
Open and Decentralized Access
across Location-Based Services

Yiming Liu
School of Information

UC Berkeley
yliu@ischool.berkeley.edu

Rui Yang
Department of Information

Engineering
The Chinese University of

Hong Kong
yr007@ie.cuhk.edu.hk

Erik Wilde
School of Information

UC Berkeley
dret@berkeley.edu

ABSTRACT
Users now interact with multiple Location-Based Services
(LBS) through a myriad set of location-aware devices and
interfaces. However, current LBS tend to be centralized si-
los with ad-hoc APIs, which limits potential for information
sharing and reuse. Further, LBS subscriptions and user ex-
periences are not easily portable across devices. We pro-
pose a general architecture for providing open and decen-
tralized access to LBS, based on Tiled Feeds — a RESTful
protocol for access and interactions with LBS using feeds,
and Feed Subscription Management (FSM) — a generalized
feed-based service management protocol. We describe two
client designs, and demonstrate how they enable standard-
ized access to LBS services, promote information sharing
and mashup creation, and offer service management across
various types of location-enabled devices.

Categories and Subject Descriptors: H.3.5 [Information
Storage and Retrieval]: Online Information Services — Web-
based services, Data sharing

General Terms: Design, Documentation, Languages

Keywords: Location-Based Services, Feeds, Atom, RSS

1. INTRODUCTION
Recent years have seen the proliferation of mobile devices

with Internet connectivity and GPS capabilities, and new
Web services that exploit these capabilities. Despite this
growth, consumption of LBS on user devices remains largely
an ad-hoc affair. Most are centralized silos with proprietary
APIs, which discourages repurposing and recombination of
data. Sharing LBS data across devices is usually supported
only on an application-specific basis. For example, a mashup
mixing social presence with business recommendations re-
quires ad-hoc integration with at least two LBS APIs.

In this paper, we describe a location-based service plat-
form that allows for standardized access to LBS, and pro-
vides service management and data portability across any
Web-capable device. The system is based on two technolo-
gies: Tiled Feeds [2], a system for delivering open LBS via
feeds, and Feed Subscription Management (FSM), a feed-
centric service management protocol. We demonstrate our
system using two prototype clients: a Web-based client that
provides a full-featured, read-write interface to the platform,
and a mobile client that provides read-only access to stored

Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

LBS subscriptions and views. This platform enables applica-
tions to consume and mashup location-based services with-
out costly ad-hoc integrations, and deliver uniform, portable
experiences to all types of devices.

2. LOCATION-BASED SERVICES
Many Location-Based Services (LBS) available today are

either vertically integrated [3], or they are built on location
concepts which are specific to one service. In our work to-
wards Web-oriented LBS architectures [1], our focus is on
models which allow simple LBS integration and repurpos-
ing, so that it becomes simple to aggregate LBS. Some of
the current limitations of the XMLHttpRequest API make it
hard to deploy truly decentralized browser-based LBS, but
improvements of the restrictive Cross-Origin Requests pol-
icy are underway, and non-browser applications can already
take full advantage of RESTful LBS architectures.

The LBS architecture is based on two technologies, Tiled
Feeds [2], and Feed Subscription Management (FSM). Tiled
feeds is a RESTful architecture for the representation of and
interaction with location-based services. In short, the world
is recursively divided into equal-sized tiles. Each tile is rep-
resented by a tile feed (an Atom feed with a few geospatial
extensions), which contains geospatial features as entries.
To retrieve data from such a LBS, a client needs to access
the tiles it is interested in. To add new LBS functionality,
or to create a mashup, the same tiles can be accessed across
multiple LBS. The tiled feed model creates a standardized,
Atom- and AtomPub-based interface across various LBS.

For managing the various services a client is interested in,
FSM provides an architecture which allows the decentralized
management of service subscriptions. Subscribed feeds can
be regular feeds (which may contain location-tagged entries)
or tiled feeds, in which case clients can interact with them
by using the interlinked feeds that are available for various
tiles. Since subscription data is managed openly, subscrip-
tions can be shared across multiple clients, which means that
a user can for example subscribe to feeds that are relevant
to him and his location in a browser (Section 3), and can
then reuse the exact same set of LBS in a mobile application
(Section 4).

3. WEB CLIENT
The Web Client is a lightweight Web application that

reads LBS subscription information from a FSM server, and
creates arbitrary mashup views on a Google Maps-based in-
terface using live data from tiled feed services.

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

79



Figure 1: Tiled Feed Web Client

The client contains two main parts, a tiled feed reader
and a Google Map visualization. Besides using a server-side
HTTP request proxy to circumvent current cross-site script-
ing restrictions with XMLHttpRequest, it is a purely client-
side application written in JavaScript. The client provides
most of the functions of a typical feed reader such as Google
Reader: it can load subscriptions, read feeds, and manage
subscriptions. Being tiled feed aware, it presents features
from subscribed LBS on the Google Map visualization. Fur-
ther, it allows user to query tiled feeds via an automatically
generated query form and publish new features to the tiled
feed server using AtomPub.

When the client is loaded, it reads the list of subscribed
LBS from a designated FSM server, and displays the list
of services. After a user clicks on a service, the web client
attempts to identify the feed as a tiled feed LBS; if suc-
cessful, it accesses the feed’s query schema (if any) and tile
resolution services. It retrieves a list of all the tiles inside
the current map view, at the appropriate level of resolution,
and reads each feed in that list. The content, typically KML
features such as points, polygons, landmarks, and associated
metadata, are parsed and displayed on Google Map visual-
ization. As an example, Figure 1 shows a visualization pop-
ulated by U.S. population census and earthquake LBS for
the San Francisco Bay Area. The viewport is freely move-
able, and new data is loaded as needed from the selected
LBS. Feeds are cached locally so every feed will only be re-
trieved once. New LBS in tiled feed format can be added to
the subscription list via the FSM protocol.

If a feed is query-able, which means the tiled feed provider
provides a tiled feed query schema, the web client is able to
use the schema to generate a query/filtering interface au-
tomatically. This query interface is displayed on the side-
bar. A user can choose different query parameters to re-
fine the feeds contents. In addition, if the server supports
read/write capabilities via AtomPub, the web client allows
users to publish new content to the tiled feed LBS. A user
can create new features, edit and delete existing features
from each subscribed service using HTTP POST, PUT and
DELETE respectively.

4. MOBILE CLIENT
The mobile tiled feed client uses same FSM and tiled feed

services to deliver a more in-context, consumption-oriented
LBS experience. Built on the iOS platform, the mobile client

Figure 2: iOS Tiled Feed and FSM Client: Showing
LBS List from FSM and View of the East Bay

faces more resource, display, and interaction constraints than
the Web client. Therefore, unlike the more free exploring
Web client, the mobile client uses the concept of views, or
preconfigured mashups of LBS data at specific areas of in-
terest. A user can create views at any level of resolution
for particular areas, and then specify which LBS should be
used to populate the view. As an example, Figure 2 shows
the East Bay Area view, which displays a mashup of nearby
earthquakes and train stations, both of which are being de-
livered by subscribed LBS. Views themselves also managed
by FSM as view feeds, and can be retrieved or stored on an
FSM server using Atom and AtomPub.

Based on this architecture, the mobile client can refresh
both its subscribed LBS and its view from an FSM server,
and thus could be implemented in a very similar way on
devices with very constrained UI capabilities such as car
navigation systems.

Functionally, the tiled feed client works very similarly to
the Web client. It reads a FSM subscription feed to de-
termine the LBS needed, and uses tiled feed processing to
retrieve geospatial data from appropriate tile feeds and dis-
plays the contained features on a map visualization. The
view feed, also part of FSM, is used to determine the preset
areas that are available for display. Some scrolling of the
map viewport is available, but due to resource constraints
on mobile devices, it is limited in scope compared to the
world-exploring capabilities of the Web client.

5. REFERENCES
[1] Martin Kofahl and Erik Wilde. Location Concepts

for the Web. In Irwin King and Ricardo
Baeza-Yates, editors, Weaving Services and People on
the World Wide Web, pages 147–168. Springer-Verlag,
Heidelberg, Germany, August 2009.

[2] Yiming Liu and Erik Wilde. Scalable and Mashable
Location-Oriented Web Services. In Boualem
Benatallah, Fabio Casati, Gerti Kappel, and
Gustavo Rossi, editors, 10th International Conference
on Web Engineering (ICWE 2010), volume 6189 of
Lecture Notes in Computer Science, pages 307–321,
Vienna, Austria, July 2010. Springer-Verlag.

[3] Yiming Liu and Erik Wilde. Personalized
Location-Based Services. In iConference 2011, Seattle,
Washington, February 2011.

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

80


	Introduction
	Location-Based Services
	Web Client
	Mobile Client
	References



