
A Feature-Pair-based Associative Classification Approach
to Look-alike Modeling for Conversion-Oriented

User-Targeting in Tail Campaigns
Ashish Mangalampalli

IIIT, Hyderabad, India
ashish_m@research.iiit.ac.in

Adwait Ratnaparkhi
33Across Inc., Sunnyvale, CA

adwait.ratnaparkhi@
33across.com

Andrew O. Hatch
Yahoo! Labs, Sunnyvale, CA
aohatch@yahoo-inc.com

Abraham Bagherjeiran
Yahoo! Labs, Sunnyvale, CA

abagher@yahoo-inc.com

Rajesh Parekh
Groupon Inc., Palo Alto, CA

rparekh@ieee.org

Vikram Pudi
IIIT, Hyderabad, India
vikram@iiit.ac.in

ABSTRACT
Online advertising offers significantly finer granularity, which
has been leveraged in state-of-the-art targeting methods, like
Behavioral Targeting (BT). Such methods have been fur-
ther complemented by recent work in Look-alike Modeling
(LAM) which helps in creating models which are customized
according to each advertiser’s requirements and each cam-
paign’s characteristics, and which show ads to users who
are most likely to convert on them, not just click them. In
Look-alike Modeling given data about converters and non-
converters, obtained from advertisers, we would like to train
models automatically for each ad campaign. Such custom
models would help target more users who are similar to the
set of converters the advertiser provides. The advertisers get
more freedom to define their preferred sets of users which
should be used as a basis to build custom targeting models.

In behavioral data, the number of conversions (positive
class) per campaign is very small (conversions per impression
for the advertisers in our data set are much less than 10−4),
giving rise to a highly skewed training dataset, which has
most records pertaining to the negative class. Campaigns
with very few conversions are called as tail campaigns, and
those with many conversions are called head campaigns.
Creation of Look-alike Models for tail campaigns is very
challenging and tricky using popular classifiers like Linear
SVM and GBDT, because of the very few number of posi-
tive class examples such campaigns contain. In this paper,
we present an Associative Classification (AC) approach to
LAM for tail campaigns. Pairs of features are used to derive
rules to build a Rule-based Associative Classifier, with the
rules being sorted by frequency-weighted log-likelihood ratio
(F-LLR). The top k rules, sorted by F-LLR, are then applied
to any test record to score it. Individual features can also
form rules by themselves, though the number of such rules
in the top k rules and the whole rule-set is very small. Our
algorithm is based on Hadoop, and is thus very efficient in
terms of speed.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
Data mining

Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

General Terms
Algorithms, Experimentation

1. LOOK-ALIKE MODELING
A user’s history is a sequence of events. Feature extraction

uses events that occurred prior to conversion. 14-day and
seven-day window periods are used for training and scor-
ing respectively. The class labels in the training and test
sets are conversions. The features are user activities pre-
ceding the conversion, and pertain to different event types:
page views, search queries and clicks, and graphical ad views
and clicks. If a user performs any one of these actions dur-
ing the train/score window period, the corresponding fea-
ture is added to the user’s profile, with a value of one. e.g.
pageV iew yahooMovie = 1, indicates that the user visited
the Yahoo! Movies page in the train/score window period.

Training a traditional Associative Classifier [2] (even for
high support values) based on such frequent itemsets is not
practical, because the feature space is very large (around 106

features) and datasets are big (around 500K records). But,
associations between features in the user-targeting domain
do exist, and are exploited by us to create Look-alike mod-
els using a Hadoop-based algorithm. For the O() analysis
below, n is the average number of features per train/test
example and |D| is the train set size. We enumerate all
pairs of features in the training set which occur in at least
five positive-class records, i.e. conversion-oriented records
(Mapper–Algorithm 1 – O(|D|×n2) complexity). The pairs
of features are modeled as AC rules of the form X → y,A,
where X is the pair of features, y is the class, and A is
the affinity of X towards y measured using an information
metric – Frequency-weighted LLR (F-LLR) in our case. In-
dividual features by themselves can also be X, i.e. give rise
to rules on their own. But, such rules are very few as com-
pared to those rules derived from pairs of features. For all
rules y is the positive class, i.e. conversion, as the main
goal of the rules is to show how much affinity (gauged using
F-LLR) the pairs of features, i.e. X have towards conver-
sion. F-LLR (a new information we propose) of a feature

f is F -LLR = P (f) × log
(

P (f |conversion)
P (f |non−conversion)

)
. P (fij) =

∑
D vr

ij

|D| gives the probability (in D) and vrij = min(vri , v
r
j)

gives the value (in record r) of a feature-pair fij (vri and
vrj are values of features fi and fj in r). The definition for

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

85

normal LLR is LLR = log
(

P (f |conversion)
P (f |non−conversion)

)
. The F-

LLR for fij is then calculated in the same manner as that
for an individual feature (Reducer–Algorithm 2 – O(n) com-
plexity). The rules are then sorted in descending order by
their respective F-LLRs, and the top k rules are applied on a
test record r in order to score it (Algorithm 3 – O(n2) com-
plexity). For each rule if there is a match with r, then the
product of the F-LLR of the rule and the minimum value, in
r, of the features in the precedent of the rule is added to the
score. We get the final score for r after all the top k rules
have been applied to r. The AC rules model the affinity (as-
sociation) of each feature/feature-pair towards conversion.
This affinity, in the form of F-LLR, is used for classification.

2. EXPERIMENTAL RESULTS
We use three baseline models, namely Random Targeting,

Linear SVM-based [1] and GBDT-based LAM.We have used
lifts (lift = new model metric−baseline metric

baseline metric
) of two metrics

for the experimental analysis. The metrics are the conver-
sion rate (at 10% reach – typical operating point) and the
AUC. We have evaluated the AC-based LAM along with
the SVM and GBDT-based methods on two pilot campaigns
(300K records each, one record per user) for a real advertiser.
The training and scoring window periods were 14 and seven
days respectively. Campaign C1 has very few positive class
(conversion) examples in the training set, and is a typical
tail campaign. On the other hand, campaign C2 is a typ-
ical head campaign, and has many positive class examples
in the training set. For Campaign C1 (Table 1), AC-based
LAM has a lift (conversion) of 82% as compared to Random
Targeting, 301% as compared to GBDT-based LAM, and
100% as compared to SVM-based LAM. Moreover, the lifts
in AUC of our approach as compared to GBDT-based and
SVM-based LAM techniques are 2% and 11% respectively.
For Campaign C2 (Table 2), our approach as compared to
Random Targeting and SVM-based LAM has positive lifts
(conversion) of 48% and 12% and lift of -40% as compared to
GBDT-based LAM. The AUC lifts of our approach as com-
pared to GBDT-based and SVM-based LAM techniques are
-14% and -6% respectively.

From these results we see that our approach performs very
well with respect to all the three baselines for C1 (a tail cam-
paign) according to both metrics, lift in conversion rate and
lift in AUC. But, for C2 (a head campaign), the performance
of our approach with respect to the three baselines is compa-
rable. Our approach to Look-alike Modeling works very well
in case of tail campaigns, because it leverages the affinity
the AC rules have towards the positive class, even though
there are very few positive class training examples. SVM
and GBDT expect more balanced train sets, which makes
modeling hard on tail campaigns. We are also conducting
experiments on a more extensive set of campaigns.

3. REFERENCES
[1] A. Bagherjeiran, A. O. Hatch, A. Ratnaparkhi, and

R. Parekh. Large-scale customized models for
advertisers. In ICDM Workshops, pages 1029–1036,
2010.

[2] F. A. Thabtah. A review of associative classification
mining. Knowledge Eng. Review, 22(1):37–65, 2007.

.

Algorithm 1 Training (Mapper)

1: for each record r ∈ D do
2: conv = target (class) of r
3: for each feature fi ∈ r do
4: vi = value of fi
5: if conv = 1 then
6: print fi \t vi|conversion
7: else
8: print fi \t vi|non-conversion
9: end if
10: feature[i] = fi
11: value[fi] = vi
12: end for
13: for {i = 0; i < feature[].sizeof()− 1; i++} do
14: feat1 = feature[i]
15: value1 = value[feat1]
16: for {j = j + 1; j < feature[].sizeof(); j ++} do
17: feat2 = feature[j]
18: value2 = value[feat2]
19: if value2 < value1 then
20: valuepair = value2
21: else
22: valuepair = value1
23: end if
24: if conv = 1 then
25: print feat1, feat2 \t valuepair|conversion
26: else
27: print feat1, feat2 \t valuepair|nonconversion
28: end if
29: end for
30: end for
31: end for

Algorithm 2 Training (Reducer)

1: for each feature or feature pair f do
2: calculate freq convf , freq nonconvf , and F-LLR
3: print f →conversion, F-LLR
4: end for

Algorithm 3 Scoring

score = 0
for each rule r ∈ top k rules do

F -LLRr = F-LLR of r
min value = ∞
for each feature fi ∈ precedent of r do

vi = value of fi
if vi < min value then

min value = vi
end if

end for
score+ = min value × F -LLRr

end for

Table 1: Results for Campaign C1

Baseline Lift (Conversion Rate) Lift (AUC)
Random Targeting 82% –

Linear SVM 301% 11%
GBDT 100% 2%

Table 2: Results for Campaign C2

Baseline Lift (Conversion Rate) Lift (AUC)
Random Targeting 48% –

Linear SVM -12% -6%
GBDT -40% -14%

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

86

