
A Middleware for Securing Mobile Mashups 

F. Batard, K. Boudaoud, M. Riveill  
I3S Laboratory- CNRS/University of Nice Sophia Antipolis 

B.P 143 – 06903 Sophia Antipolis  
{batard,karima, riveill}@polytech.unice.fr 

   
ABSTRACT 
Mashups on traditional desktop devices are a well-known source 
of security risks. In this paper, we examine how these risks 
translate to mobile mashups and identify new risks caused by 
mobile-specific characteristics such as access to device features 
or offline operation. We describe the design of SCCM, a 
platform independent approach to handle the various mobile 
mashup security risks in a consistent and systematic manner. 
Evaluating an SCCM implementation for Android, we find that 
SCCM successfully protects against common attacks such as 
inserting a malicious widget from the outside. 

Categories and Subject Descriptors 
D.2.m [Software Engineering]: Miscellaneous – reusable 
software. D.4.6 [Operating Systems]: Security and Protection – 
access controls. H.3.3 [Information Storage and 
Retrieval]:Information Search and Retrieval – Information 
filtering. H.3.5 [Information Storage and Retrieval]: Online 
Information Services – web-based services. 

General Terms 
Design, Security. 

Keywords 
Mobile mashups, mobile widgets, secure communications. 

1. MASHUP SECURITY ISSUES 
Security of mashups has been the subject of several works 
[1][2][3][4][5]. The security risks introduced by mashups (i.e. 
widgets aggregation) are mainly due to the vulnerabilities of 
widgets that represent the weakest link. Thus, securing this latter 
implies mainly preventing malicious widgets to be added in a 
mashup and restraining them to communicate with other widgets 
in a same mashup or with the outside.  

In the current context where mashups try to convince the public 
of their usage and easiness, mashup providers are quite reluctant 
to restrain developers’ creativity as they rely on them to provide 
as many widgets as possible. With the emergence of the 
application store concept providing trusted applications for 
mobiles, this concept may rise also in mashup context. A 
mashup would have then to provide a secure library of trusted 
widgets and possibly use technical solutions to ensure their 
integrity. One of these solutions can be the Widget Digital 
Signature proposed by W3C [6]. As any signature mechanism, it 
provides a clear way to prove the origin of a widget and its 
author. However, this technology is often considered difficult 
since mashups do not provide simplified way to sign their 
content, as it is the case for example with Firefox plug-ins. 
Therefore, it is important to define a simple mechanism, even if 
based on Widget Digital Signature, to allow secure adding of 
widgets. 

Allowing users to mix proprietary widgets with public ones 
within the same mashup can generate potential security 
vulnerabilities. Actually, due to browsers processing, a poorly 
architected mashup environment might allow malicious widgets 
to gain access to data held in other widgets or, to push and pull 
malicious server data. In fact, the host servers used for mashups 
can be fooled: a request coming from a corrupted widget can 
appear as coming from an end-user browser. Thus, what should 
be done is to define policies to restrain malicious widgets 
communications by blocking malicious exchanges between 
widgets and potentially isolate a malicious widget from the rest 
of the mashup.  

Considering the security problems related to mashups and 
focussing on mobile context, we will now see the resulting 
security requirements for our middleware called SCCM (Secure 
Communicative Context Moshup). 

2. SECURITY REQUIREMENTS  
Basing on the security issues discussed previously, we have 
identified several security requirements that our middleware will 
have to fulfil. Here are some of these requirements: 

 Widgets origin and integrity checks: SCCM needs a certain 
trust in the widgets added in order to prevent phishing.  

 Protection of inter-widgets interaction: SCCM should be 
protected against Frame Phishing. Each widget should be 
totally independent from another one and should not have 
direct access to other widget’s code.  

 Internal resources access: SCCM has to restrict abusive or 
unauthorized access of the widgets to the phone services. 

 External resources access: If widgets access resources on the 
web, SCCM needs to have strict regulation of the information 
they send and receive.  

 Moshup communication link: SCCM should be confidential 
enough to prevent other softwares present on the mobile to spy 
on the internal moshup exchanges.  

 Protection against XSS & CRSF: SSCM should handle these 
attacks. 

3. Global view of the SCCM architecture 
Figure 1 gives a global view of the SCCM architecture we 
propose and shows the security mechanisms used in the 
different components. As shown in this figure, our architecture 
is composed of five kinds of components: 

 Widgets: are pieces of standalone web codes using 
HTML/JavaScript to perform actions, discuss with each other 
and with the phone API. If needed, they can request resources 
from the web. They need to be signed and this signature is 
checked at their loading. 

 Web Engine: interprets the widgets code written in web 
languages. It enables widgets sandboxing, manages errors and 
uses JavaScript framework for widgets communications. Copyright is held by the author/owner(s).  

WWW 2011, March 28–April 1, 2011, Hyderabad, India.  
ACM 978-1-4503-0637-9/11/03.  

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

9



Architecture Security Mechanisms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

 Widget Digital Signature 
 Component Isolation 
 JavaScript communication 

framework 
 Policies 

o Extra-Widget 
o Intra-Widget 
o Inter-Widget 

 Privacy policies extension 
 Client-side white list 
 Channels Management 
 User notifications 
 Input & Exchanges 

sanitation 
 Least privilege 
 Potential Device Access 

Rules 
 

Intra-Communication 

Extra-Communication 

Inter-Communication 

Figure 1: SCCM architecture and security embedded 

 Policy Manager: is in charge of access regulation and 
authorization of the whole system. It controls who can talk to 
whom and potentially the content of the messages exchanged. 
It controls access over the channels on which the widgets and 
eventing system publish their messages. In extreme cases, the 
policy manager might request the user’s decision to grant or 
restrict accesses. 

 Communication system: relays information to the right 
recipient using two components:  
o Intra/Inter-communication component that relays 

information locally. It can transmit to a widget a message 
coming from another widget or from the eventing system. 

o Extra-communication component that manages the 
exchanges between the widget and the Internet. This 
component has an element called adapter to transform 
web services responses to events understandable by the 
widgets requesting information from Internet. 

 Eventing System: is in charge of relaying events from the OS 
to the communication system. More specifically, it transmits, 
through the inter/intra-communication component, the data 
provided by the device resources (e.g. Geolocation, short 
messaging, etc.) to the widgets requesting that data.  

For the implementation of SCCM we have chosen the Android 
platform for its ease of development and its potential growth on 
the market. 

4. Security evaluation 
We have tested the robustness of SCCM against ten kinds of 
attacks that aims to corrupt SCCM by trying to: 1) insert 
malicious widgets or alter valid widgets from the outside and 2) 

usurp widget or OS identity, retrieve private information or 
interrupt SCCM. The different attack attempts have shown that 
SCCM is robust against all attempted attacks except DoS 
(Denial of Service) and attacks against privacy. In this paper, we 
present two  kinds of attacks. 

Attack 1: The goal of the first attack was to add a malicious 
widget into a moshup. We considered that the malicious widget 
is already on the user’s phone as it could have been downloaded 
on purpose or due to a phishing attack. The attacker tries to add 
the malicious widget in the moshup by placing it in the widgets 
folder. At every startup of SCCM, when the widgets are loaded, 
SCCM verifies the signature file embedded in widgets packages. 
As the widget will not have any signature file, SCCM will not 
allow it to be added in the moshup and therefore will not be 
processed.  

Attack 2: The next attack targets widgets that do not have 
restricted topic and on which a malicious widget can subscribe 
and publish messages. The best attack in such situation is to use 
XSS and CRSF attacks to allow a regular widget to perform bad 
actions and give sensitive information. As the inter/intra-
communication component provides a set of regular expressions 
to prevent XSS attacks and script insertions, this kind of attacks 
could not succeed.  

5. Conclusion 
In this paper, we highlighted the risks inherent to mashups and 
the challenges of introducing this approach on mobiles devices. 
Then, we have proposed a middleware called SCCM that allows 
three kinds of communications (inter, intra and extra) and 
secures these communications. In its first version, SCCM has 
been implemented on an Android platform. To evaluate our 
solution, we have conducted several security tests. For future 
works, we plan to work on a second version of SCCM enabling 
SCCM to block malicious widgets from collecting data and 
transmitting it outside the mobile device. 

6. References 
[1] F. Batard, K. Boudaoud and M. Kamel. Web 2.0 Security: 
State of the Art. In Proc. of the 5th Conference on Network 
Architectures and Information Systems Security, May 18-21, 
2010, Menton, France. 
[2] C. Jackson and H. J. Wang. Subspace: Secure Cross-Domain 
Communication for Web Mashups. In Proc. of the16th 

International World Wide Web Conference (WWW2007), Banff, 
Alberta, May 8-12, 2007  
[3] F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. 
Yoshihama. SMash: secure component model for cross-domain 
mashups on unmodified browsers. In Proc. of the 17th International 
World Wide Web Conference (WWW2008), Beijing, China, April 
21-25, 2008. 
[4] S. Crites, F. Hsu, H. Chen. OMash: Enabling secure web 
mashups via Object Abstractions. In Proc. of the 15th ACM 
conference on Computer and Communications Security (CCS), 
Alexandria, USA, VA, Oct. 27- 31, 2008.  
[5] A. Barth, C. Jackson, W. Li. Attacks on JavaScript Mashup 
Communication. In Proc. of the Web 2.0 Security and Privacy 
2009 (W2SP 2009), Oakland, California, May 21, 2009. 
[6] M. Cáceres, F. Hirsch, M. Priestley. Digital Signatures for 
Widgets. W3C Candidate Recommendation 24 June 2010. 
http://www.w3.org/TR/widgets-digsig/  

Widget #1 Widget #2 

Web Engine 

Policy Manager 

Communication 

Inter/ 
Intra-
comm 

Extra- 
comm 

A
dapter 

Internet 

Eventing System 

Multi-OS 

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

10




