
Turkalytics: Analytics for Human Computation

Paul Heymann
Department of Computer Science

Stanford University
Stanford, CA, 94305, USA

heymann@stanford.edu

Hector Garcia-Molina
Department of Computer Science

Stanford University
Stanford, CA, 94305, USA

hector@cs.stanford.edu

ABSTRACT

We present “Turkalytics,” a novel analytics tool for human
computation systems. Turkalytics processes and reports log-
ging events from workers in real-time and has been shown
to scale to over one hundred thousand logging events per
day. We present a state model for worker interaction that
covers the Mechanical Turk (the SCRAP model) and a data
model that demonstrates the diversity of data collected by
Turkalytics. We show that Turkalytics is effective at data
collection, in spite of it being unobtrusive. Lastly, we de-
scribe worker locations, browser environments, activity in-
formation, and other examples of data collected by our tool.

Categories and Subject Descriptors

H.5.m [Information interfaces and presentation (e.g.,
HCI)]: [Miscellaneous]

General Terms

Human factors

Keywords

human processing, analytics, mechanical turk, human pro-
gramming, human computation, crowdsourcing

1. INTRODUCTION
Human computation has been quietly revolutionizing how

work in computer science is done. Crowdsourcing market-
places like Mechanical Turk can provide the labeled data
that we have become increasingly dependent on for super-
vised learning and other tasks. These marketplaces can
also provide subjects for user studies rapidly and at low
cost [13]. In our department, researchers in visualization,
human-computer interaction, computer vision, and natural
language processing are all currently using the Mechanical
Turk. In industry, Mechanical Turk is now commonly used
for tasks like search [9] (e.g., for evaluation or learning to
rank) and product categorization.
However, at this early stage, there is a tremendous amount

of duplicated effort. Mechanical Turk and similar market-
places provide a source of labor, but largely avoid the dif-
ficult questions of pricing, quality, and reputation. As a

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0632-4/11/03.

Figure 1: The Human Processing model, figure ex-
cerpted from Heymann and Garcia-Molina [10].

result, each requester or system writer using the Mechani-
cal Turk independently identifies appropriate pricing, good
and bad work, and good and bad workers. CrowdFlower [1],
SmartSheet [2], ATTi’s QDEx [8], and TurKit [14] all solve
(or fail to solve) these problems independently, for example.

In recent work [10], we address this duplicated effort by
proposing a model for encouraging code reuse and data shar-
ing. That model (the “Human Processing Model”) divides
the work of human computation into three primary areas:
human programs, human drivers, and recruiters (see Fig-
ure 1). A human program is simply a computer program
dependent on humans (workers) to complete its work. A hu-
man program interfaces with workers through human drivers
that create web interfaces and otherwise handle worker inter-
action. Lastly, recruiters are libraries or daemons in charge
of posting and pricing available web interfaces to market-
places like the Mechanical Turk. Thus, the human process-
ing model separates concerns into sub-programs for interact-
ing with workers (human drivers), sub-programs for posting
and pricing work (recruiters), and everything else (human
programs). Because human drivers and recruiters are of-
ten pre-written, this saves authors of human programs from
having to re-solve these difficult problems.

One challenge in the human processing model is the collec-
tion of reliable data about the workers and the tasks they are
performing. This data is needed by our recruiter in particu-
lar, but is also needed by any system trying to make human

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

477

processing more effective: If a task is not being completed,
is it because no workers are seeing it? Is it because the task
is currently being offered at too low a price? How does the
task completion time break down? Do workers spend more
time previewing tasks (see below) or doing them? Do they
take long breaks? Which are the more “reliable” workers?
This paper addresses the problem of analytics for recruit-

ing workers and studying the performance of ongoing tasks.
We describe our prototype system for gathering analytics,
illustrate its use, and give some initial findings on observable
worker behavior. We believe our tool for analytics, “Turka-
lytics,” is the first human computation analytics tool to be
embeddable across human computation systems (see Sec-
tion 2 for the explicit definition of this and other terms).
Turkalytics makes analytics orthogonal to overall system
design and encourages data sharing. Turkalytics can be
used in stand-alone mode by anyone, without need for our
full human-processing infrastructure (Figure 1). Turkalyt-
ics functions similarly to tools like Google Analytics [3], but
with a different set of tradeoffs (see Section 3.4).
We proceed as follows. Section 2 defines terms and de-

scribes the interaction and data models underlying our sys-
tem. We describe the implementation of Turkalytics based
on these models in Section 3. Section 4 describes how a re-
quester uses our system. Sections 5, 6, and 7 present results.
Section 5 describes the workload we experienced and shows
our architecture to be robust. Section 6 gives some initial
findings about workers and their environments. Section 7
considers higher granularity activity data and worker mar-
ketplace interactions. Section 8 summarizes related work,
and we conclude in Section 9.

2. PRELIMINARIES
We define crowdsourcing to be getting one or more remote

Internet users to perform work via a marketplace. We call
the people doing the work workers. We call the people who
need the work completed requesters. A marketplace is a web
site connecting workers to requesters, allowing workers to
complete tasks for a monetary, virtual, or emotional reward.
In our case, a task is usually a microtask, a unit of work

which can be done in five minutes or less. Tasks are grouped
in task groups, so that workers can find similar tasks. Me-
chanical Turk, the marketplace for which our Turkalytics
tool is designed, calls tasks HITs and task groups HITTypes.
When a worker completes a task, we call the completed
(task, worker) pair an assignment or work.
Tasks are posted to marketplaces programmatically by re-

questers using interfaces provided by the marketplaces. A
requester usually builds a program called a human computa-
tion system to ease posting many tasks. (We use“system” in
both this specific sense and in a colloquial sense, though we
try to be explicit where possible.) The system needs to solve
problems like determining when to post, how to price tasks,
and how to determine quality work. The human computa-
tion system may be based on a framework designed and/or
implemented by someone else to solve some of these tasks,
like the human processing model [10]. The human compu-
tation system may also leave certain problems to outside
services, such as our analytics tool (for analytics) or a full
service posting and pricing tool like CrowdFlower [1].
The rest of this section describes two models at the core

of our Turkalytics tool. The worker interaction model (Sec-
tion 2.1) represents the steps taken to perform work. The

Figure 2: Search-Preview-Accept (SPA) model.

data model (Section 2.2) represents collected data. Our in-
teraction model helps us present results about worker behav-
ior (Section 7) while our data model helps us describe the
implementation (Section 3) and requester usage (Section 4).

2.1 Interaction Model
Some crowdsourcing marketplaces focus on areas of ex-

pertise (e.g., programming or graphic design) while others
are more defined by the time span of tasks (e.g., one minute
microtasks or month long research projects). Different mar-
ketplaces call for different interactions. For example, mar-
ketplaces with longer, more skilled tasks tend to have con-
tests or bidding based on proposals, while marketplaces for
microtasks tend to have a simpler accept or reject style.
Section 2.1.1 describes a simple microtask model, and Sec-
tion 2.1.2 extends it to cover Mechanical Turk.

2.1.1 Simple Model

The Search-Preview-Accept (SPA) model is a simple
model for microtasks (Figure 2). Workers initially are in
the Search or Browse state, looking for work they can do at
an appropriate price. Workers can then indicate some inter-
est in a task by entering the Preview state through a preview
action. Preview differs from Search or Browse in that the
worker may have a complete view of the task, rather than
some summary information. From Preview, the worker can
enter the Accept state by accepting and actually complete
the task. Lastly, the worker can always return to a previous
state, for example, a worker can return an accepted task, or
leave behind a task that he found uninteresting on preview.

The SPA model fits microtasks well because the overhead
of a more complex process like an auction seems to be much
too high for tasks that may only pay a few pennies. However,
the SPA model does provide flexibility to allow workers to
self select for particular tasks and to back out of tasks that
they feel unsuited for. The Accept state also allows greater
control over how many workers may complete a given task,
because workers may be prevented from accepting a task.

2.1.2 Mechanical Turk Extensions

Mechanical Turk uses a more complex model than SPA
which we call the Search-Continue-RapidAccept-Accept-
Preview (SCRAP) model (Figure 3). This model is similar
to SPA, but adds two new states, Continue and RapidAc-
cept. Continue allows a worker to continue completing a task
that was accepted but not submitted or returned. RapidAc-
cept allows a worker to accept the next task in a task group
without previewing it first. In practice, the actual states

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

478

Figure 3: Search-Continue-RapidAccept-Accept-
Preview (SCRAP) model.

and transitions in Mechanical Turk are much messier than
Figure 3. However, we will see in Section 7.1 that mapping
from Mechanical Turk to SCRAP is usually straightforward.
SCRAP is a reasonable model of Mechanical Turk worker

activity, but is incomplete in two ways. First, it ignores
certain specialized Mechanical Turk features like qualifica-
tions. This is primarily because Turkalytics, as an unobtru-
sive third-party add-on cannot really observe these states.
Second, SCRAP describes a particular granularity of activ-
ity. As we will see, Turkalytics actually includes data within
states, for example, form filling activity or mouse movement.
We think of such data as being attached to a state, which is
more or less the representation in our data model.

2.2 Data Model
This section uses the terminology of data warehousing and

online analytical processing (OLAP) systems. Data in Turk-
alytics is organized in a star schema, centered around a single
fact table, Page Views. Each entry in Page Views represents
one worker visiting one web page, in any of the states of Fig-
ure 3. There are a number of dimension tables, which can be
loosely divided into task, remote user, and activity tables.
The three task tables are:

1. Tasks: The task corresponding to a given page view.
2. Task Groups: The task group containing a given task.
3. Owners: The owner or requester of a given task group.

The four remote user tables are:
1. IPs: The IP address and geolocation information asso-

ciated with a remote user who triggered a page view.
2. Cookies: The cookie associated with a given page view.
3. Browser Details: The details of a remote user’s

browser, like user agent (a browser identifier like
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-

US) AppleWebKit/533.4 (KHTML, like Gecko)

Chrome/5.0.375.99 Safari/533.4,gzip(gfe)) and
available plugins (e.g., Flash).

4. Workers: The worker information associated with a
given remote user.

The two activity tables are:
1. Activity Signatures: Details of what activity (and in-

activity) occurred during a page view.

2. Form Contents: The contents of forms on the page
over the course of a page view.

Figure 4 shows an Entity/Relationship diagram. Entities in
Figure 4 (the rectangles) correspond to actual tables in our
database, with the exception of “Remote Users.” Entities
attached to “Remote Users” are dimension tables for “Page
Views.” The circles in the figure represent the attributes or
properties of each entity.

There is one set of tables that we have left out for the
purpose of clarity. As we will see in Section 3, we need to
build up information about a single page view through many
separate logging events. As a result, there are a number of
tables, which we do not enumerate here, that enable us to
incrementally build from logging events into complete log-
ging messages, and then finally into higher level entities like
overall activity signatures and page views.

3. IMPLEMENTATION
Turkalytics is implemented in three parts: client-side

JavaScript code (Section 3.1), a log server (Section 3.2), and
an analysis server (Section 3.3). Section 3.4 gives a broad
overview of the design choices we made and limitations of
our design.

3.1 Client-Side JavaScript
A requester on Mechanical Turk usually creates a HIT

(task) based on a URL. The URL corresponds to an HTML
page with a form that the worker completes. Requesters add
a small snippet of HTML to their HTML page to embed
Turkalytics (see Section 4.1). This HTML in turn includes
JavaScript code (ta.js) which tracks details about workers
as they complete the HIT.

The ta.js code has two main responsibilities:
1. Monitoring: Detect relevant worker data and actions.
2. Sending: Log events by making image requests to our

log server (Section 3.2).
ta.js monitors the following:
1. Client Information: Worker’s screen resolution? What

plugins are supported? Can ta.js set cookies?
2. DOM Events: Over the course of a page view, the

browser emits various events. ta.js detects the load,
submit, beforeunload, and unload events.

3. Activity: ta.js listens on a second by second basis for
the mousemove, scroll and keydown events to deter-
mine if the worker is active or inactive. ta.js then
produces an activity signature, e.g., iaaia represents
three seconds of activity and two seconds of inactivity.

4. Form Contents: ta.js examines forms on the page
and their contents. In particular, ta.js logs initial
form contents, incremental updates, and final state.

ta.js sends monitored data to the log server via image
requests. We define a logging event (or event, where the
meaning is clear) to be a single image request. Image re-
quests are necessary to circumvent the same origin policies
common in most mainstream browsers, which block actions
like sending data to external sites. Special care is also needed
to send these image requests in less than two kilobytes due
to restrictions in Microsoft Internet Explorer (MSIE). We
define a logging message to be a single piece of logged data
split across one or more events in order to satisfy MSIE’s
URL size requirements. For example, logging messages sent
by ta.js include activity signatures, related URLs, client
details, and so on (Listing 1 is one such logging message).

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

479

Figure 4: Turkalytics data model (Entity/Relationship diagram).

Note that while we do not discuss the question of privacy
in this paper, we gather only data already available to re-
questers. A single page view can lead to as few as seven or
as many as hundreds of image requests. (For example, the
NER task described at the beginning of Section 5 can lead
to over one hundred requests as it sends details of its form
contents because it has over 2, 000 form elements.)

3.2 Log Server
The log server is an extremely simple web application built

on Google’s App Engine. It receives logging events from
clients running ta.js and saves them to a data store. In
addition to saving the events themselves, the log server also
records HTTP data like IP address, user agent, and referer.
(We intentionally continue the historical convention of mis-
spelling “referer” when used in the context of the HTTP
referer, and also do so when referring to the JavaScript
document referrer.) A script on the analysis server (Sec-
tion 3.3) periodically polls the web application, download-
ing and deleting any new events that have been received.
This simplicity pays off: our log server has scaled to over
one hundred thousand requests per day.

3.3 Analysis Server
The analysis server periodically polls the log server for new

events. These events are then inserted into a PostgreSQL
database, where they are processed by a network of triggers.
These triggers are arguably the most complex part of the
Turkalytics implementation, for four main reasons:

1. Time Constraints: One of our goals is for the analy-
sis server to be updated, and query-able, in real-time.
Currently, the turnaround from client to availability in
the analysis server is less than one minute.

2. Dependencies: What to do when an event is inserted
into the analysis server may depend on one or more
other events that may not have even been received yet.

3. Incomplete Input: When Turkalytics has not yet re-
ceived all logging events pertaining to a message, page
view, or any other entity from Figure 4, we call that
entity incomplete. Nonetheless, requesters should be
able to query as much information as possible, even

1 { ...

2 "HTTP_REFERER":

3 "...? assignmentId=1D9...

4 &hitId =152...

5 &workerId=A1Y9...",

6 "PATH_INFO": "/event/relatedUrls",

7 "QUERY_STRING":

8 "turkaMsgId =2

9 &documentReferrerEsc=https%3A%2F...

10 %26 prevRequester%3 DStanford%2B...

11 %26 requesterId %3 DA2IP5GMJBH7TXJ

12 %26 prevReward %3DUSD0 .01...

13 %26 groupId%3D1ZSQ ...

14 &turkaConcatNum=0

15 &turkaConcatLen=1

16 &targetId=f68daad1

17 &timeMillis =127...

18 &pageSessionId =0.828...

19 &clientHash =150..." ,

20 ... }

Listing 1: Excerpt from a related URLs logging
event formatted as JSON.

if some entities are incomplete. In fact, many entities
will remain incomplete forever. (This is one negative
result of an explicit design decision in Section 3.4.)

4. Unknown Input: The analysis server may receive un-
expected input that conflicts with our model of how
the Mechanical Turk works, yet it must still handle
this input.

These challenges are sufficiently difficult that our current
PL/Python trigger solution is our second or third attempt
at a solution. (One earlier attempt made use of dependency
handling from a build tool, for example.)

We lack the space to fully describe our triggers here, so
we give an example of the functionality instead. Suppose a
worker A19... has just finished previewing a task 152...,
and chooses to accept it. When the worker loads a new page

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

480

corresponding to the accept state, ta.js sends a number of
events. Listing 1 shows one such event, a related URLs event
detailing the page which referred the worker to the current
page. (Our implementation uses JavaScript Object Notation
(JSON) as the format for logging events.)
From the HTTP_REFERER, Turkalytics can now learn the

identifiers for the assignment (1D9...), HIT (152...), and
worker (A191...). From the PATH_INFO, Turkalytics can
learn what type of data ta.js is sending (relatedUrls).
From the QUERY_STRING, Turkalytics gets the actual data
being sent by ta.js, in this case, an escaped referer URL
(documentReferrerEsc) which in turn includes the reward
(USD0.01), group identifier (1ZSQ...), and other informa-
tion. The QUERY_STRING also includes a pageSessionId,
which is a unique identifier shared by all events sent as a re-
sult of a single page view. (pageSessionId is the key for the
“Page Views” table.) Note that neither the HTTP_REFERER

nor the referer sent by ta.js as documentReferrerEsc repre-
sents the worker’s previously visited page. The HTTP_REFERER
seen by our log server is the HIT URL that the worker is cur-
rently viewing, and documentReferrerEsc is the Mechanical
Turk URL containing that HIT URL in an IFRAME.
When the event from Listing 1 is inserted into the database,

the following functionality is triggered (and more!):
1. The current page view, as specified by pageSessionId,

is updated to have assignment 1D9..., HIT 152...,
and worker A191....

2. Page views lacking a worker identifier may have one
inferred based on the current page view’s worker iden-
tifier. (Inference uses an invariant based on distance in
time between page views.) For example, the page view
associated with the worker’s previous preview state is
updated to have a worker identifier of A191.... (When
the worker was in the preview state, the assignment
and worker identifiers were unknown, but now we can
infer them based on this later information.)

3. If not already known, a new task group 1ZSQ... with
a reward of one cent is added.

4. If not already known, a new mapping from the current
HIT 152... to the task group 1ZSQ... is added.

5. If not already known, the requester name and identifier
are added to the task group and owner entities.

This example shows that incrementally building entities from
Figure 4 in real-time requires careful consideration of both
event dependencies and appropriate invariants.

3.4 Design Choices
There are four main considerations in Turkalytics’ design:
1. Ease: We wanted Turkalytics to be easy for requesters

to use and install.
2. Unobtrusiveness: We wanted Turkalytics to be as in-

visible as possible to workers as they perform work,
and not to impact the operation of requesters.

3. Data Collection: We wanted to gather as much worker
task completion data as possible.

4. Cross-Platform: We wanted Turkalytics to work across
a number of different human computation systems for
posting work to Mechanical Turk, because such sys-
tems are currently quite heterogeneous.

Our requirements that Turkalytics be easy, unobtrusive,
and cross-platform led us to build our tool as embeddable
JavaScript, and to use simple cross-platform ideas like ses-
sions and cookies to group events by workers.

It is perhaps worth taking a moment to note why building
an analytics tool like Turkalytics, and in particular building
it as embeddable, cross-platform JavaScript is nontrivial.
First, we do not have direct access to information about the
state of Mechanical Turk. We do not want to access the
Mechanical Turk API as each of our requesters. However,
even if we did, the Mechanical Turk API does not allow us to
query fine grained data about worker states, worker activity,
or form contents over time. Nor does it tell us which work-
ers are reliable, or how many workers are currently using the
system. Second, data collected is often incomplete, as dis-
cussed in Section 3.3, and we often need to infer additional
data based on information that we have. Third, remote users
can change identifiers in a variety of ways, and in many cases
we are more interested in the true remote user than any par-
ticular worker identifier. All of these challenges, in addition
to simply writing JavaScript that works quickly and invisi-
bly across a variety of unknown web browsers with a variety
of security restrictions (same origin policy, third party cook-
ies), make writing an analytics tool like Turkalytics difficult.

Two of our design considerations, “unobtrusiveness” and
“data collection”are in direct opposition to one another. For
example, consider the following trade-offs:

• ta.js could send more logging messages with more de-
tails about the worker’s browser state, but this may be
felt through processor, memory, or bandwidth usage.

• ta.js could sample workers and only gather data from
some of them, improving the average worker’s experi-
ence, but reducing overall data collection.

• ta.js could interfere with the worker’s browser to en-
sure that all logging events are sent and received by our
logging server, for example, by delaying submission of
forms while logging messages are being sent.

These options represent a spectrum between unobtrusive-
ness and data collection.

We chose to send fairly complete logging messages and
avoid sampling. This is because we believe that workers are
more motivated to deal with minor performance degradation
(on the order of hundreds of milliseconds) than regular web
visitors. This is quite different than the assumptions behind
tools like Google Analytics. Nonetheless, we draw the line
at interfering with worker behavior, which we deem too ob-
trusive. A result of this decision is that we may occasionally
have incomplete data from missed logging messages.

A current technical limitation of our implementation is
a focus on HTML forms. HITs that make use of Flash or
an IFRAME may produce incomplete activity and form data.
However, there is nothing in our design which means that
such cases could not be handled eventually.

4. REQUESTER USAGE
Requesters interact with Turkalytics at two points: instal-

lation (Section 4.1) and reporting (Section 4.2). Our goal in
this section is to illustrate just how easy our current Turk-
alytics tool is to use currently and to show just how much
benefit requesters get. (If the reader is currently writing a
Mechanical Turk program or system, do get in touch with
the authors about embedding Turkalytics!)

4.1 Installation
In most cases, embedding Turkalytics simply requires

adding a snippet of HTML (see Listing 2) to each HTML
page corresponding to a posted HIT. (See Section 3.1 for

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

481

1 <script type="text/javascript"

2 src="https ://.../ta.js">

3 </script>

4 <script type="text/javascript">

5 Turka.Frontend.startAllTracking("...");

6 </script>

Listing 2: Turkalytics embed code.

more on how HTML pages relate to HITs.) Most systems
for displaying HITs have some form of templating system in
place, so this change usually only requires a copy-and-paste
to one file. An important special case of a human computa-
tion system with a templating system is the Mechanical Turk
requester bulk loading web interface [4]. Underlying that in-
terface is a templating system which generates HTML pages
on Amazon’s S3 system [5], so Listing 2 works there as well
(by adding it to the bottom of each template). These two
cases, requesters posting HTML pages and requesters using
the bulk interface, cover all of our current requesters.
Listing 2 has two parts elided. The first “...” is where

ta.js is located, on our server. This does not change across
installations. The second “...” is an identifier identifying the
particular requester. Currently, we assign each Turkalytics
requester a hexadecimal identifier, like 7e3f6604. Once the
requester has added the snippet from Listing 2 with these
changes, they are done. (Requesters lacking SSL also need
to use a simple workaround script due to referer handling,
but such requesters are rare.) In our experience, the process
usually takes less than five minutes and is largely invisible
to the requester afterwards.
Two implementation notes bear pointing out here about

the hexadecimal identifier. The first note is that due to the
web browser context, and due to our status as a third party,
it is possible that an “attacker” could send our system fake
data. At this stage, there is not a lot of reason to do this, and
this is a problem with most analytics systems. The second
note is that the hexadecimal identifier allows us to easily
partition our data on a per requester basis. Our current
analysis server uses a multitenant database where we query
individual requester statistics using this identifier, but could
easily be split across multiple databases.

4.2 Reporting
Once Turkalytics is installed (Section 4.1), all that re-

mains is to later report to the requester what analysis we
have done. Like most data warehousing systems, we have
two ways of doing this. We support ad hoc PostgreSQL
queries in SQL and we are in the process of implementing a
simple web reporting system with some of the more common
queries. In fact, most of the data in this paper was queried
from our live system, including Tables 1 and 2, Figures 6 and
7, and most of the inline statistics. (The only notable excep-
tion is Figure 5, where it is somewhat awkward to compute
sequential transitions in SQL.)
To give a flavor for what you can do, Listing 3 gives two ex-

ample queries that run on our real system. For example, sup-
pose we want to know which requesters in our system are the
heaviest users of Mechanical Turk. The first query computes
total number of tasks and total payout aggregated by re-
quester by joining page view data with task group data. An

1 SELECT tg.requester_name

2 , sum(tg.reward_cents) AS total_cents

3 , count (*) AS num_submits

4 FROM page_views AS pv

5 , task_groups AS tg

6 WHERE pv.task_group_id=tg.task_group_id

7 AND pv.page_view_type=’accept’

8 AND pv.page_view_end=’submit’

9 GROUP BY tg.requester_name;

10

11 SELECT tg.requester_name

12 , pv.task_group_id

13 , sum(tg.reward_cents * 3600)

14 / sum(a.active_secs)

15 , sum(tg.reward_cents * 3600)

16 / sum(a.total_secs)

17 FROM page_views AS pv

18 , task_groups AS tg

19 , activity_signatures AS a

20 WHERE pv.task_group_id=tg.task_group_id

21 AND pv.page_view_id=a.page_view_id

22 AND pv.page_view_type=’accept’

23 AND pv.page_view_end=’submit’

24 AND a.is_complete

25 GROUP BY tg.requester_name

26 , pv.task_group_id;

Listing 3: Two SQL reporting queries.

example output tuple is ("Petros Venetis", 740, 160).
That output tuple means that the requester Petros Venetis

spent $7.40 USD on 160 tasks. The second query computes
the hourly rate of workers based on active and total seconds
grouped by task group. (The query does so by joining page
views, task groups, and activity data, and using the activity
data to determine amount of time worked.) We might want
to do this, for example, to determine appropriate pricing of
a future task based on an estimate of how long it takes. An
example output tuple is ("Paul H", "1C4...", 6101.695,

122.553). That output tuple means that for task group
1C4... owned by Paul H, the hourly rate of workers based
on the number of active seconds was ≈$61.02 USD, while the
hourly rate based on total time to completion was ≈$1.23
USD. (Note that the example tuple has a very large discrep-
ancy between active and total hourly rate, because the task
required workers to upload an image created offline.)

5. RESULTS: SYSTEM ASPECTS
This section, and the two that follow (Sections 6 and 7)

describe our production experience with the Turkalytics sys-
tem. Our data for these sections is collected over the course
of about a month and a half starting on June 14th, 2010.
The data consists of 12, 370 tasks, 125 worker days, and a
total cost of $543.66. In our discussion below, we refer to
three groups of tasks posted by requesters using our tool:

1. Named Entity Recognition (NER): This task, posted
in groups of 200 by a researcher in Natural Language
Processing, asks workers to label words in a Wikipedia
article if they correspond to people, organizations, lo-
cations, or demonyms. (2, 000 HITs, 1 HITType, more
than 500 workers.)

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

482

2. Turker Count (TC): This task, posted once a week by
a professor of business at U.C. Berkeley, asks workers
to push a button, and is designed just to gauge how
many workers are present in the marketplace. (2 HITs,
1 HITType, more than 1, 000 workers each.)

3. Create Diagram (CD): This task, posted by the au-
thors, asked workers to draw diagrams for this paper
based on hand drawn sketches. In particular, Fig-
ures 2, 3, and 5 were created by worker A1K17L5K2RL3V5
while Figure 4 was created by worker ABDDE4BOU86A8.
(≈ 5 HITs, 1 HITType, more than 100 workers.)

There are two questions worth asking about our Turka-
lytics tool itself. The first is whether the system is perfor-
mant, i.e., how fast it is and how much load it can handle.
The second is whether it is successfully collecting the in-
tended monitored information. (Because Turkalytics is de-
signed to be unobtrusive, there are numerous situations in
which Turkalytics might voluntarily lose data in the interest
of a better client experience.) This section answers these
questions focusing on the client (Section 5.1), the logging
server (Section 5.2), and the analysis server (Section 5.3).

5.1 Client

Does ta.js effectively send remote logging messages?

We asked some of our requesters to add an image tag cor-
responding to a one pixel GIF directly above the Listing 2
HTML in their HITs. Based on access to this “baseline” im-
age, we can determine how many remote users viewed a page
versus how many actually loaded and ran our JavaScript.
(This assumes that remote users did not block our server,
and that they waited for pages to load.)
Overall, the baseline image was inserted for 25, 744 URLs.

Turkalytics received JavaScript logging messages for all but
88 of those URLs, which means that our loss rate was less
than 0.5%. There is no apparent pattern in which messages
are missing on a per browser or other basis. Our ta.js runs
on all modern browsers, though some features vary in avail-
ability based on the browser. (For example, Safari makes it
difficult to set third party cookies and early versions of MSIE
slow down form contents discovery due to DOM speed.)

How complete is activity sending?

Activity data is sent periodically as logging messages by
ta.js. However, as with other logging messages, the browser
thinks we are loading a series of images from the logging
server rather than sending messages. As a result, if the
worker navigates away from the page, the browser may not
bother to finish loading the images. After all, there is no
longer a page for the images to be displayed on!
How commonly are activity logging messages lost? We

looked at activity signatures for 9, 884 page views corre-
sponding to NER tasks. Each page view was an accepted
task which the worker later submitted. We computed an
expected number of activity seconds for a given page view
by subtracting the timestamp of the first logging event re-
ceived by Turkalytics from the timestamp of the last logging
event. If we have within 20 seconds, or within 10% of the
total expected number fo activity seconds, whichever is less,
we say that we have full activity data. (Activity monitoring
may take time to start, so we leave a buffer before expecting
activity logging messages.) For 8, 426 of these page views,
or about 85%, we have “full” activity data in this sense.

How fast and correct is form content sending?

Checking the form contents to send to the logging server
usually takes on the order of a few hundred milliseconds
every ten to thirty seconds. This assumes a modern browser
and a reasonably modern desktop machine. Of the 9, 884
NER page views accepted and submitted from the previous
section, 8, 049 had complete form data.

5.2 Logging Server
Given the simplicity of the logging server, it only makes

sense to ask what the peak load has been and whether there
were any failed requests. (Failed requests are logged for us
by the App Engine.) In general, Mechanical Turk traffic is
extremely bursty—at the point of initial post, many work-
ers complete a task, but then traffic falls off sharply (see
Section 7.2). However, our architecture handles this grace-
fully. In practice, we saw a peak requests/second of about
ten, and a peak requests/day of over 100, 000, depending on
what tasks were being posted by our requesters on a given
day. However, there is no reason to think that these are
anywhere near the limits of the logging server. During the
period of our data gathering, we logged 1, 659, 944 logging
events, and we lost about 20 per day on average due to (rel-
atively short) outages in Google’s App Engine itself.

5.3 Analysis Server
Our analysis server is an Intel Q6600 with four gigabytes

of RAM and four regular SATA hard drives located at Stan-
ford. We batch loaded 1, 515, 644 JSON logging events in
about 520 minutes to test our trigger system’s loading speed.
Despite the fact that our code is currently single threaded
and limited to running forty seconds of every minute, our
batch load represents an amortized rate of about 48 logging
events per second. The current JSON data itself is about 2.1
gigabytes compressed, and our generated database is about
4.6 gigabytes on disk. Both the data format and the speed of
insertion into the analysis server could both be optimized:
currently the insertion is mostly CPU bound by Python,
most likely due to JSON parsing overhead.

6. RESULTS: WORKER ASPECTS

Where are workers located?

Most demographic information that is known about Me-
chanical Turk workers is the result of surveys on the Mechan-
ical Turk itself. Surveys are necessary because the workers
themselves are kept anonymous by the Mechanical Turk.
However, such surveys can easily be biased, as workers ap-
pear to specialize in particular types of work, and one com-
mon specialization is filling out surveys.

Turkalytics allows us to test the geographic accuracy of
these past surveys. We use the“GeoLite City”database from
MaxMind to geolocate all remote users by IP address. (Max-
Mind claims this database is 99.5% accurate at the country
level [6].) Results are shown in Table 1. For example, the
first line of Table 1 shows that in our data, the United States
represented 2, 534 unique IP addresses (29.84% of the to-
tal), 1, 299 unique workers (44.716% of the total), 199 of
the unique workers who did the NER task, and 1, 011 of the
unique US workers who completed the TC task.

There are two groups of countries in the data. The United
States and India are the first group, and they represent

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

483

Overall Named Entity Turk Count
IPs % IPs # Workers % Workers # Workers # Workers

United States 2534 29.840 1299 44.716 199 1011
India 4794 56.453 1116 38.417 227 717

Philippines 127 1.496 52 1.790 15 32
United Kingdom 92 1.083 43 1.480 11 27

Canada 86 1.013 42 1.446 10 33
Germany 50 0.589 16 0.551 6 10
Australia 32 0.377 16 0.551 4 10
Pakistan 49 0.577 15 0.516 5 10
Romania 96 1.130 14 0.482 5 7

Anonymous Proxy 13 0.153 12 0.413 0 13

Table 1: Top Ten Countries of Turkers (by Number of Workers). 2,884 Workers, 8,216 IPs total.

about 80% of workers. The second group is everywhere else,
consisting of about 80 other countries, and 20% of the work-
ers. This second group is more or less power law distributed.
We suspect that worker countries are heavily biased by the
availability of payment methods. Mechanical Turk has very
natural payment methods in the United States and India,
but not elsewhere (e.g., even in other English speaking coun-
tries like Canada, the United Kingdom, and Australia).
Comparing the NER and TC tasks, we can see that In-

dians are more prevalent on the NER task. However, re-
gardless of grouping, the nationality orderings seem to be
fairly similar, with the caveat that Indians have many more
IPs than Americans. This suggests that previous survey
data may be slightly biased based on respondents, but over-
all may not be terribly different from the true underlying
worker demographics.

What does a “standard” browser look like?

The most common worker screen resolutions are 1024x768
(2266 workers at at least one point), 1280x800 (1166 work-
ers), 1366x768 (670 workers), 1440x900 (494 workers),
1280x1024 (451 workers), and 800x600 (228 workers). No
other resolution has more than 200 workers. Given an ap-
proximate browser height of 170px and a Mechanical Turk
interface height of 230px or more, a huge number of work-
ers are previewing (and possibly completing) tasks in less
than 400px of screen height. As a caveat, some workers may
be double counted as they switch computers or resolutions.
The average is about 1.5 distinct resolutions per worker, so
most workers have one or two distinct resolutions.
About half of our page views are by Firefox users, and

about a quarter are by MSIE users. In terms of plugins,
Java and Flash represent 70–75% of our page views, each,
while PDF and WMA represent 50–55% each. These may
be underestimates based on our detection mechanism (nav-
igator MIME types).

Are workers identifiable? Do they switch browsers?

It is becoming increasingly common to use the Mechanical
Turk as a subject pool for research studies. A growing body
of literature has looked at how to design studies around the
constraints of Mechanical Turk. One key question is how
to identify a remote user uniquely. For example, how do I
know that an account for a 30 year old woman from Kansas
is not really owned by a professional survey completer with
a number of accounts in different demographic categories?
One solution is to look at reasonably unique data associ-

Worker Counts Country
UAs IPs Cookies Views

AXF... 3 1 17 619 India
A1B... 2 9 4 618 Multinational
A1K... 5 23 8 537 India
A3O... 4 13 68 502 India
A2C... 4 47 33 462 India
A3I... 4 2 3 450 United States
A2I... 3 4 2 393 United States
A1V... 4 14 1 314 United States
A1C... 4 10 7 303 India
A31... 3 11 2 288 India
A2H... 8 6 8 268 India
A29... 1 17 2 244 India
A3J... 3 84 2 226 India
A2O... 3 3 4 225 United States
A1E... 1 25 5 225 India

Table 2: The number of user agents, IP addresses,
cookies and views for top workers by page views.

ated with a remote user. Table 2 shows the number of user
agents, IP addresses, and identifier cookies associated with
a given worker. Ideally, for identification purposes, each of
these numbers would be one. In practice, these possibly
unique pieces of data seem to vary heavily by worker. Com-
mon user agent strings, dynamic IPs, and downgrading or
blocking of cookies (particularly third party cookies as Turk-
alytics uses) are all possible reasons for this variability. For
example, the worker three from the bottom had 84 distinct
IP addresses over the course of 226 page views, but nonethe-
less kept the same two tracking cookies throughout. On the
other hand, the first worker in the table had 17 tracking
cookies over 619 page views, but only had one IP address
throughout. On average, for active workers, the user agent
to page view ratio is about 1:25, the IP to page view ratio is
about 1:10, and the cookie to page view ratio is about 1:11.
These numbers are skewed by special cases however, and the
median numbers are usually lower. (“Cheaters” appear rare,
though one remote user with a single cookie seems to have
logged in seven different times, as seven different workers,
to complete the TC task.)

7. RESULTS: ACTIVITY ASPECTS
Section 2.1 gave a model for interaction with Mechanical

Turk. This section looks at what behavior that model pro-
duces. Section 7.1 looks at what states and actions occur

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

484

Figure 5: Number of transitions between different
states in our dataset. Note: These numbers are ap-
proximate and unload states are unlabeled.

in practice. Section 7.2 looks in particular at previewing
interactions. Section 7.3 looks at activity data generated
by workers within page views. Our main goals are to show
that Turkalytics is capable of gathering interesting system
interaction data and to illustrate the tradeoffs of Mechanical
Turk-like (i.e., SCRAP-like) systems.

7.1 What States/Actions Occur in Practice?
Workers in the SCRAP model can theoretically execute a

large number of actions. However, we found that most tran-
sitions were relatively rare. Figure 5 shows the transitions
between states that we observed. (Very rare, unclear, or
“unload” transitions are marked with question marks.) For
example, we observed 720 transitions by workers from Accept
to RapidAccept, and 344 transitions out of the RapidAccept
state. To generate Figure 5, we assume the model described
in Section 2.1 and that workers are“single threaded,” that is,
they use a single browser with a single window and no tabs.
These assumptions let us infer state transitions based on
timestamp, which is necessary because of the referer setup
described in Section 3.3. Over 88% of our observed state
transitions are transitions in our mapped SCRAP model, so
our simplifying assumptions appear relatively safe.
Do workers use the extensions provided by the SCRAP

model above and beyond the SPA model? We found that
RapidAccept was used quite commonly, but Continue was
quite rare. About half of the workers who chose to do large
numbers of tasks chose to RapidAccept often rather than
continuously moving between the Preview and Accept state.
However, continues represent less than 0.5% of our action
data, and returns about 2%. (We suspect that the transition
to Accept from Preview is particularly common in our data
due to the prevalence of the simple Turker Count task.)

7.2 When Do Previews Occur?
A common Mechanical Turk complaint is that the inter-

faces for searching and browsing constrain workers. In par-
ticular, Chilton et al. observe that workers primarily sort
task groups by how recently they were created and how

Figure 6: Number of new previewers visiting three
task groups over time.

many tasks are available in the group. This observation
appears to be true in our data as well.

Figure 6 shows when previously unseen workers preview
the NER, TC, and CD task groups immediately after an
instance was posted. For example, in the first hour of avail-
ability of the TC task, almost 150 workers completed the
task. The NER task group has many tasks, but is posted
only once. The TC task group has only one task, and is
only posted once. The CD task group has five tasks, but
is artificially kept near the top of the recently created list.
In Figure 6, both NER and TC show a stark drop off in
previews after the first hour when they leave the most re-
cently created list. NER drops off less, likely because it is
near the top of the tasks available list. CD drops off less
than TC, suggesting artificial recency helps. These exam-
ples suggest that researchers should be quite careful when
drawing conclusions about worker interaction (e.g., due to
pricing) because the effect due to rankings is quite strong.

7.3 Does Activity Help?
Turkalytics collects activity and inactivity information,

but is this information more useful than lower granularity
information like the duration that it took for the worker
to submit the task? It turns out that there are actually
two answers to this question. The first answer is that, as
one might expect, the amount of time a worker is active is
highly correlated with the total amount of time a worker
spends completing the task in general. The second answer
is that, despite this, signature data does seem to clarify the
way in which a worker is completing a particular task.

We looked at the activity signatures of 321 workers who
had at least one complete signature and had completed the
NER task. The Pearson correlation between the number
of active seconds and the total number of seconds for these
workers was 0.88 (see Figure 7). However, the activity sig-
natures do give a more granular picture of the work style of
different workers. Figure 8 shows two quite different activ-
ity signatures, both of which end in completing an accepted
task. The first signature shows a long period of inactive
seconds (i) followed by bursts of active seconds (a), while
the second signature shows a short period of mostly active
seconds. One might prefer one work completion style or the
other for particular tasks.

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

485

Figure 7: Plot of average active and total seconds
for each worker who completed the NER task.

diii

.............. 300 inactive seconds

ii

iaaaaaaiiiiaaaaaaaiaiaaaaaaaaaaaaaaaaiaaiaaaaaaaaa

aaaaaaaaaaaaaaaiiiiiiiiiaaaaaaaaaaaaaaaiaaaiiiaaaa

aaaaaiiiiiiiiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaiaaaiaaa

aaaaiiiiiiiiiiiiiiiaiaiiiiiiiaaiiaiaaaaaaaaiiaaaaa

aaiiaiiaaaaaaaaaiaaaaaaaiiiiaaiaaaaaaaasbu

(a) 688 Second Activity Signature

daaaaiaaaaaiaaaaaaaaaaaaiiiiiiaaaaaaaiiiaaaaaaaaaa

aaaaiiiiaaiiiaaaiiiiaaaaaiaaaaiaaaaaiiaaaaiiiasabu

(b) 96 Second Activity Signature

Figure 8: Two activity signatures showing dif-
ferent profiles for completing a task. Key:
a=activity, i=inactivity, d=DOM load, s=submit,
b=beforeunload, u=unload.

8. RELATED WORK
Our system, and the results presented, are related to four

main areas of work: human computation systems, analytics,
Mechanical Turk demographic research, and general Me-
chanical Turk work. With respect to human computation
systems, several were cited in the introduction [1], [2], [8],
[14]. Our intent is for our tool to improve such systems and
make building them easier. With respect to analytics, nu-
merous analytics tools (e.g., [3]) exist in industry, though
there does not appear to be a great deal of work in the aca-
demic literature about such tools. With respect to demo-
graphics, independent work by Ipeirotis [11], [12] and Ross
et al. [15] used worker surveys to illustrate the changing de-
mographics of Mechanical Turk over time. (Section 6 more
or less validates these previous results, as well as adding a
more recent data point.) With respect to general Mechanical
Turk research, the most common focuses to date have been
conducting controlled experiments [13] and performing data
annotation in areas like natural language processing [16],
information retrieval [7], and computer vision [17].

9. CONCLUSION
We presented Turkalytics, a tool for gathering data about

workers completing human computation tasks. We envi-
sion Turkalytics as part of a broader system, in particu-
lar a system implementing the Human Processing model.
However, one big advantage of our design for Turkalytics is

that it is not tied to any one system. Turkalytics enables
both code sharing among systems (systems need not reim-
plement worker monitoring code) and data sharing among
systems (requesters benefit from data gathered from other
requesters). Our contributions include interaction and data
models, implementation details, and findings about both our
system architecture and the popular Mechanical Turk mar-
ketplace. We showed that our system was scalable to more
than 100, 000 requests/day. We also verified previous demo-
graphic data about the Turk, and presented some findings
about location and interaction that are unique to our tool.
Overall, Turkalytics is a novel and practical tool for human
computation that has already seen production use.

10. REFERENCES
[1] http://crowdflower.com/.

[2] http://www.smartsheet.com/.

[3] http://www.google.com/analytics/.

[4] http://requester.mturk.com/.

[5] http://s3.amazonaws.com/.

[6] http://www.maxmind.com/app/geolitecity.

[7] O. Alonso and S. Mizzaro. Can we get rid of TREC
Assessors? Using Mechanical Turk for Relevance
Assessment. In SIGIR ’09 Workshop on the Future of
IR Evaluation.

[8] D. Feng. Talk: Tackling ATTi Business Problems
Using Mechanical Turk. Palo Alto Mechanical Turk
Meetup, 2010.

[9] J. Galante. CrowdFlower’s Virtual Pay for Digital
Purchases. http://www.businessweek.com/magazine/
content/10_26/b4184041335224.htm.

[10] P. Heymann and H. Garcia-Molina. Human
Processing. Technical report, 2010.

[11] P. Ipeirotis. Mechanical Turk: The Demographics.
http://behind-the-enemy-lines.blogspot.com/

2008/03/mechanical-turk-demographics.html.

[12] P. Ipeirotis. The New Demographics of Mechanical
Turk. http:
//behind-the-enemy-lines.blogspot.com/2010/03/

new-demographics-of-mechanical-turk.html.

[13] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing User
Studies with Mechanical Turk. In CHI ’08.

[14] G. Little, L. Chilton, M. Goldman, and R. Miller.
TurKit: Tools for Iterative Tasks on Mechanical Turk.
In HCOMP ’09: SIGKDD Workshop on Human
Computation.

[15] J. Ross, L. Irani, M. Silberman, A. Zaldivar, and
B. Tomlinson. Who are the Crowdworkers?: Shifting
Demographics in Mechanical Turk. In CHI ’10.

[16] R. Snow, B. O’Connor, D. Jurafsky, and A. Ng. Cheap
and Fast—But is it Good?: Evaluating Non-expert
Annotations for Natural Language Tasks. In
EMNLP’08.

[17] A. Sorokin and D. Forsyth. Utility Data Annotation
with Amazon Mechanical Turk. In CVPRW’08.

WWW 2011 – Session: Performance and Systems March 28–April 1, 2011, Hyderabad, India

486

