
Rolling Boles,

Optimal XML Structure Integrity for Updating Operations

Sebastian Graf
University of Konstanz

Departement of Computer and
Information Science
Konstanz, Germany
sebastian.graf@
uni-konstanz.de

Sebastian Kay Belle
University of Konstanz

Departement of Computer and
Information Science
Konstanz, Germany

sebastian.kay.belle@
uni-konstanz.de

Marcel Waldvogel
University of Konstanz

Departement of Computer and
Information Science
Konstanz, Germany

marcel.waldvogel@
uni-konstanz.de

ABSTRACT

While multiple techniques exist to utilize the tree struc-
ture of the Extensible Markup Language(XML) regarding
integrity checks, they all rely on adaptions of the Merkle
Tree: All children are acting as one slice regarding the check-
sum of one node with the help of an one-way hash concate-
nation. This results in postorder traversals regarding the
(re-)computation of the integrity structure within modifi-
cation operations. With our approach we perform nearly
in-time updates of the entire integrity structure. We there-
fore equipped an XHash-based approach with an incremen-
tal hash function. This replaces postorder traversals by
adapting only the incremental modifications to the check-
sums of a node and its ancestors. With experimental re-
sults we prove that our approach only generates a constant
overhead depending on the depth of the tree while native
DOMHash implementations produce an overhead based on
the depth and the number of all nodes in the tree. Con-
sequently, our approach called Rolling Boles generates sus-
tainable impact since it facilitates instant integrity updates
in constant time.

Categories and Subject Descriptors

H.2 [Database Management]: General—Security, Integrity
and Protection

Keywords

XML, XML data integrity, DOMHash, XHash

General Terms

Design, Performance, Security, Verification

1. INTRODUCTION

The eXtensible Markup Language offers, due to its natural
structure, great possibilities to ensure data integrity in con-
stant time. Regarding subtree comparisons, security aspects
and evaluation of changes between modifications, XML of-
fers great benefits when equipped with an integrity structure
relying on the well-know hash structure from Merkle [2]. Ap-
plied as a uniform independent interface language to com-
bine heterogeneous technologies, integrity guarded XML has
the ability to play a mandatory role in the universe of the

Copyright is held by the author/owner(s).

WWW 2011, March 28–April 1, 2011, Hyderabad, India.

ACM 978-1-4503-0637-9/11/03.

WWW. This beneficial feature comes at a price: Each op-
eration on the content of a node as well as on the structure
of the entire tree must result in an adaption of the recursive
hash tree in order to keep the integrity functionality. Merkle
Tree hashes (as well as possible extension based on XML)
always rely on the checksums of all children as well as on
its own content. Each update operation needs a postorder
traversal on the tree to adapt the checksums of the edited
node plus its ancestors. Therefore, the price of integrity is
a deceleration of the update operations in relation to the
size of the structure. To minimize the necessary operations
we boil down the update operations to the absolute nec-
essary operation, namely the writing of the ancestors. By
replacing the read operation of the siblings with a concatena-
tion function for computing the hash of one node, we ensure
an update performance of the integrity structure related to
the path to the root and not to the size of the structure.
We call this approach Rolling Boles. We show that our ap-
proach scales with a constant time overhead when we parse
XMark instances while a native Merkle Tree implementa-
tion is generating an overhead related to the overall size of
the instance. While normal approaches can secure the entire
structure against any modification and access, our approach
suits best when it comes to use cases where the integrity of
an isomorphic subtree can result in equality plus when it
comes to high update loads of the content or the structure.

2. RELATED WORK

Data integrity related to XML as a tree structure become
quick practicable with the DOMHash [1] where a simple
DOM structure is checked by the recursive integrity of all
element nodes. XML-equipped checksumming became com-
mon when it comes to finding differences between two ver-
sions of the same XML. When working with recursive check-
sums, some approaches [4] only care about isomorphic struc-
tures which are defined as equality regarding their check-
sums and their children which can differ in their relative
position to each other. Rolling Boles relies on this approach
by utilizing XHash which builds up a recursive, order inde-
pendent structure of the single checksums.

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

49



!

!

!

!

!

!

!
!

!

!
!

!
!

!
!

!
!

!
!

5 10 15

5e
+0

1
5e

+0
2

5e
+0

3
5e

+0
4

5e
+0

5

xmark factor[f*0.001]

Ti
m

e[
m

s]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

! Merkle−Hash
Incremental Checksum
No Hashing

(a) Incremental Insert of different XMark instances (b) Schema of Insert/Remove

Figure 1: Benchmark and Schema Results

3. ROLLING BOLES

Rolling Boles works in a straight-forward way by utilizing
one-way hash functions with two-way checksum concatena-
tion. The checksum of each node is computed based on
an hashing operation of the node content. The resulting
checksum of the node is afterwards concatenated with the
checksums of its children. In contrast of existing techniques,
this concatenation is based on a two-way operation. That
means that each checksum of a child is associated with the
checksum of a node in an incremental way. This enables
Rolling Boles to act in an optimized way with respect to
any update operation of either the structure or the content
due to the fact that operations on the children result in only
read and write operations of the designated node.

Figure 1b shows examples of an insert operation as well
as of a node removal. In the left side of the schema, a new
subtree, denoted by white nodes, is inserted. Due to the in-
cremental adaptivity of Rolling Boles, only the nodes on the
path to the root, which is marked by a thick line, have to
be read and written. In opposite, the left and central grey
areas denote the nodes which have to be read regarding nor-
mal postorder based approaches. When it comes to removal
operations, exemplary shown in the right side of the figure,
the scaling is similar. The black node is removed from the
overall tree structure. Due to our incremental architecture,
we only have to adapt the nodes to the path of root while a
normal approach needs to adapt all nodes in the right and
central area.

Even if a two-way concatenation of checksums represents
a weakness on our approach, we believe that for simple,
non-cryptographically checksum approaches, Rolling Boles
represents a tool for instant checksum even with respect to
heavy update operations.

4. RESULTS

Figure 1a shows the insertion time of different XMark [3]
instances with increasing sizes. The integrity structure is
maintained directly within the insertion of every single node.
It is clearly visible that current approaches which rely di-
rectly on the checksums of the children generate a linear
overhead related to the instance size. Since these approaches
have to scan all children of one node in order to regenerate
a checksum, they all rely on the number of all nodes in a

tree. Therefore they are not able to generate only a constant
overhead like Rolling Boles where the effort to update the
checksums is only based on the depth of the node inserted.

5. FUTURE WORK AND CONCLUSION

Structural integrity is one major issue in WWW environ-
ments especially in the context of continuous modifications
of resources. XML equipped with Rolling Boles is able to
fulfill this task with only constant additional effort. This
effort is independent of the number of nodes in the tree
which enables Rolling Boles to maintain the integrity struc-
ture within single modification operations. Especially re-
garding stateless or atomic modifications, Rolling Boles de-
creases the overhead which goes along with a checksummed
structure while current approaches toils with instant con-
sistency of the integrity structure since the recursive defi-
nition of the Merkle Hash plus their adaption to XML are
in need of all children when maintaining the checksum of a
single node. This behaviour bounds current approaches to
the overall number of nodes while Rolling Boles only relies
on the depth of the node modified.

6. REFERENCES

[1] H. Maruyama, K. Tamura, and N. Uramoto. Digest
values for DOM (DOMHASH). RFC 2803, Internet
Engineering Task Force, Apr. 2000.

[2] R. C. Merkle. A digital signature based on a
conventional encryption function. In A Conference on
the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology, 1987.

[3] A. Schmidt, F. Waas, M. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. Xmark: A benchmark for
xml data management. In International Conference on
Very Large Data Bases, 2002.

[4] Y. Wang, D. DeWitt, and J. Cai. X-Diff: An effective
change detection algorithm for XML documents. In
Data Engineering, 2003. Proceedings. 19th International
Conference on, pages 519–530. IEEE, 2004.

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

50




