
Anytime Algorithm for QoS Web Service Composition
∗

Hyunyoung Kil
KAIST, Daejeon 305-701, Korea

hkil@kaist.ac.kr

Wonhong Nam
Konkuk University, Seoul 143-701, Korea

wnam@konkuk.ac.kr

ABSTRACT

The QoS-aware web service composition (WSC) problem
aims at the automatic construction of a composite web ser-
vice with the optimal accumulated QoS value. It is, however,
intractable to solve the QoS-aware WSC problem for large
scale instances, since the problem corresponds to a global
optimization problem. In this paper, we propose a novel
anytime algorithm for the QoS-aware WSC problem to iden-
tify composite web services with high quality much earlier
than an optimal algorithm and the beam stack search [3].

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online Informa-
tion Services—Web-based services
General Terms: Algorithms, Performance
Keywords: Anytime algorithm, Quality of Services (QoS),
Web service composition

1. Introduction
In the QoS-aware web service composition (WSC) prob-

lem, one indeed desires, as a solution, not the shortest se-
quence of web services but a composite web service with the
optimal accumulated QoS value. Since it is computationally
hard to identify such a composite web service, the problem
is intractable for large scale problem instances, as web ser-
vices in the real world. To resolve this challenge, we propose
a novel anytime algorithm for the QoS-aware WSC problem.
While traditional algorithms cannot provide an answer un-
til completely terminating a fixed number of computations,
anytime algorithms always provide best-so-far answers and
improve the quality of answers along with execution time.
If enough time is allowed, anytime algorithms will provide
the optimal answer eventually. By using our anytime al-
gorithm, we can identify composite web services with high
quality much earlier than an optimal algorithm as well as
the beam stack search [3] which is a state-of-the-art anytime
algorithm in AI literature. To the best of our knowledge,
there is no work to employ an anytime algorithm to WSC
problems.

2. QoS-aware Web Service Composition
Suppose that clients want to reserve a trip including all

of flights, ground transportation and a hotel with the fastest
response time. However, there does not exist a single web
service that provides all the services, but there are a number

∗This research was supported by the MAKE, Korea, under
the ITRC support program supervised by the NIPA (NIPA-
2010-C1090-1001-0008).

Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

Hotel Res 2
(HR2) : 90 msec

Ground Tran Res
(GTR) : 70 msec

Hotel Res 1
(HR1) : 100 msec

Trans Reservation
(TR) : 100 msec

. . .

. . .

initial goal

(FR) : 20 msec
Flight Reservation

Figure 1: Travel agency system

of reservation web services for some of the services with dif-
ferent response time. Figure 1 illustrates this example. The
TR service deals with the reservation for both of flights and
ground transportation. On the other hand, FR and GTR
treat a request only for flights and ground transportation,
respectively. HR1 and HR2 make a reservation for hotel
rooms. The response time for each web service is presented
in Figure 1. If considering the length of composite web ser-
vices as our aim, TR-HR1 and TR-HR2 would be the best
compositions. However, since the minimal response time
is our goal, FR-GTR-HR2 is the optimal composition (i.e.,
RFR-GTR-HR2 = 180msec).

Now, we formalize the notion of web services with QoS
criteria and the QoS-aware WSC problem. A web service w

is a tuple (I,O,Q) with the following components:

● I is a finite set of input parameters for w.
● O is a finite set of output parameters for w; each in-
put/output parameter p ∈ I ∪O has a type tp.
● Q is a finite set of quality criteria for w.

In the QoS-aware WSC problem, we identify a sequence
w1⋯wn of web services such that we can invoke the next web
service in turn and achieve the desired requirement eventu-
ally. Given a web service w and a sequence w1⋯wn of web
services, we denote w ⊒I w1⋯wn if calling w1⋯wn in turn re-
quires less inputs than w does, and w ⊑O w1⋯wn if invoking
w1⋯wn produces more outputs than w1 does. Then, given
a set W of web services and a service request wr, the QoS-
aware WSC problem ⟨W,wr⟩ is to find a sequence w1⋯wn of
web services (where each wi ∈ W) such that wr ⊒I w1⋯wn

and wr ⊑O w1⋯wn, and the aggregate QoS value Q(w1⋯wn)
is minimal. Given a sequence σ = w1⋯wn, Q(σ) is computed
as follows (assume that there are m QoS criteria):

● Q(σ) = c1 ⋅Q1(σ) +⋯+ cm ⋅Qm(σ), where each ci is a
given weight for the i-th quality criterion.
● Each function Qi depends on the corresponding qual-
ity criterion. For instance, consider response time as
the quality criterion. If ∣σ∣ = 1, then Qi(σ) = rtw1

where rtw1
is the response time of w1. Otherwise,

Qi(σ) = rtw1
+Qi(w2⋯wn). On the other hand, con-

sider throughput. If ∣σ∣ = 1, then Qi(σ) = thw1
where

thw1
is the throughput of w1. Otherwise, Qi(σ) =

Min(thw1
,Qi(w2⋯wn)).

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

71

3. Anytime Algorithm for QoS-aware WSC
We propose an anytime algorithm for the QoS-aware WSC

problem, which is based on the beam stack search [3]. The
beam stack search is an anytime algorithm that has shown
an excellent performance in AI literature. In the beam stack
search, due to its backtracking mechanism, a bad decision
in early phases requires more searching space than a bad se-
lection in late phases does. However, the algorithm assigns
a fixed value to the beam width for each search level, and
thus it considers the same number of candidates in all the
steps. To resolve this problem, we propose to dynamically
assign larger beam widths to early phases to consider more
qualified candidates. Then, we decrease its size gradually
as going down to a search graph. This idea is influenced
by a following natural intuition. When finding out an un-
known path from a source to a destination, we do not know
whether we would north, south, east or west, especially at
the beginning. We hence consider more candidates in the
early phases, and a good choice at early stages will lead to
a good solution more quickly.

To determine the beam width values, the number of nodes
in each level of a search graph is a major factor. We first
compute the number of successors of the root node (i.e., level
0) called nsucc. We approximate the number of successors of
each node as nsucc. Based on the approximation, we decide
the beam width BW (i) for each level i as following:

● BW(1) = nsucc. We consider all nodes for the most
careful choice at the highest level.

● BW (2) = Rinc ⋅ BW (1), where Rinc is the increasing
rate for the level 2 (1 < Rinc < nsucc); in our experi-
ment, we take 1.5 as Rinc .

● For i ≥ 3, BW (i) = Rdec ⋅ BW (i − 1), where Rdec is
the decreasing rate (0 < Rdec < 1); in our experiment,
we take 0.9 as the decreasing rate. Since choices at
bottom levels are not relatively significant, we decrease
the beam width by a user provided constant Rdec .

● wdmin is the minimum value of a beam width where
0 < wdmin < nsucc; we take 0.3 ⋅ nsucc as wdmin . This
value is needed, since if a beam width is too small, it
induces excessive backtracking and retrial. Finally, for
every i, if BW (i) < wdmin , then BW (i) = wdmin .

In addition to the dynamic beam width, we propose two
heuristics to improve the beam stack search: short back-
tracking and upper bound propagation. By avoiding the du-
plicated state expansion and unnecessary state inclusion,
these techniques help to efficiently find approximate solu-
tions with better QoS values. We omit the detail for our
algorithm and the heuristics for the sake of space.

To demonstrate that our proposed algorithm quickly iden-
tify good solutions, we compare it with an optimal algo-
rithm, uniform cost search algorithm [2] and a state-of-the-
art anytime algorithm, the beam stack search [3]. We have
experimented on five WSC problems produced by the Test-
SetGenerator which the Web Service Challenge 2009 compe-
tition [1] provides. All experiments have been performed on
a PC using a 2.33GHz Core2 Duo processor, 1GB memory
and a Linux operating system.

Figure 2 presents how our anytime algorithm works in
solving a QoS-WSC problem (i.e., P3 in Table 1) by com-
paring an optimal algorithm, where Y-axis is the solution
quality ratio α (i.e., the QoS value of the optimal solution vs.
the QoS value of the anytime algorithm’s solution). While

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

S
o

lu
ti
o

n
 Q

u
a

lit
y
 R

a
ti
o

Time (sec)

Optimal
Dynamic anytime

Figure 2: Optimal algo. vs. dynamic anytime algo.

Table 1: Experiment result
Timeout Opt. Beam Qual. Dyn. Qual.

(sec) algo stack ratio anytime ratio

P1 60 – I 0.84 I 1

P2 60 – I 0.81 I 1

P3 60 – I 0.96 I 1

P4 60 – I 0.68 I 0.81

P5 60 – I 0.85 I 0.85

P1 120 S I 1 C 1

P2 120 S I 0.94 I 1

P3 120 S I 0.96 C 1

P4 120 – I 0.68 I 0.81

P5 120 – I 0.85 I 0.96

P1 300 S C 1 C 1

P2 300 S C 1 C 1

P3 300 S C 1 C 1

P4 300 – I 0.81 I 0.87

P5 300 – I 0.96 I 0.96

the optimal algorithm finds the optimal solution at 61.4 sec-
onds (see ◆ in Figure 2), our anytime algorithm identifies
several solutions with high quality (i.e., 0.9 < α) at 10.1,
25.0, and 57.7 seconds much earlier than the optimal algo-
rithm. Even, it finds solutions with moderate quality (i.e.,
0.6 < α ≤ 0.9) very quickly (i.e., at 2.6, 2.7, and 3.5 seconds).
Table 1 presents the comparison of three algorithms with
specific timeouts. In the case of the optimal algorithm, since
it returns the optimal answer only, we report only whether
a given problem is solved (‘S’) or not (‘–’). For the beam
stack search and our anytime algorithm, to declare that the
solution found is optimal, sometimes they need to explore
more search space even after they have found it. ‘C’ and ‘I’
indicate if the algorithms complete the confirmation step.
Within 60 seconds, while the optimal algorithm does not
provide any answer at all, our algorithm produces good so-
lutions of which QoS quality ratios are from 0.81 to 1. In 120
seconds, while the optimal algorithm solves 3 problems, our
algorithm completes 2 problems and returns 3 solutions with
high quality from 0.81 to 1. In 300 seconds, the optimal algo-
rithm still cannot solve 2 problems, but our algorithm keeps
improving the solution quality. In all the cases, our dynamic
anytime algorithm outperforms the beam stack search.

4. Conclusion
We have proposed a novel anytime algorithm for the QoS-

aware WSC problem. Our preliminary experiment has shown
promising results. As future work, we plan ample experi-
ment to validate our algorithm for various problem instances.
Adaptive control of the beam width for a given problem in-
stance is also an interesting issue.

5. REFERENCES
[1] The web service challenge. http://ws-challenge.org/.

[2] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, 2nd edition, 2003.

[3] R. Zhou and E. A. Hansen. Beam-stack search: Integrating
backtracking with beam search. In ICAPS, pages 90–98, 2005.

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

72

