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ABSTRACT 
Given a social network, who are the key players controlling the 
bottlenecks of influence propagation if some persons would like to 
activate specific individuals? In this paper, we tackle the problem 
of selecting a set of k mediator nodes as the influential gateways 
whose existence determines the activation probabilities of targeted 
nodes from some given seed nodes. We formally define the k-
Mediators problem. To have an effective and efficient solution, we 
propose a three-step greedy method by considering the probabilistic 
influence and the structural connectivity on the pathways from 
sources to targets. To the best of our knowledge, this is the first 
work to consider the k-Mediators problem in networks. 
Experiments on the DBLP co-authorship graph show the 
effectiveness and efficiency of the proposed method. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining.  

General Terms 
Algorithms, Performance, Design. 

Keywords 
Targeted Marketing, Influential Mediator, Social Networks. 

1. INTRODUCTION 
Social network plays a significant role as the spread of information 
and influence for target marketing and immunization setting. The 
problem, influence maximization [4], is to find a subset of 
influential individuals (as seeds) such that they can eventually 
influence the largest number of people in a social network. Some 
greedy [6][10] and heuristic [1][2] methods are proposed to 
effectively and efficiently solve this problem. There are some 
important variations to tackle different real-world requirements. 
Leskovec et al. [6] propose to select a set of social sensors such that 
their placements can efficiently detect the propagation of 
information or virus in a social network. Lappas et al. [5] propose 
to find a set of effectors who can cause an activation pattern as 
similar as possible to the given active nodes in a social network. 

In this paper, we reveal another crucial problem for finding 
influential mediators in a social network. Considering a source 
node as the seed of influence propagation and a target node as the 
goal of activation, what are the best mediators to coordinate the 
spreading process from the source to the target? Potential 
applications on realistic scenarios include (1) who are the key 
individuals that hold the bottlenecks of influence propagation to 
targeted persons given specific initial seeds? (2) In epidemiological 
setting, given some infected persons and some ones we intend to 
defend, who are those best few disseminators we should immunize? 
(3) In the computer network, if some hackers aim at spreading a 

 

virus to certain sites, which are the best gateways we should 
carefully monitor and guard? 

Preliminary. First, we adopt the Independent Cascade (IC) model 
[4] for the information propagation. In IC model, in time step t each 
active node u has a single chance to activate each of its inactive 
neighbors v with a pre-determined probability p(u,v). If u succeeds, 
v will become active in step (t+1). Otherwise, u will not activate v 
again. Second, given the source set of nodes S V as the originally 
active nodes and the target set of nodes T V, where S and T are 

mutually exclusive, if a source sS can activate a target tT, we 
can obtain a propagation path Ps,t=<s=v1,v2,...,vm=t>. And we 

compute the activation probability as ),(),( 1
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s fails to activate t, then ap(s,t)=0. The activation probability 
between the source set S and target set T is defined as 
ap(S,T)=ΣsS,tT ap(s,t). Third, we further define the mediation 
probability as mp(S,T,M) = ap(S,T) – apM(S,T), where apM(S,T) is 
the activation probability from S to T by setting those nodes in M as 
sinks (i.e., when the information propagates to nodes in M, it can 
just stops there and make no activations). 

Problem Definition. (The k-Mediators Problem) Given (1) a social 
network G=(V, E, P), where V stands for individuals and each 
undirected edge (u,v) E is associated an influence probability p(u, 
v) [0, 1] as weights, (2) a set of source nodes S, (3) a set of target 
nodes T, and (4) a budget (integer) k, find a set of k nodes 
(mediators) M with the highest mediation probability mp(S, T,M). 

To solve the k-Mediators problem, we consider the probabilistic 
influence and the structural connectivity to develop a greedy 
heuristic algorithm. Our method consists of three steps. First, we 
reduce the graph space by retrieving a reliable induced subgraph 
from the social network. Second, we devise a Mediation-Steiner 
algorithm to find the best propagation tree connecting sources and 
targets on leaves. It is greedily combined with the third step to find 
top-k mediators. The third is to find the kth mediator by a heuristic 
proximity-based node selection. Experimental results demonstrate 
the effectiveness of the purposed method. 

2. THE PROPOSED METHOD 
Our method consists of three parts: (1) reliable subgraph extraction, 
(2) Mediation-Steiner algorithm, (3)proximity-based node selection.  

Reliable Subgraph Extraction. Since a real-world social network 
contains lots of nodes and edges and only a subset of them relates 
to the user-specified sources and targets, we prune some irrelevant 
information and retain the effective ones as a reliable subgraph for 
finding best mediators. The pruning process is controlled by two 
factors: (a) the probabilistic weights on edges, (b) the connectivity 
from sources to targets. Those edges with weights below a 
threshold  are removed from the original network. The pruning 
proceeds by increasing the threshold  and terminates when there 
exists one source disconnected to any other target. After pruning, 
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we retrieve the component connecting any source node to any 
target node and discard other parts. This component is called the 
reliable subgraph H, which is beneficial to time efficiency.  

Mediation-Steiner Algorithm. Based on the reliable subgraph, we 
find the Best Propagation Tree (BPT) to capture the most effective 
pathways of influence propagation from sources to targets. 
Specifically, we aim at finding a tree that connect the source and 
target nodes on leaves and has the highest mediation probabilities at 
all target nodes propagating from some source nodes. We propose 
to modify the Steiner Tree algorithm [7] to find the best 
propagation tree. Recall the original Steiner Tree problem is to 
search out the minimum-cost tree in the input graph containing all 
required nodes and some intermediate nodes (i.e., Steiner nodes). 
However, there are three things needed to concern: (a) what we 
tackle is the influence propagation where the tree cost is measured 
by product of edge weights instead of sum of edge weights, (b) the 
required nodes consists of two kinds of nodes (i.e., source and 
target), and (c) the goal is to route each source to each target by a 
maximum activation probability. Therefore, we devise a new 
Steiner Tree algorithm, called Mediation-Steiner, which is shown in 
line 4–10 in Algorithm 1. Specifically, by adding each source node 
into BPT incrementally, we find the propagation path with the 
highest activation probability on each target node from those nodes 
in the current BPT. And the corresponding path is added into BPT. 
Note that the function HighestActivationProb/Path can be easily 
derived by modifying the Dijkstra’s shortest path algorithm. 

Algorithm 1. The Proposed Algorithm. 
Input: the social network G = (V, E, P);  
the source set S and target set T; a budget (integer) k. 
Output: a set of k nodes M.  

1: H = (VH, EH, PH) ← ReliableSubgraphExtract(G). 
2: M = . // the top mediators 
3: for i=1 to k do  // select the top-k mediators in a greedy manner 
4:     BPT =. // the best propagation tree in each run 
5:     foreach s  S do 
6:           VH = VH  {s}. 
7:           foreach t  T do 
8:                 x* ← argmax 

HVx HighestActivationProb(x, t) in H. 

9:                 if HighestActivationPath(x*, t) ≠ then 
10:                       BPT ← BPT {HighestActivationPath (x*, t)}. 
11:     prox({(v|vVBPT)}) ← RandomWalkRestart(BPT, S T). 
12:     m = argmax )(\ TSVv BPT   prox(v). //proximity-based selection. 

13:     M = M  {m}.  
14:     VH = VH \ M. 

Proximity-based Node Selection. We consider the structural 
connectivity to find the bottlenecks of influence propagation as the 
mediators. The proximity scores with respect to sources and targets 
are computed by Random Walk with Restart [9] in the best 
propagation tree. We select the top-k mediators by greedily picking 
the nodes with the highest proximity in BPT, as shown in line 3, 
11–14 in Algorithm 1. 

3. EXPERIMENTAL RESULTS 
We conduct the experiments to demonstrate the effectiveness and 
efficiency of our method. We compile the DBLP bibliography data 
to a connected co-authorship network, which contains 6,616 nodes 
and 12,807 edges in some recent premier conferences of data 
mining (including KDD, ICDM, SDM, PAKDD, and CIKM). The 
probabilistic weights on edges are determined by the number of co-
author between two persons. If #co-author is higher than 20, we set 
the weight to be 1, otherwise it is set as #co-author/20. One will 
have higher potential to activate its neighbor if they have more co-

works. Since the basic idea of the proposed mediation probability is 
to find the nodes controlling the bottleneck of influence flows from 
sources to targets, we compare our method with some alternatives: 
(1) randomly selecting k nodes in the reliable subgraph, (2) 
selecting k nodes with the highest CePS-AND score [8], (3) 
selecting k nodes with the highest betweenness score [3] in the 
reliable subgraph. We measure the effectiveness by the normalized 
decay of activation probability (ap(S,T)–apM(S,T))/ap(S,T). The 
results are averaged over 1,000 randomly picked source-target set-
pairs, where each source/target set has two nodes. Besides, the 
number of simulation rounds for independent cascade is 10,000. 
The result is shown in Figure 1(a). We can observe ours 
outperforms others, especially when k is small. Besides, for the 
time efficiency of finding the top-k (k=10) mediators, ours also 
outperforms CePS. Note that we do not show the runtime of 
betweenness since it is much longer than ours and CePS. 

 
Figure 1(a). Effectiveness comparison our method and alternatives. 
x-axis the budget k and y-axis is the normalized decay of mediation 
probability. Higher is better. (b) Comparison of time efficiency. 

4. CONCLUSION 
We introduce and define the k-Mediators problem which is to find 
the bottlenecks of influence propagation from given seed nodes to 
targeted nodes. To solve the problem effectively and efficiently, we 
consider the pathways of probabilistic propagation and structural 
affinity to propose a greedy heuristic method, which consisting of 
pruning irrelevant information, finding the best propagation tree, 
and selecting the mediators based on the proximity. Evaluations on 
real-world DBLP co-authorship data show the effectiveness and 
efficiency of our method. 
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