
Adaptive Policies for Selecting Groupon Style Chunked
Reward Ads in a Stochastic Knapsack Framework

Michael Grabchak
∗

Cornell University
Ithaca, U.S.A.

mg323@cornell.edu

Narayan Bhamidipati
Yahoo! Labs

Bangalore, India
narayanb@yahoo-

inc.com

Rushi Bhatt
Yahoo! Labs

Bangalore, India
rushi@yahoo-inc.com

Dinesh Garg
Yahoo! Labs

Bangalore, India
dineshg@yahoo-inc.com

ABSTRACT
Stochastic knapsack problems deal with selecting items with
potentially random sizes and rewards so as to maximize the
total reward while satisfying certain capacity constraints. A
novel variant of this problem, where items are worthless un-
less collected in bundles, is introduced here. This setup is
similar to the Groupon model, where a deal is off unless a
minimum number of users sign up for it. Since the opti-
mal algorithm to solve this problem is not practical, several
adaptive greedy approaches with reasonable time and mem-
ory requirements are studied in detail – theoretically, as well
as, experimentally. Worst case performance guarantees are
provided for some of these greedy algorithms, while results
of experimental evaluation demonstrate that they are much
closer to optimal than what the theoretical bounds suggest.
Applications include optimizing for online advertising pric-
ing models where advertisers pay only when certain goals, in
terms of clicks or conversions, are met. We perform exten-
sive experiments for the situation where there are between
two and five ads. For typical ad conversion rates, the greedy
policy of selecting items having the highest individual ex-
pected reward obtains a value within 5% of optimal over
95% of the time for a wide selection of parameters.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY

General Terms
Algorithms

Keywords
Groupon, Chunked Rewards, Ad Selection, Revenue Maxi-
mization

∗Most of the research work described herein was done when
Michael was a summer intern at Yahoo! Labs, Bangalore

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0632-4/11/03.

1. INTRODUCTION
How should a publisher optimally select and display adver-

tisements or offers when advertisers agree to pay for chunks
of clicks or conversions? A real world example of such chun-
ked reward mechanism is Groupon (www.groupon.com). At
Groupon, purchase vouchers are sold at heavy discount but
they come into effect only when a fixed, pre-determined,
number of individuals sign up within a fixed time. Once
this threshold number of sign-ups is met, the whole group
of buyers receives a discount. In the presence of multiple
concurrently active offers, the Groupon selection problem,
when transformed to an online and realtime setting, is to
show a small number, possibly one, of the available offers
to Groupon users. While we use the Groupon model as an
example, it is easy to generalize this scenario as an online
advertising scheme where the advertiser pays the publisher
only upon receiving a pre-determined number of item pur-
chases (or conversions). Similar models already exist, most
notably the dynamic cost per impression (dCPM) model of-
fered by RightMedia Exchange (www.rightmedia.com), where
the publisher is paid per-impression, as long as a fixed con-
version goal is maintained. Here, we generalize the dCPM
model where the publisher gets paid when a fixed number of
conversions happen within a given time period. Our case is
different in that, instead of guaranteeing a minimum num-
ber of conversions, the publisher agrees to a fixed number of
conversions and within a specified time limit. Such a payout
model is more desirable for the advertiser because, assuming
a successful campaign, the inventory, marketing costs, and
profits may be estimated on a per-week or a per-quarter
basis and for known quantities. While desirable for the ad-
vertiser or the seller, our problem formulation presents sig-
nificant algorithmic challenges for the publisher or the ad
serving exchange. As we shall see in this paper, such a
chunked reward format poses unique challenges for revenue
maximization.

The goal of this paper is to investigate how revenue for
the publisher may be optimized under a chunked reward
ad pricing model. We will show that the chunked reward
model proves to be a computationally hard problem. Theo-
retical performance guarantees will be developed for greedy
or sensible heuristic policies for our model, and extensive ex-

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

167

periments will show how certain policies enable good revenue
generation with explicit campaign run-time constraints. More
formally, we consider a scenario with k concurrent ads or
coupon offers. Exactly one of these ads must be shown to a
user. Let the probability of a user signing up for the offer
i be pi, and upon ni sign ups (i.e., ni successes), the pub-
lisher (or the ad exchange) receives a fixed, known, reward
ri. We also assume, for the sake of simplicity in analysis,
that once the reward is collected, the publisher has no inter-
est in showing the offer anymore. With this latter assump-
tion, we depart slightly from the Groupon.com model where
the ad campaign may run for a fixed duration rather than
until thresholds are met.

The goal of the publisher is now to maximize reward
within a given, fixed, time frame by presenting the best se-
quence of ads, out of the currently active k ads. We will
show how this maximization problem is NP-hard. We will
then devise a number of heuristic selection policies and show
formal approximation bounds for these. Through extensive
experimentation, we will also show how some of the adaptive
greedy policies devised here work quite well in practice.

To summarize the key contributions of this paper:

1. We formally study a chunked reward ad selection prob-
lem suitable for online advertisements. To the best of
our knowledge, this problem of optimizing revenue un-
der chunked probabilistic reward and fixed time hori-
zon has not been studied earlier.

2. We show that our optimization problem is a variant
of the stochastic knapsack problem [2] and, therefore,
intractable to exactly maximize. We devise a number
of heuristic ad-selection policies and provide worst-case
performance bounds on expected revenues for those
policies. We also prove 1/3- and 1/4-approximation
bounds for some policies that are easily computable.

3. Using extensive experiments we compare a number of
ad selection policies and demonstrate their strengths
and weaknesses. We also identify a policy that works
quite well empirically and, at the same time, is fast to
compute.

The remainder of this paper is organized as follows. In
Section 2, we give a formal setup of the problem. We then
describe some related work in Section 3. In Section 4, we
describe several greedy and modified greedy policies, and for
the modified greedy policies we give worst case performance
bounds.

After discussing the complexity of these policies in Section
5, experimental results are given in Section 6. These results
show that a simple greedy policy is often very good. Finally,
in Section 7, we conclude and give some directions for future
work.

2. FORMAL SETUP
Assume that we have k ads that we wish to display on a

particular website. Assume that the ith ad has a CTR of pi,
and if it gets at least ni clicks on the web site before a fixed
time, then we get a reward of ri. The number of users who
will visit the site by that time is some random variable T .
When the tth user arrives, we must choose an ad to display
in order to maximize our revenue. We assume that we can
only display one ad at a time.

We will think of the problem in the following slightly more
abstract setting. There is a machine with k arms. Pulling
the ith arm results in a success with probability pi and a
failure with probability 1 − pi. The arm has an associated
goal of obtaining ni successes, only on accomplishment of
which, a reward of ri is given by the machine. This reward
may be obtained only once for any arm. We are allowed a
maximum of T arm pulls, where T may be random or fixed
and known. The objective is to pull a sequence of arms such
that the total reward is maximized. Note that, when pi = 1
for all i, and T is fixed and known, the problem reduces to
the standard (deterministic) knapsack problem. Since that
problem is known to be NP-hard (see [7]), our problem must,
in general, be NP-hard as well.

Let pe, re, and ne denote the vectors of probabilities, re-

wards, and the goals for a set of arms. We assume that
these vectors are known beforehand, along with FT (the dis-
tribution of T). In practice, of course, we would not know
pe and FT , but we assume that we have good estimates of

these. Further, we assume that whether we get a success or
a failure for any arm on any trial is independent of T .

For each arm i, let Wi be the random number of times
that we must pull arm i to get the nith success. Clearly,
Wi has a negative binomial distribution. Since there are
different parametrizations of the negative binomial, we will
specify what we mean. We will write Wi ∼ NB(ni, pi),
where pi ∈ [0, 1] and ni ∈ N \ {0}, to mean that, for t ∈ N,

P (Wi = t) =

8<:
0 if t < ni„

t − 1
ni − 1

«
pni

i (1 − pi)
t−ni o.w.

(1)

Note that EWi = ni/pi. We assume that the Wis are mu-
tually independent both of each other and of T .

For every time t, let the arm pulled at t be θt and the result
of this pull be δt. Once the arm to be pulled is determined,
the probability of success in that pull is known and given by

P (δt = 1|θt = i) = pi and P (δt = 0|θt = i) = 1 − pi.

For each t, let dt be a realization of the random variable δt,
and let de, δe, and θe be the corresponding vector forms.

A policy π is either a random or a deterministic function
that chooses the arm to be pulled at time t + 1 given all the
available information at time t. Thus, the arm chosen by
policy π at time t + 1 may be written as

θt+1 = π(pe, re,ne, FT |{(θi, di)}i=1,...,t). (2)

Note that a policy only knows T through its distribution.
In the important special case when T is deterministic, its
distribution is a point mass and it is thus known exactly.
We will use the notation Π to denote the class of all policies.
Without loss of generality, assume that P (Wi ≤ T) > 0 for
all i.

Let Si(t) and si(t) denote the random number of successes
and the observed number of successes, respectively, of arm
i in the first t pulls. They are defined as follows:

Si(t) =

tX
j=1

δj1[θj=i], (i = 1, 2, . . . , k), (3)

si(t) =
tX

j=1

dj1[θj=i], (i = 1, 2, . . . , k), (4)

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

168

ER(1, 2, 2)

ER(1, 2, 2|1)

Choose

r1

p1 Pull

r1p1

1 − p1

ER(1, 2, 2|2)

r2p2

p2 Pull

r1p1

1 − p2

Figure 1: Example of how π∗ computes the expected
reward for T = 2, given the values at T = 1. Here,
n1 = 1, n2 = 2, and r1p1 < r2p2

and let Se(t) and se(t) be the corresponding vector forms.
Thus, given de, the reward obtained by π is

R(π,pe, re,ne, FT |θe, δe = de) =

kX
i=1

ri1[si(T)≥ni], (5)

and the expected reward is

ER(π,pe, re,ne, FT |θe, δe = de) =

kX
i=1

riP (Si(T) ≥ ni; π).

We will call a policy optimal if it attains the largest reward.
Thus a policy π∗ is optimal if

π∗ = argsup
π∈Π

ER(π,pe, re,ne, FT |θe, δe = de). (6)

Since the problem is NP-hard we cannot hope to find an
efficient optimal algorithm. Never-the-less, we will give an
exponential time optimal algorithm. Although it is of little
practical use, it guarantees that an optimal policy exists,
and moreover, in small scale experiments, it allows us to
compare other policies with the optimal one. When T has
a bounded support, the optimal algorithm exists. It can be
defined recursively as the algorithm which at time t chooses
the arm

i∗ = argmax
i=1,...,k

˘
pi

ˆ
ri1{ni − si(t) = 1}

+ER(π∗,pe, re,ne − se(t) − eie , FT−t−1|∅)
˜

(7)

+(1 − pi)ER(π∗,pe, re,ne − se(t), FT−t−1|∅)
o

.

This can be easily shown by induction on the time until T0,
where T0 is the largest value that T can take with positive
probability. Note that this policy is Markovian in the sense
that

ER(π∗,pe, re,ne, FT |(θs, ds)s=1,...,t)

= ER(π∗,pe, re,ne − se(t), FT−t|∅). (8)

To simplify the notation, we will often write

R(π,pe, re,ne, FT |θe, δe = de) as R(π)

when the other parameters are understood from context.
An example demonstrating how the expected reward is

computed is now presented. Let T be known and fixed, k =

2, and let the parameters pe, re be fixed, and so chosen that

r1p1 < r2p2. Using ER(n1, n2, T) as shorthand notation for
ER(π∗,pe, re,ne, FT), it is easy to see that (a) ER(1, 2, 1) =

r1p1, (b) ER(0, 2, 1) = 0, and (c) ER(1, 1, 1) = r2p2. Fig.
1 shows a portion of the policy tree to be constructed by
π∗. The levels of the tree are alternately associated with
the actions choose and pull, the former where π∗ decides on
which arm to pull, and the latter where the result of the arm
pulled would be observed. Thus, when T = 2, pulling arms
1 and 2 yield the expected rewards ER(1, 2, 2|1) = p1(r1) +
(1−p1)(r1p1), and ER(1, 2, 2|2) = p2(r2p2)+(1−p2)(r1p1),
respectively, and π∗ chooses the more valuable arm.

3. RELATED WORK AND BACKGROUND
The general framework of our problem is very similar to

that of the multi-armed bandit (MAB) problem. For details
on MAB see, for instance, [5, 6] and the references therein.
However, that is an inference problem, where the goal is to
learn the value of pe. We assume that pe is known and are

interested in optimizing the total reward by time T when the
rewards are chunked in the manner described in the previous
section.

Our problem is actually a variant of the stochastic knap-
sack problem. An overview of the standard (deterministic)
knapsack problem can be found in [7]. There are a num-
ber of stochastic extensions, see the references in [2]. Our
version is most similar to the version considered in [2].

They assume that there are k items. Each item i has a
fixed and known value ri and a random weight Wi, with
Wi ∼ Fi for some distribution function satisfying Fi(0) =
P (Wi ≤ 0) = 0. One-by-one, items are placed into a knap-
sack that can hold at most a weight of T , where T is fixed
and known. Once an item has been inserted we find out how
big it is. If it fits, then we collect the corresponding reward
and we can place another item in the knapsack. If it does
not fit, then we do not get a reward and we are done. A
number of approximation algorithms are given in [2].

Our version allows for T to be random (but independent
of all of the Wis) and it assumes that Wi ∼ NB(ni, pi) for
each i. The most important difference, however, is that in
the setting of [2], once we begin inserting an item, we must
insert all of it, while in our setting, at each time point we
have the option to switch to a different item (or, in our
terminology, arm).

In general, the stochastic knapsack problem (as consid-
ered in [2]) is NP-hard. However, there are situations where
the optimal policy is a simple greedy algorithm. When all of
the sizes follow an exponential distribution, such a solution
is given in [3]. A different proof of this result is in [4]. The
proof in [3] only uses the fact that the exponential distri-
bution has the memoryless property. Therefore, it is easily
extended to the geometric distribution, which is a special
case of the negative binomial. Moreover, because the result
does not depend on T , it immediately extends to our setting,
where T is random and we can change arms at any time. We
now state this result.

Theorem 1. In the context of Section 2, if for every arm
i, Wi ∼ NB(1, pi) then the optimal arm to pull at time t is
the one with the largest ripi from which we have not yet
received a reward.

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

169

4. PRACTICAL POLICIES FOR CHUNKED
REWARDS

For the optimal policy π∗ given in Eq. (7), the choice of
the arm to be pulled at time t relies on all of the possibilities
at time t + 1, each of which in turn relies on all of those at
time t + 2, and so on. In this section, we will study several
policies that can be implemented without requiring such a
lookahead. We will restrict our attention to policies that
satisfy the following feasibility criteria:

1. arm i would be considered at time t + 1 only if

si(t) < ni and P (ni − si(t) ≤ T − t) > 0,

i.e., only if its goal is not attained yet, and there is a
non-zero probability of attaining it,

2. all other parameters being equal, arm i would be cho-
sen over arm j if pi > pj or ri > rj or ni < nj , and

3. if the rewards of all of the arms are multiplied by the
same constant, the choice of arm will not change.

The reason for considering only policies that satisfy these
criteria is that any policy that does not satisfy these, can
be easily replaced by one that does and is uniformly better
than the given policy. The third criterion ensures that the
policy does not depend on the units of the reward.

4.1 Greedy Policies
In this section, we will list several adaptive greedy policies.

These are policies that at time t+1 compute a specified index
for each arm. They then choose the arm which maximizes
this index. In light of the second feasibility criterion, we
will only consider policies where the index for arm i is a
non-decreasing function of pi and ri, and a non-increasing
function of ni−si(t), and involves all of them. Moreover, we
will assume that the index is linear in ri in order to satisfy
the third feasibility criterion. The greedy policies considered
are:

• π1 : Index ripi
ni−si(t)

1[si(t)<ni]1[ni−si(t)≤T−t]. This is

inspired by the fractional knapsack problem (see [7]).

• π2 : Index ripi
ni−si(t)

P (Wi ≤ T |Si(t) = si(t)). This is

a variation of π1 that decreases the index of i if the
chances of attaining its goal are lower. For large T , π2

behaves similar to π1.

• π3 : Index riP (Wi ≤ T |Si(t) = si(t)). The term
P (Wi ≤ T |Si(t) = si(t)) is already a monotone de-
creasing function of ni −si(t) and a monotone increas-
ing function of pi.

• π4 : Index ri
E[Wi∧T |Si(t)=si(t)]

P (Wi ≤ T |Si(t) = si(t)).

This is inspired by the simplified greedy algorithm
given in [2].

In evaluating the indices above, it is useful to note that
[Wi − t|Si(t) = si(t)] ∼ NB(ni − si(t), pi).

An important point to make is that these indices need to
be recomputed at every time point. One can instead com-
pute the indices only once, at the beginning. Then, at each
time t, pull the arm with the largest index (without updating
the indices) for which we have not yet received a reward. We
will call such policies the non-adaptive versions and denote
the non-adaptive version of πi by γi, i = 1, 2, 3, 4. Clearly
these policies do not satisfy the feasibility criteria and can be

uniformly improved. However, we should mention that they
are not immediately comparable with the adaptive versions,
and may, in some situations, be better.

4.2 Greedy Policies May Be Arbitrarily Bad
Although the greedy policies that we defined are easy to

compute, they may be arbitrarily bad relative to the op-
timal algorithm. It is easiest to see this in the case when
pi = 1 for each arm i. In this case the problem reduces to
the deterministic knapsack and the policies π1, π2, π4, γ1,
γ2, and γ4 all reduce to the standard greedy algorithm for
that problem. To see that these can be arbitrarily bad see
Chapter 2 of [7]. For policy π3 (and γ3) consider the follow-
ing setup. There are k = T + 1 arms. For arm 1, r1 = 2
and n1 = T . For arm i with i = 2, . . . , T + 1, ri = 1 and
ni = 1. Following π3, we would only pull arm 1 and at the
end get a reward of 2, however the optimal algorithm is to
never pull arm 1 and to instead pull each of the other arms
once to get a reward of T , which may be arbitrarily larger
than 2. This behavior is not limited to situations where p is
large. For all of these policies, it is not difficult to construct
similar situations when p ∈ (0, 1).

However, although the greedy algorithms may be arbitrar-
ily bad, algorithm π1 is, in fact, the optimal algorithm in the
following cases:
1. when ni = 1 for all arms i = 1, . . . , k (this follows by
Theorem 1),
2. when any two of the parameters are identical for all arms
and only one parameter changes.

4.3 Policies With Worst Case Performance
Bounds

Since greedy policies can be arbitrarily bad, we cannot
provide worst case performance bounds for them. However,
we can provide bounds for certain modified versions. First
we introduce a policy that is not very useful in practice, but
important for the theory:

• γ0 : always pull the arm with maxi riP (Wi ≤ T) even
after we have received the reward for this arm

Modified greedy policies choose between two greedy policies
at the beginning, then they stick with the same greedy policy
until time T . We will consider the following modified greedy
policies:

• γ5 : w.p .5, choose γ0, otherwise choose γ1

• γ6 : w.p .5, choose γ0, otherwise choose γ2

• γ7 : choose γ1 if maxi riP (Wi ≤ T) < ER(γ1), other-
wise choose γ0

• γ8 : choose γ2 if maxi riP (Wi ≤ T) < ER(γ2), other-
wise choose γ0

• γ9 : choose γ4 if maxi riP (Wi ≤ T) < Ψ, otherwise
choose γ0. Here

Ψ =
1

2

kX
i=1

riP (Wi ≤ T)

i−1Y
j=1

„
1 − E

»„
Wj

T

«
∧ 1

–«
,

where the items are ordered as in γ4.

Note that γ9 is a version of the simplified greedy algorithm
given in [2]. It is immediate that, in expectation, policy γ7

is uniformly better then γ0 and γ1 and that policy γ8 is
uniformly better then γ0 and γ2.

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

170

When T is random, it may be difficult to evaluate P (Wi ≤
T), but this can be approximated through simulation. Even
when T is non-random, it may be difficult to implement
policies γ7 and γ8. The difficulty lies in evaluating

ER(γj) =
kX

i=1

riP

iX

�=1

W� ≤ T

!
for j = 1, 2, where the Wis are assumed to be ordered as in
γj . Again, this can be approximated through simulation.

The following theorem gives bounds on the worst case
performance of policies γ5-γ8.

Theorem 2. Assume that the Wis are mutually indepen-
dent of themselves and of T . We have

sup
π∈Π

ER(π) ≤ 2

mini P (Wi ≤ T)
ER(γ5), (9)

sup
π∈Π

ER(π) ≤ 2

mini P (Wi ≤ T)
ER(γ6), (10)

sup
π∈Π

ER(π) ≤
„

1 +
1

mini P (Wi ≤ T)

«
ER(γ7), (11)

sup
π∈Π

ER(π) ≤ 1 + maxi P (Wi ≤ T)

mini P (Wi ≤ T)
ER(γ8). (12)

Note that, by Eq. (7), when T has a bounded support,
the supremum is attained. Clearly, after we have chosen a
policy in the prescribed way, if we then use a policy that is
uniformly better, then the result will still hold. In particular,
it is not difficult to come up with policies that are uniformly
better than γ0. When pi = 1 for all i and T is non-random,
the problem reduces to the deterministic knapsack and both
π7 and π8 reduce to the usual modified greedy algorithm for
the deterministic knapsack, and our bounds reduce to the
bound in that case.

Proof. In the interest of space, we will only prove the
bounds in Eq. (9) and Eq. (11). The proof of the rest is
similar but slightly more involved. First, consider a frac-
tional version of our problem where instead of arm i, there
are ni arms with reward ri/ni attainable after one success.
Thus we have arms (i, j) for i = 1, . . . , k and j = 1, . . . , ni

with ni,j = 1, pi,j = pi, ri,j = ri/ni, and Wi,j ∼ NB(1, pi).
Clearly, for any policy π ∈ Π, if we pull the exact same se-
quence of arms in the fractional case that the policy π tells
us to pull for the original case, the expected reward in the
fractional case will be greater than or equal to the expected
reward in the original case. By Theorem 1, the optimal pol-
icy in the fractional case is one that is greedy with index
ripi/ni. Thus, in the original problem, for any π ∈ Π we
have R(π) ≤ R(γ1) + maxi ri. Hence

ER(π) ≤ ER(γ1) + max
i

ri

≤ ER(γ1) + max
i

ri
P (Wi ≤ T)

P (Wi ≤ T)

≤ ER(γ1) +
maxi riP (Wi ≤ T)

mini P (Wi ≤ T)
.

This is bounded by„
1 +

1

mini P (Wi ≤ T)

«
max

n
ER(γ1), max

i
riP (Wi ≤ T)

o
=

„
1 +

1

mini P (Wi ≤ T)

«
ER(γ7)

and

2

mini P (Wi ≤ T)

h
.5ER(γ1) + .5 max

i
riP (Wi ≤ T)

i
=

2

mini P (Wi ≤ T)
ER(γ5).

Thus Eq. (9) and Eq. (11) hold.

In the context of ads, except in extreme situations, we
would not consider ads that have very low probability of
attaining their goals. In particular, it is reasonable to as-
sume that mini P (Wi ≤ T) ≥ .5. Under this condition, the
bounds reduce to

1

3
sup
π∈Π

ER(π) ≤ ER(γ7) (13)

and for m = 5, 6, 8

1

4
sup
π∈Π

ER(π) ≤ ER(γm). (14)

In Section 6 of [2], a similar bound is given for γ9. It is
shown that when T is fixed and known

1

4
ER(π∗

0) ≤ ER(γ9), (15)

where π∗
0 is the best policy among those that keep pulling a

chosen arm until either the reward is given or T is reached.
Thus, these policies will keep pulling the same arm even if
the probability of getting a reward with the arm becomes
zero. This is a slightly weaker result, but it holds regardless
of what mini P (Wi ≤ T) is.

Remark 3. Since we are interested in maximizing the ex-
pected reward, nothing that we have done would change if we
assume that the rewards are random so long as they have a
finite expectation and are mutually independent, both of each
other and of the Wis and T . In this case we just replace ri

by E[ri] in the discussion above. In the context of ads, this
takes into account the credit risk of the advertiser.

5. COMPUTATIONAL COMPLEXITY
In this section, we will analyze the time and memory re-

quirements of the greedy policies and the optimal policy
when T is fixed and known. For simplicity we set n =
maxi ni. If we want more detailed complexity bounds, in
the following discussion nk may be replaced by

Qk
i=1 ni.

It is clear that π1 can be implemented with time complex-
ity of O(kT) and space complexity O(1). However, note that
the order of the indices does not change over time, except
that sometimes an arm may stop being feasible. Thus we
can evaluate and order all of the indices at the beginning,
this takes O(k) space and O(k log k) time. Then at each t
we only need to check if the arm is still feasible, thus the
overall time complexity is O(k log k + T).

The policies π2 and π3 have, essentially, the same com-
plexity. At time t + 1, π3 involves computing, for each
arm i, P (Wi ≤ T |Si(t) = si(t)), which is the same as
1 − P (at most ni − si(t) − 1 successes in T − t), requiring
O(n) time. Thus, the overall time complexity for π2 and π3

is O(knT).
The policy π4 is similar to π2 and π3 but we also need to

compute E [Wi ∧ T |Si(t) = si(t)], where

E[Wi ∧ T] =

TX
w=n

wP (Wi = w) + T (1 − P (Wi ≤ T)),

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

171

thereby requiring a total of O(knT 2) time.
Now, we will discuss implementing the optimal policy. As

mentioned in Section 2, this policy is exponential in T . With
additional memory, however, one may come up with pseudo-
polynomial time dynamic programming algorithms similar
to those used for solving deterministic knapsack problems
(Section 2.6 in [7]). With O(nk) memory, all the distinct
nodes in level t + 1 of the policy tree may be precomputed
and stored, and for each node at level t, just k comparisons
suffice to choose the optimal arm. To precompute these
values, however, one needs to start from level t = T , and
move up the policy tree, retaining the nodes from only the
previous level. Thus, each level in the policy tree requires
O(knkT) time, and the total time complexity for T levels is
O(knkT 2). With O(nkT) memory, every node of the policy
tree can be stored in memory, and so requires O(nkT) time.

6. EXPERIMENTAL EVALUATION
In this section, we will compare the performance of the

greedy policies given in Section 4.1. We will show that al-
though in certain situations these policies may be bad, in
practice they are often very good. For simplicity we assume
that T is fixed and known. Nevertheless, there are many
possible values for pe, re, ne, and T , all of which may result

in different expected rewards for the different policies. In
order to compare the policies, we ran extensive experiments
for a wide variety of parameter combinations.

To evaluate the expected reward of a policy for a particu-
lar combination of parameters, we used an approach similar
to that of evaluating the optimal algorithm as described in
Section 2 and Fig. 1, but here the arm to be pulled was
chosen based on the index of the policy. Another approach
would be to simulate paths and then to average over these,
however we would need many runs and only get approxima-
tions, while this way we get the true values.

First, we present the results for the case when there are
only two arms (k = 2). We enumerate the expected reward
for various scenarios by performing a parameter sweep. The
success probabilities are chosen from { 1

256
, 1

64
, 1

16
, 1

4
, 1}, and

r2 is set to one of { 1
16

, 1
4
, 1, 4, 16}. The units of the reward

are so chosen that r1 is fixed at 1. In addition, n1 and n2

are both varied from 1 to T , for various values of T . When
T = 300, a total of 11.25M distinct parameter combinations
are covered. Although the expected reward is guaranteed to
be positive for every such combination, it can be extremely
small. All figures are rounded off to 8 decimal places before
being used for reporting.

We begin by depicting the behavior of various policies on
a small portion of the parameter space. Fig. 2 plots the
expected reward obtained by π∗ and πi, i = 1, 2, 3, 4 with
only n2 varying while all the other parameters are fixed. In
both Figs. 2a and 2b, p1 = 1

4
, p2 = 1

16
, r2 = 4, and T = 100.

Fig. 2a has n1 set to 10, while Fig. 2b has n1 set to 20. For
arm 1 we expect to need about 4 trials per success, while for
arm 2, we expect to need about 16 trials per success.

When n2 = 3, all the policies start off by pulling arm
2 which has the larger reward. However, as n2 increases,
obtaining a reward from arm 2 becomes less probable, and
all the policies pull arm 1 first, ensuring the reward of 1.

In Fig. 2b, we also see that π1 may be significantly worse
than the rest. Whenever n2 < n1, π1 persists with arm 2
as long as the feasibility criterion is satisfied, and obtains a

zero reward with a high probability. On the other hand, π2

and π3 appear to be consistently close to optimal in both
the scenarios in Fig. 2.

We now discuss how we compare various policies and the
differences between them. The performance of each greedy
policy is measured in terms of how similar its expected re-
ward is to that of π∗. We quantify this similarity using the
following three measures:• Agreement: For each parameter combination, agree-

ment is a binary indicator of the expected reward of
πi matching that of π∗.

• Efficiency: This is the ratio ER(πi)
ER(π∗)

. This lies in [0, 1],

and the higher the better.

• Regret: This is the difference ER(π∗) − ER(πi). By
definition of π∗, regret is non-negative, and the lower
the better.

We are now confronted with the problem of presenting the
performance measures. Clearly, showing individual values
as in Fig. 2 is not feasible. For, T = 300, even if all the 300
values of n2 are covered in a single plot, 375K such plots
would be required! We will now explain our methodology
for reporting these.

The problem being considered is the following. For k =
2 (say), and a fixed set of values p1, p2, r1, r2, and T , one
may choose any n1 and n2 between 1 and T . If n1 and n2

are both very small, no matter which order the arms are
pulled in, there is a high probability of obtaining a reward
of r1 + r2. On the other hand, if they are both very large,
there is very little chance of obtaining a non-zero reward,
even for the optimal algorithm. Naturally, in both of these
cases, a greedy policy can easily perform about the same
as the optimal one, and so these can be considered trivial
cases. Intermediate choices of parameters, however, make
for a challenging situation where choosing the wrong arm
has a greater impact.

While the trivial cases may be abundant in number, they
are likely to be rare in practice, not being valuable to either
the advertiser or the publisher. Consequently, clubbing the
trivial cases together with the challenging ones would mean
that the aggregate performance measures would appear to
be far better than those for cases typically encountered in
the real world. For this reason, we propose a systematic way
of identifying (and excluding) the trivial cases. Observing
that the expectation and variance of the number of trials
required for obtaining ni successes are μi = ni

pi
and σ2

i =
ni(1−pi)

p2
i

, respectively, we identify the difficulty level based

on the interval μi ± 2σi. For each arm i, μi, σi, and T are
used to identify the difficulty level of the arm as follows:• V (very easy): T −Pj �=i(μj + 2σj) > μi + 2σi

• E (easy): T > μi + 2σi and not V

• M (medium): μi − 2σi < T ≤ μi + 2σi

• D (difficult): T ≤ μi − 2σi

Note that the label V applies to either all the arms or none.
Other such definitions, with intervals of different sizes and
more gradation, have been tried in our experiments, but the
symmetric intervals for individual arms offer simplicity and
ease of interpretation.

The box-and-whisker plots in Fig. 3 show how the optimal
policy fares in various scenarios with T = 300. We observe
the following:

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

172

(a) n1 = 10 (b) n1 = 20

Figure 2: Expected Reward of various policies as n2 increases while all other parameters are fixed, with n1

set to (a) 10, and (b) 20

(a) r2 ≤ 1 (b) r2 ≥ 1

Figure 3: Total Expected Reward of π∗ for various rewards and difficulty levels, D: difficult, M: medium, E:
easy, V: very easy, k=2, T=300

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

173

• If one arm’s level is fixed, the expected reward in-
creases as the difficulty decreases for the other arm.

• DD (difficult for both the arms), covers about 5.5M
cases with near zero expected reward for each of them.

• If one arm has level D, π∗ obtains reward only from
the other arm.

• Level V V fetches almost the maximum possible reward
of r1 + r2 for most cases.

• The variance in the reward is highest when arms with
level M are involved. This agrees with our reasoning
that there is lower uncertainty for levels D and E.

Fig. 4 shows the performance of greedy policies π1 and π3

relative to π∗. Note the difference in the scales of the two
plots. We also ran the experiments for π2 and π4 but their
plots are not shown due to space constraints. In general π2

and π4 did much better than π1 but slightly worse than π3.

• All the policies, except π1, match π∗ for any level in-
volving D for one of the arms. This is because in
these cases, the greedy policies, just like π∗, realize
that pulling arm with level D is futile and allocate
these pulls to the other arm instead.

• π1 fares poorly in all levels (except V V), and even in
case DD, where the optimal expected reward is near
0. For levels MD and DM , when the arm with D has
an extremely high reward, π1 may have an arbitrarily
bad performance. This is a consequence of not taking
available time T into consideration.

• The only levels where π2, π3, and π4 fare significantly
worse than optimal are ME, EM and MM , that too
when the reward ratios are far from 1. When both
arms look valuable enough to be pulled, these policies’
simple indices cannot match the information that π∗

uses. It may be noted that the lowest points in the plot
represent the actual minimum for that level. So, over
all the 11.25M cases considered, π3 has a worst case
efficiency of 0.6, and the Avg. Efficiency in the corre-
sponding categories, EM and ME, is over 0.98. Avg.
Efficiency of π3 is over 0.99 in each of the remaining
categories.

Although Fig. 4 shows the comparison only in terms of Ef-
ficiency, the plots for Agreement and Regret lead to similar
conclusions. For example, the only cases with Avg. Regret
significantly above 0 are ME (for r2 = 1

16
and r2 = 1

4
, only),

EM (for r2 = 16 and r2 = 4, only), and MM . Unlike ef-
ficiency, regret is sensitive to the value of r2, and hence, is
more difficult to interpret. For EM , when r2 = 16, Avg.
Regret is 0.117, whereas for its symmetric counterpart, ME
with r2 = 1

16
, it is 0.007.

One may also note that the parameter combinations in
Figs. 2a and 2b correspond to difficulty levels EE and ME,
respectively, and therefore show how well the greedy policies
perform even in the challenging portions of the parameter
space.

Our next set of experiments deal with checking if the
greedy policies maintain the high efficiency levels as the
number of arms increases. With T = 1000 and k varied
over 2, 3, 4, and 5, a complete enumeration is no longer

feasible. Instead, we selected 125 random combinations of
pi’s and ri’s and varied the goal for each arm from 1 to
20. Unlike the previous experiments, pi’s were chosen from
{ 1

256
, 1

64
, 1

16
}, the reasons being that (a) CTR values typi-

cally lie in this range [1], and (b) for higher pi’s, even an ni

value of 20 would lead to the difficulty level V and is not
challenging enough.

We did not include π4 because of its extremely high com-
putational cost. Although other greedy policies scale lin-
early with the ni’s and T , given that the ground truth used
for measuring their performance is based on the optimal pol-
icy, and since our implementation of π∗ assumes availability
of O(nk) memory, larger values of k, ni’s and T have not
been considered.

Based on our experiences for the case of k = 2, we treated
the challenging cases with at least one arm having level M
and at least another having level E separate from the rest.
To be able to compare across the different k values, Fig.
5 reports the proportion of cases having efficiency over a
threshold, as the threshold is varied from 0.75 to 0.99. From
Fig. 5, we see that π3 continues to outperform the rest as
k increases, and maintains an efficiency of about 0.95 for
nearly 95% of the challenging cases.

7. CONCLUSIONS AND FUTURE WORK
The present work introduces an interesting variant of the

stochastic knapsack problem that may be used for goal based
all-or-none pricing for online ads. It provides feasible alter-
natives to the optimal but prohibitively expensive algorithm
to maximize the total expected reward in this setting. We
also introduce a methodology for reporting these results, by
accounting for the inherent complexity of each problem.

We showed that certain policies are assured a fraction of
the optimal reward, while others, for which we have no the-
oretical guarantees, perform close to optimal for a wide va-
riety of situations. We also showed the importance of adap-
tivity. The non-adaptive policy π1 (it only ensures that a
feasibility condition is satisfied) was consistently beaten, in
experiments, by fully adaptive modifications (π2 − π4).

There are a number of directions for future work. Since
the probabilities may be unknown, it would be interesting to
combine this with the MAB problem [5, 6], to try to estimate
the probabilities even as we optimize. Also, in practice,
there may be a waiting time between when the ad is shown
and when we find out if a click or a conversion happened,
yet during this time a new user may have appeared, which
ad should we display? Another direction is estimating the
fair price ri for an ad, given ni and pi as well as the other
ads. This would be useful, especially when pi and T are not
known exactly.

8. REFERENCES

[1] Chakrabarti, D., Agarwal, D., and Josifovski, V.

Contextual advertising by combining relevance with
click feedback. In WWW ’08: Proceedings of the 17th
International Conference on World Wide Web (2008),
pp. 417–426.

[2] Dean, B. C., Goemans, M. X., and Vondrák, J.

Approximating the stochastic knapsack problem: The
benefit of adaptivity. Mathematics of Operations
Research 33, 4 (Nov 2008), 945–964.

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

174

(a) π1 (b) π3

Figure 4: Efficiency of π1 and π3 by difficulty levels, with k = 2, T = 300

[3] Derman, C., Lieberman, G. J., and Ross, S. M. A
renewal decision problem.l Management Science 24, 5
(1978), 554–561.

[4] Kan, A. H. G. R., and Stougie, L. On the relation
between complexity and uncertainty. Annals of
Operations Research 18 (1989), 17–24.

[5] Langford, J., and Zhang, T. The epoch-greedy
algorithm for multi-armed bandits with side
information. In Advances in Neural Information
Processing Systems 20, J. Platt, D. Koller, Y. Singer,
and S. Roweis, Eds. MIT Press, Cambridge, MA, 2008,
pp. 817–824.

[6] Li, L., Chu, W., Langford, J., and Schapire,

R. E. A contextual-bandit approach to personalized
news article recommendation. In WWW ’10:
Proceedings of the 19th International Conference on
World Wide Web (2010), pp. 661–670.

[7] Martello, S., and Toth, P. Knapsack Problems:
Algorithms and Computer Implementations. John
Wiley and Sons, Chichester, 1990.

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

175

(a) k = 2 (b) k = 3

(c) k = 4 (d) k = 5

Figure 5: Efficiency of greedy policies with 1 ≤ ni ≤ 20 and T = 1000, for (a) k = 2, (b) k = 3, (c) k = 4, and (d)
k = 5. Cases involving both difficulty levels M and E have been separated from the rest.

WWW 2011 – Session: Monetization II March 28–April 1, 2011, Hyderabad, India

176

