m edges between vt and G(t − 1). The end
points of these edges are chosen preferentially, that is to say
proportional to the existing degree of vertices in G(t − 1).
Thus the probability p(x, t) that vertex x ∈ G(t− 1) is cho-
sen as the end point of a given edge is equal to p(x, t) =
d(x, t − 1)/(2m(t − 1)), and this choice is made indepen-
dently for each of the m edges added. A model generated
in this way has a power law of 3 for the degree sequence,
irrespective of the number of edges m ≥ 1 added at each
step.

Let S be a subset of the vertices of a graph G = (V,E),
where S is defined in terms of some property, such as the set
of vertices with degree at least d. We suppose the content of
S is unknown, and that we wish to discover all vertices in S
by searching G using a random walk. We say a random walk
is seeded if the walk starts from some vertex s of S. In the
context of searching networks such as Facebook, Twitter or
the WWW it is not unreasonable to suppose we know some
high degree vertex without supposing we know all of them.

Theorem 1. Let G(m, t) be a graph generated in the
preferential attachment model. Then With High Probability
(whp) we can find all vertices in G(m, t) of degree at least

ta in O(t1−(4/3)a(1−δ)) steps, using a biassed seeded ran-
dom walk with transition probability along edge {x, y} pro-

portional to (d(x)d(y))2/3. Here δ > 0 is a small positive
constant (eg. δ = 0.00001). The cover time of G(m, t) by
this biassed walk is O(t polylog t).

The preferential attachment model was refined by Bol-
lobas and Riordan [7], [6] who introduced the scale free
model to make detailed calculations of degree sequence and
diameter. The model was generalized by many authors,
including the web-graph model of Cooper and Frieze [12],
whose results we will need in our proofs below. The web-
graph model is very general and allows the number of edges
added at each step to vary, for edges from new vertices to
choose their end points preferentially or uniformly at ran-
dom, as well as for insertion of edges between existing ver-
tices. By varying these parameters, preferential attachment
graphs with degree sequences exhibiting power laws c in the
interval (2,∞) are obtained. Assuming that m edges are
added at every step, we refer to this generalized (web-graph)
process with power law c as G(c,m, t). Our motivation for
considering this generalized process is to extend our anal-
ysis to networks whose power laws have been determined
experimentally to be c > 2, but c 6= 3.

Theorem 2. For c > 2, whp we can find all vertices in
G(c,m, t) of degree at least ta in O(t1−a(c−2)(1−δ)) steps,
using a biassed seeded random walk with transition probabil-
ity along edge {x, y} proportional to (d(x)d(y))(c−2)/2. Here
δ > 0 is a small positive constant (eg. δ = 0.00001). The
cover time of G(c,m, t) by this biassed walk is O(t polylog t).

Theorem 2 says that if we search this type of graph using
a random walk with a bias b = (c − 2)/2 proportional to
the power law c then, (i) we can find all high degree vertices
quickly, and (ii) the time to discover all vertices is of about
the same order as a simple random walk. Theorem 1 gives a
stronger bound for the special case of the (pure) preferential
attachment model. We also conducted experimental tests
on the preferential attachment model, which confirm these
properties of the biassed random walk.
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4. VERTEX DEGREES AND DIAMETER
OF THE WEB-GRAPH PROCESS

In [11], Cooper noted the result that the power law c for
preferential attachment graphs and web-graphs can be writ-
ten explicitly as

c = 1 + 1/η, (1)

where η is the expected proportion of edge end points added
preferentially. In the Barabási and Albert model, η = 1/2,
as each new edge chooses an existing neighbour vertex pref-
erentially; thus explaining the power law of 3 for this model.

The value η occurs naturally in such models in the expres-
sion for the expected degree of a vertex. Let d(s, t) denote
the degree at step t of the vertex vs added at step s. The
expected value of d(s, t) is given by

Ed(s, t) ∼ m
(
t

s

)η
, (2)

where η is the parameter defined above (see e.g. [10]).
Thus, in the preferential attachment model of [4], Ed(s, t) ∼
m(t/s)1/2.

The actual value of d(s, t) is not particularly concentrated
around Ed(s, t), but the following inequalities proved in
e.g. [10] and [11], are adequate for our proofs. The inequal-
ities hold with high probability (whp), for all vertices in
G(c,m, t). (

t

s

)η(1−ε)
≤ d(s, t) ≤

(
t

s

)η
log2 t, (3)

where ε > 0 is some arbitrarily small positive constant (e.g.
ε = 0.00001). The upshot of this, and our reason for ex-
plaining this to the reader, is that all vertices v added after
step s log2/η+1 t have degree d(v, t) = o ((t/s)η) whp. This
observation forms the basis of our sub-linear algorithm.

The final piece of the puzzle we will need, is that the
generalized web-graphs have diameter

Diam(G(c,m, t)) = O(log t) (4)

with high probability. This was improved for scale free
graphs by Bollobas and Riordan, but crude proofs can be
made for the general web-graph model based on expansion
properties of the graph.

5. BIASSED RANDOM WALKS
Let G = (V,E) be a connected undirected graph. A

random walk Wu, u ∈ V , on G is a Markov chain X0 =
u,X1, . . . , Xt, . . . on the vertices V associated to a particle
that moves from vertex to vertex according to a transition
rule. The probability of a transition from vertex i to vertex
j is p(i, j) if {i, j} ∈ E, and 0 otherwise.

Let d(v) = d(v, t) be the degree of vertex v ∈ G(t), and
let N(v) denote the neighbours of v in this graph. The
basis of our algorithm is a degree-biassed random walk, with
transition probability p(u, v) given by

p(u, v) =
(d(v))b∑

w∈N(u)(d(w))b
, (5)

where b > 0 constant. The value of b = (1/η − 1)/2 we
will choose in the proof of Theorem 2 below is optimized to
depend on η. Using (1), this value can be expressed directly

as a function of the degree sequence power law c, giving
b = (c− 2)/2.

The easiest way to reason about biassed random walks,
is to give each edge e a weight w(e), so that transitions
along edges are made proportional to this weight. In the
case above the weight of the edge e = (u, v) is given by
w(e) = (d(u)d(v))b so that the transition probability (5) is
now written as

p(u, v) =
(d(u)d(v))b∑

w∈N(u)(d(u)d(w))b
. (6)

The inspiration for a degree biassed walk with param-
eter b comes from the β-walks of Ikeda, Kubo, Okumoto
and Yamashita [19] which use an edge weight w(x, y) =
1/(d(x)d(y))β . When β = 1/2 this gives an improved worst
case bound of O(n2 logn) for the cover time of connected
n-vertex graphs.

We next note some facts about random walks, which can
be found either in Aldous and Fill [2] or Lovasz [22]. The
weight w(e) of an edge e has the meaning of conductance
in electrical networks, and the resistance r(e) of e is given
by r(e) = 1/w(e). The general theory of weighted random
walks is given in Chapter 3 of [2].

The commute time K(u, v) between vertices u and v, is
the expected number of steps taken to travel from u to v
and back to u. The commute time for a weighted walk is
given by

K(u, v) = w(G)Reff(u, v). (7)

Here w(G) = 2
∑
e∈E w(e) and Reff(u, v) is the effective

resistance between u and v, when G is taken as an electrical
network with edge e having resistance r(e). For our proof we
do not need to calculate Reff(u, v) very precisely, but rather
note that if uPv is any path between u and v then

Reff(u, v) ≤
∑
e∈uPv

r(e).

For u ∈ V , and a subset of vertices S ⊆ V , let Cu(S) be the
expected time taken for Wu to visit every vertex of G. The
cover time CS of S is defined as CS = maxu∈V Cu(S). We
define a walk as seeded if it starts in S. The seeded cover
time CS

∗ of S as CS
∗ = maxu∈S Cu(S). For a random walk

starting in a set S, the cover time of S satisfies the following
Matthews bound

C∗S ≤ max
u,v∈S

H(u, v) log |S|. (8)

For u 6= v, the variable H(u, v) is the expected time to
reach v starting from u (the hitting time). The commute
time K(u, v) is given by K(u, v) = H(u, v) + H(v, u), so
K(u, v) > H(u, v).

6. PROOF OF THEOREM 2
Suppose we want to find all vertices of degree at least

ta for some a > 0 in G(t) ≡ G(c,m, t). Let S(a) = {v :
d(v, t) ≥ ta}. Recall that G(t) is generated by a process of
attaching vt to G(t − 1). At what steps were the vertices
v ∈ S(a) added to G(t)? The expected degree of v at step
t is given by (2) i.e. Ed(v, t) = (1 + o(1))m(t/v)η. This
function is monotone decreasing with increasing v. Let σ be
given by

ta =

(
t

σ

)η
which implies σ = t1−a/η. (9)
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Let s = σ · log2/η+1 t, then using (3) all vertices added at
steps w ≥ s have d(w, t) = o(ta). On the other hand, using
(3) again, all vertices v added at steps 1, ..., s have degree

d(v, t) ≥ (t/s)η(1−ε).
We want to apply the Matthews bound (8). Clearly

log |S(a)| ≤ log t. It remains to find

max
u,v∈S

H(u, v) ≤ max
u,v∈S

K(u, v).

To calculate K(u, v) in (7), we first need to bound w(G)

w(G) = 2
∑

{x,y}∈E(G)

w(x, y)

=
∑
x∈V

∑
y∈N(x)

(d(x)d(y))b

≤
∑
x∈V

∑
y∈N(x)

(d(x))2b + (d(y))2b

2

=
∑
x∈V

(d(x))2b+1

≤
t∑

x=1

(
t

x

)η(2b+1)

log4 t.

The upper bound on vertex degree in the last line comes
from (3). Thus on choosing η(2b + 1) = 1, that is, for b =
(1/eta− 1)/2, we have

w(G) = O(t log5 t). (10)

Because Diam(G(s)) = O(log s), (see (4)), we know that for
any u, v ∈ S(a) there is a path uPv of length O(log t) from u
to v in G(t) contained in G(s), and thus consisting of vertices

w of degree d(w, t) ≥ (t/s)η(1−ε) = d∗. Thus all edges of
this path have resistance at most 1/(d(x)d(y))b ≤ 1/(d∗)2b.
From (3), d∗ satisfies

d∗ ≥
(

t

t1−a/η log1+2/η t

)η(1−ε)
≥ ta(1−ε)

log3 t
.

By the discussion above,

Reff(u, v) ≤
∑
e∈uPv

r(e) = O

(
log t

d∗

)
.

Using (7), and the value of d∗, we have

K(u, v) ≤ K∗ = O(t1−2ba(1−ε) log12 t).

The bound in Theorem (2 on finding all vertices of degree
at least ta is now obtained as follows. The Matthews bound
(8) gives the (expected) cover time C∗S(a) = O(K∗ log t).
Let δ = 3ε, an arbitrary but small constant. We use one
of the ε to absorb the polylog term in K∗, and the other to
apply the Markov inequality (Pr(X > A ·EX) ≤ 1/A), with
EX = C∗S(a), to give a whp result.

Finally we establish the cover time of the graph G(t). This
is done by using (8) with S = V (t) the vertex set of G(t),
i.e.

CV (t) ≤ max
u,v∈V (t)

H(u, v) log t. (11)

We bound H(u, v) by (7) as usual. The resistance r(e) of
any edge e = {x, y} is

r(e) =
1

(d(x)d(y))b
≤ 1

m2b
= O(1).

From (4) the diameter of G(t) is O(log t), so Reff(u, v) =
O(log t), since the effective resistance between u and v is at
most the resistance of a shortest path between u and v. This
and (10) give K(u, v) = O(t log6 t). Thus the cover time of
the graph G(t) is O(t log7 t).

7. PROOF OF THEOREM 1
We consider now the preferential attachment graphG(t) ≡

G(m, t). In this special case, η = 1/2 and the whp bounds (3)
on the degree of vertex s are

(
t

s

)(1−ε)/2

≤ d(s, t) ≤
(
t

s

)1/2

log2 t. (12)

We define a graph G∗ on vertices 1, 2, . . . , t, which has the
same degrees of vertices as in graph G(t), and is built in a
similar iterative process: for each v = t0 + 1, . . . , t, add m
edges from vertex v to some earlier vertices. Graph G(t0)
is the same constant-size starting graph for both G(t) and
G∗. In graph G(t), edges are selected according to a ran-
dom preferential process, while in graph G∗ according to the
deterministic process which greedily fills the in-degrees of
vertices, giving the preference to the older vertices. In both
graphs, if {x, y} is an edge and x > y, then this edge was
added to the graph when vertex x was considered. Graph
G∗ can be obtained from graph G(t) by swapping edges:
whenever there is a pair of edges {x, y} and {u, v} such that
u > x > y > v, then replace these edges with edges {x, v}
and {u, y}.

Assume b > 0 and define

d̄(v) =

(
t

v

)1/2

,

w̄(G) = 2
∑

{x,y}∈E(G)

(
d̄(x)d̄(y)

)b ≥ w(G) log−4b t,

where G is any graph with vertices 1, 2, . . . , t and the degrees
satisfying the bounds (12).

If we view G∗ as obtained by swapping edges in G = G(t),
then it is easy to see that each such swap increases w̄(G).
Indeed, if u > x > y > v, then

(d̄(x))b > (d̄(u))b and (d̄(v))b > (d̄(y))b,

implying that

(d̄(x))b(d̄(v))b + (d̄(u))b(d̄(y))b

> (d̄(x))b(d̄(y))b + (d̄(u))b(d̄(v))b.

Therefore, w̄(G∗) ≥ w̄(G(t)).
Next we derive an upper bound on w̄(G∗). Because

of the greedy process of adding edges to G∗, a vertex x
in G∗ has “incoming” edges which originate from vertices
first(x),first(x) + 1, . . . , last(x). All m edges outgoing from
each vertex y = first(x) + 1, . . . , last(x)− 1 point to x. Thus

WWW 2012 – LSNA'12 Workshop April 16–20, 2012, Lyon, France

1011



we have

w̄(G∗) = 2
∑

{y,x}∈E(G∗)

(
d̄(x)d̄(y)

)b
≤ 2

t∑
x=1

last(x)∑
y=first(x)

m
(
d̄(x)d̄(y)

)b
≤ 2

t∑
x=1

d(x)
(
d̄(x)d̄(first(x))

)b
≤ 2 log2 t

t∑
x=1

(
d̄(x)

)1+b (
d̄(first(x))

)b
. (13)

Now we calculate first(x). The m · first(x) edges outgoing
from vertices 1, 2, . . . , first(x) fill fully the in-degrees of ver-
tices 1, 2, . . . , x− 1 (the greedy process), so

2m · first(x) ≥ m · first(x) +mx ≥
x−1∑
z=1

d(z)

≥
x−1∑
z=1

(
t

z

)(1−ε)/2

≥ t(1−ε)/2x1−(1−ε)/2.

Thus

d̄(first(x)) =

(
t

first(x)

)1/2

≤
(

2mt

t(1−ε)/2x1−(1−ε)/2

)1/2

= (2m)1/2
(
t

x

)(1+ε)/4

. (14)

Using (13) and (14), we get

w̄(G∗) ≤ 2(2m)b/2 log2 t

t∑
x=1

(
t

x

)(1+b)/2(
t

x

)b(1+ε)/4
= 2(2m)b/2 log2 t

t∑
x=1

(
t

x

)1/2+(3/4)b(1+ε)

. (15)

Choosing b so that

1/2 + (3/4)b(1 + ε) ≤ 1, (16)

the sum in (15) is O(t log t), and we have

w(G) ≤ log4b w̄(G) ≤ log4b w̄(G∗) = O(t log4b+3 t).

Proceeding now as in the proof of Theorem 2, we get the
similar bound on the seeded cover time of S(a):

C∗S(a) = O
(
t1−2ba(1−ε) polylog t

)
.

We take b = 2
3
(1− ε) to satisfy (16) and obtain

C∗S(a) = O
(
t1−(4/3)a(1−ε)2

)
.

Similarly as in the proof of Theorem 2, we can conclude that
all vertices in S(a) are discovered in O(t1−(4/3)a(1−δ)) steps
whp, for δ = 3ε, and that the cover time of the graph G(t)
is O(t polylog t).

Figure 1: Degree Distribution Of G(t)

8. EXPERIMENTAL RESULTS

8.1 Preferential Attachment Graph
Theorem 1 gives an encouraging upper bound of the order

of around t1−(4/3)a for a biassed random walk to the cover
all vertices of degree at least ta in the t-vertex preferential
attachment graph G(m, t). Our experiments, summarized
in Figure 2, suggest that the actual bound is stronger than
this. The experiments were made on G(m, t) with m = 4,
and t = 5.106 vertices. The representative degree distribu-
tion of such graphs is given in Figure 1, with both axes in
logarithmic scale. More precisely, the x-axis is the exponent
a in the degree d = ta, i.e. a = log d/ log t, while the y-axis
is the frequency of the vertices of degree ta.

In Figure 2, plot SRW shows the average cover time τ(a)
of all vertices of degree at least ta by the simple random walk
(the uniform transition probabilities). Plot WRW shows the
average cover times by the biassed random walk with b =
1/2. Both axes are in logarithmic scale. The y-axis is y =
(log τ(a))/ log t. There are also three reference lines drawn
in Figure 2. These lines have slopes −a, −3a/2 and −2a,
are included for discussion purposes only, and the intercepts
have no meaning. It is worth noting that the cover times
plotted are the average cover times of 10 runs of each of the
methods.

Before discussing Figure 2 in greater detail, we remark
that it broadly confirms the implications from our theoret-
ical analysis: for random preferential attachment graphs,
biassed random walks discover quickly all higher degree ver-
tices while not increasing by much the cover time of the
whole graph. For example, by checking the exact cover
times, we observed that the biassed random walk with b =
1/2 took on average 2.7 times longer than a simple random
walk to cover the whole graph G(4, 5.106), but discovered
the 100 highest degree vertices 10 times faster than a simple
random walk.

The cover time CG of a simple random walk on G(m, t)
is known and has value CG ∼ (2m/(m − 1)t log t, see [13].
The intercept of the y-axis at m = 4 predicted by this is
1 + (log( 8

3
log 5.106))/(log 5.106) = 1.24 and this agrees well

with the experimental intercept of 1.23. This agreement
helps confirm our experimental results.

For a weighted random walk, the stationary distribution
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Figure 2: Plots of experimental data showing cover time of all vertices of degree at least ta as a function of a

π(v) of vertex v is given by

π(v) =
1

w(G)

∑
x∈N(v)

w(v, x),

where w(G) is the sum of the edge weights of G, each edge
counted twice. Thus for a simple random walk on G(m, t),
πS(v) = d(v)/2mt. For the weighted random walk of The-
orem 1 (η = 1/2 and b = 1/2 for G(m, t)) we have the
following lower bound.

πW (v) = Ω((d(v))3/2/t log5 t).

This bound holds because we know from (10) that w(G) =
O(t log5 t), and∑

x∈N(v)

w(v, x) =
∑

x∈N(v)

(d(v)d(x))1/2

≥ (d(v))1/2
∑

x∈N(v)

(m)1/2

≥ (d(v))3/2.

We can give an informal explanation of Figure 2 as follows.
In the long run, the number of visits to vertex v in T steps
approaches Tπ(v), so the first visit to v should be at about
T (v) = 1/π(v). As π(v) increases with increasing degree
d(v), then if h > a we should expect to see all vertices of
degree th before all vertices of degree ta.

For a simple random walk, let v be a vertex of degree ta,
then T (v) ≈ 1/πS(v) = 2mt/ta ≈ t1−a. So the SRW plot in
Figure 2 should have slope −a, and this is indeed the case.

For a weighted random walk, the same argument gives

1

πW (v)
= O

(
t log5 t

(ta)3/2

)
= Õ(t1−3/2a),

Figure 3: Degree Distribution Of the Google Web-
Graph

which explains the slope of −3a/2 for the WRW plot.
The total number n(a) of vertices of degree at least ta is

approximated by σ = t1−a/η = t1−2a, where the value of σ
from (9), is the expected step at which a vertex of degree
ta is added, and η = 1/2 for preferential attachment. As no
walk based process can visit σ vertices in less than σ steps,
this explains the line with slope −2a in Figure 2.

8.2 Real World Networks
In this section we present our experimental results on a

real world graphs: a sample of the Google web-graph and
the SlashDot Zoo (November 2008 dataset). The dataset
for these networks was obtained through the Stanford Net-
work Analysis Project site which contains a wide range of
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Figure 4: Plots of experimental data showing cover time of all vertices of degree at least ta (ignoring a < 0.35)
as a function of a in a sample of the Google web-graph

Figure 5: Plots of experimental data showing cover time of all vertices of degree at least ta (ignoring a < 0.25)
as a function of a in the SlashDot graph.
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Figure 6: Degree Distribution Of the SlashDot

resources as well as data sets.1 While both these graphs are
directed we are ignoring edge direction and treating them
as undirected for the purpose of our experiments. In the
case of the Google dataset we only take into account the
largest weakly connected component while SlashDot is al-
ready weakly connected.

The google web-graph sample has a power-law degree dis-
tribution in the mid-range with a co-efficient close to c =
3, as seen in Figure 3. As we can see in Figure 4 our
method outperforms a SRW in discovering all high degree
vertices giving us a strong indication of the effectiveness of
our method even on real world networks. The value of b
used in this case was b = 2

3
.

In addition as we can see in Figure 6 the degree distri-
bution of the SlashDot graph follows a power-law, with a
co-efficient of approximately 1.8. This is lower than the
power-law range in which our method was proven to work.
However as it is seen in Figure 5 the biassed random walk
is still quicker to cover all high degree vertices than a SRW.
The value of b used for this case was b = 1

2
. In both cases

what is plotted is an average of the cover times of 10 runs
of each method.

9. CONCLUSIONS
We have analysed the number of steps required by biassed

random walks to discover all higher degree vertices in ran-
dom t-vertex preferential attachment graphs, and we have
proven sublinear upper bounds for discovering all vertices
with degree at least ta, for 0 < a < 1/2. Our experimen-
tal results confirm the good performance of biassed random
walks on such graphs. Our theoretical analysis applies also
to generalized web-graph processes.

Our theoretical bounds are probably not tight and it would
be interesting to see if better bounds can be proven. What is
the best value for the parameter b of biassed random walks?
From the practical point of view, it would be interesting
the investigate the performance of biassed random walks on
additional real networks which exhibit the power law.
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