
SMARTINT: Using Mined Attribute Dependencies to Integrate
Fragmented Web Databases

Ravi Gummadi 1, Anupam Khulbe 2, Aravind Kalavagattu 3, Sanil Salvi 4, Subbarao Kambhampati 5∗

Department of Computer Science, Arizona State University, Tempe, AZ, USA
1gummadi@asu.edu 2akhulbe@asu.edu 3aravindk@asu.edu 4sdsalvi@asu.edu 5rao@asu.edu

ABSTRACT
Many web databases can be seen as providing partial and overlap-
ping information about entities in the world. To answer queries
effectively, we need to integrate the information about the individ-
ual entities that are fragmented over multiple sources. At first blush
this is just the inverse of traditional database normalization problem
- rather than go from a universal relation to normalized tables, we
want to reconstruct the universal relation given the tables (sources).
The standard way of reconstructing the entities will involve joining
the tables. Unfortunately, because of the autonomous and decen-
tralized way in which the sources are populated, they often do not
have Primary Key - Foreign Key relations. While tables do share
attributes, direct joins over these shared attributes can result in re-
construction of many spurious entities thus seriously compromising
precision. We present a unified approach that supports intelligent
retrieval over fragmented web databases by mining and using inter-
table dependencies. Experiments with the prototype implementa-
tion, SMARTINT, show that its retrieval strikes a good balance be-
tween precision and recall.

See arxiv.org/abs/1101.5334 for a longer version of this paper

Categories and Subject Descriptors
H.3.5 [INFORMATION STORAGE AND RETRIEVAL]: Online
Information Services|Web-based services

General Terms
Algorithms, Design, Experimentation.

1. INTRODUCTION
An increasing fraction of the information accessible on the web

comes from a welter of uncurated web databases, which provide
partial but overlapping information about entities in the world. In
database terms, web sources can be seen as exporting parts of a
universal relation describing the entities of interest. There are how-
ever two important changes from the traditional database setup: (i)
the database administrator, who ensures lossless normalization, is
replaced by independent data providers and (ii) specialized users,
who are aware of database querying language, are replaced by lay
users. These changes in turn have two important implications:
Ad hoc Normalization by providers: Primary key-Foreign key
(PK-FK) relationships that are crucial for reconstructing the univer-
sal relation are often missing from the tables. This is in part because
partial information about the entities are independently entered by
data providers into different tables, and synthetic keys (such as ve-
hicle ids, model ids, employee ids) are simply ignored. In some
∗This research is supported in part by the NSF grant IIS-0738317,
the ONR grant N000140910032 and a Google research award.

Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0632-4/11/03.

Figure 1: Architecture of SMARTINT System

cases, such as public data sources about people, the tables may
even be explicitly forced to avoid keeping such key information.
Imprecise queries by lay users: Most users accessing these tables
are lay users and are not often aware of all the attributes of the
universal relation. Thus their queries may be “imprecise” [2] in
that they may miss requesting some of the relevant attributes about
the entities under consideration.

Thus a core part of the source integration on the web can be cast
as the problem of reconstructing the universal relation in the ab-
sence of primary key-foreign key relations, and in the presence of
lay users. In order to find relevant attributes which describe the en-
tity, and provide complete information about that entity to users, we
require: (i) Linking attributes and propagating constraints spanning
across multiple tables, and retrieving precise results. (ii) Increasing
the completeness of the individual results by retrieving additional
relevant attributes and their associated values from other overlap-
ping tables not specified in the query (thereby reconstructing the
universal relation from different local schemas).

SMARTINT aims to provide effective solutions to these chal-
lenges. It starts with a base table containing a subset of query-
relevant attributes, and attempts to “complete” the tuples by pre-
dicting the values of the remaining relevant attributes. Intuitively,
the base table should contain important attributes whose values can-
not be predicted accurately, but which can help in predicting the
values of the other relevant attributes. The prediction/completion
of the tuples is made possible by approximate functional dependen-
cies (AFDs). To illustrate, on a vehicles database, AFDs are rules
of the form {model} vehicle_type, {model} review etc.
They allow us to expand partial information about the car model
into more complete information about vehicle type and review, as
well as propagate constraints in the query on vehicle type/review.

2. SMARTINT ARCHITECTURE
Figure 1 shows the architecture of SMARTINT. The system has

two components: (i) a learning component, which mines AFDs and
source statistics from different sources and (ii) a query answering

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

51

(a) (b) (c)

Figure 2: (a) F-measure vs Number of Attributes, (b) F-measure vs Number of Constraints and (c) SMARTINT vs Multiple join paths

component which actively uses the learned statistics to propagate
constraints and retrieve attributes from other non-joinable tables.

The Query Answering Component
Given a query, this online component focuses on selecting the

most appropriate tables and processing them to get the result set.
Source Selector: The first step, after the user submits the query,
is to select most relevant tables from the potentially large number
of tables present in the database. Source selector outputs a ‘tree
of relevant tables’. In order to construct the tree, it first picks the
top n tables (where n is the maximum size of the tree). Then it
evaluates the relevance of all the subgraphs of tables of size k and
picks the most relevant subgraph. It then picks the most relevant
tree within that graph and returns it. Estimating the relevance of
tables with respect to the query during query processing can be
costly. SMARTINT uses ‘Source Statistics’ learned beforehand to
calculate the degree of relevance of a table for a particular query.
Tuple Expander: The next step in the query answering phase is to
use the ‘tree of tables’ returned by the source selector to construct
the final result set. Tuple expander first constructs the hierarchical
schema from the table tree. It uses AFDs to determine which at-
tributes from the child table are appended to the schema. Once the
schema is constructed, it starts populating the tuples corresponding
to this schema. It first queries the ‘root table’ from the ’table tree’
and then starts appending the determined attributes using the stored
values from ‘Source Statistics’ module.

The Learning Component
This offline component learns the AFDs and source statistics

used by the query processing component.
AFD Mining: We define and mine AFDs as condensed representa-
tions of association rules. For example, an AFD (Model Make) is
a condensation of association rules (Model:Accord Make:Honda),
(Model:Camry Make:Toyota) etc. Our search for high quality
AFDs is guided by two metrics, namely confidence and specificity,
which are analogous to the standard confidence and support met-
rics used in association rules. AFDMiner [1] performs a bottom-up
search in the attribute lattice to find all AFDs and FDs that fall
within the given confidence and specificity thresholds. We use the
AFDs learnt within each table along with the attribute mappings
(which serve as anchor points) to learn rules across tables. While
combining AFDs across tables, we multiply their confidence to get
the confidence of the final rules and pick the best.
Stat Learner (Source Statistics): Source statistics are extensively
used in both ‘Source Selector’ and ‘Tuple Expander’. It might seem
that Stat Learner would require another scan of the database to mine
useful statistics. But since we mined AFDs by rolling up asso-
ciation rules, and confidence of an association rule is nothing but
the conditional probability of the attribute-value pairs involved, we
store them during the AFD mining process. Apart from these, we
also store information related to value distribution in each column
to calculate the extent of overlap between two tables. This helps us
in approximating the relevance measure during query time.

3. EVALUATION
A prototype implementation of SMARTINT has been completed

and demonstrated at ICDE 2010 [3]. To evaluate SMARTINT, we
used a vehicles database with 350,000 records probed from GOOGLE
BASE. We created a master table with 18 attributes, and divided it
into multiple child tables with overlapping attributes. We compared
the accuracy of SMARTINT with ‘Single table’ and ‘Direct join’ ap-
proaches. In the single table approach, results are retrieved from a
single table which has maximum number of attributes (constraints)
mentioned in the query mapped on it. The direct join approach
involves joining the tables based on the shared attributes. We mea-
sured the value of precision and recall by varying the number of
projected attributes and number of constraints in the query.

The plots in Figure 2 show the results of our evaluation. Plots
Figures 2 (a) and 2 (b) show that SMARTINT scores higher on F-
measure compared to single table and direct join methods. In cases
where query constraints span over multiple tables, single table ap-
proach ends up dropping all the constraints except the ones mapped
on to the selected best table. This results in low precision. De-
spite dropping constraints, it still performs poorly on recall since
the selected table does not cover all the query attributes, and hence
answer tuples are low on completeness. Although Direct join ap-
proach, which allows combining partial results from selected tables
over all shared attributes, provides high recall, it suffers from low
precision. Specifically, in the absence of primary-foreign key rela-
tionships, it ends up generating non-existent tuples through repli-
cation. In contrast, SMARTINT processes the distributed query
constraints effectively using the mined attribute dependencies and
hence keeps the precision fairly high. At the same time, it performs
chaining across tables to improve the recall. Figure 2 (c) shows
that SMARTINT had higher F-measure than all possible join paths.
The results demonstrate that SMARTINT achieves a better balance
between precision and recall.

4. CONCLUSION
We presented a unified approach that supports intelligent retrieval

over fragmented web databases by mining and using inter-table de-
pendencies. Our experimental results demonstrate that approach
used by SMARTINT is able to strike a better balance between pre-
cision and recall than can be achieved by relying on single table or
employing direct joins. Additional details about our approach and
evaluation can be found in arxiv.org/abs/1101.5334.

5. REFERENCES
[1] A. Kalavagattu. Mining approximate functional dependencies as

condensed representations of association rules. Master’s thesis.
Arizona State University. 2008.

[2] U. Nambiar and S. Kambhampati, “Answering imprecise queries
over autonomous web databases,” in ICDE, 2006, p. 45.

[3] R. Gummadi, A. Khulbe, A. Kalavagattu, S. Salvi, and
S. Kambhampati, “SmartInt: A system for answering queries over
web databases using attribute dependencies,” ICDE 2010 (Demo).

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

52

