
The OXPath to Success in the Deep Web ∗

Andrew Sellers
supervised by Georg Gottlob

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD
Andrew.Sellers@comlab.ox.ac.uk

ABSTRACT
The world wide web provides access to a wealth of data.
Collecting and maintaining such large amounts of data ne-
cessitates automated processing for extraction, since appro-
priate automation can perform extraction tasks that would
be otherwise infeasible. Modern web interfaces, however, are
generally designed primarily for human users, delivering so-
phisticated interactions through the use of client-side script-
ing and asynchronous server communication. To this end,
we introduce OXPath, a careful extension of XPath that
facilitates data extraction from the deep web. OXPath ex-
ploits XPath’s familiarity and theoretical foundations. OX-
Path, then, achieves favourable evaluation complexity and
optimal page buffering, storing only a constant number of
pages for non-recursive queries. Further, OXPath provides a
lightweight interface, which is easy to use and embed. This
paper outlines the motivation, theoretical framework, cur-
rent implementation, and preliminary results obtained so
far. We conclude with proposed future work on OXPath, in-
cluding an investigation of how to deploy OXPath efficiently
in a highly elastic computing framework (cloud).

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services

General Terms
Languages, Algorithms

Keywords
Web extraction, web automation, XPath, AJAX

1. PROBLEM
The interactive nature of modern web interfaces exacer-

bates an unfortunate problem: the dynamic nature of these
user interfaces, driven by client and server-side scripting

∗Partially based on joint work with Tim Furche, Giovanni
Grasso, and Christian Schallhart. The research leading
to these results has received funding from the European
Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) / ERC grant
agreement no. 246858. The views expressed in this article
are solely those of the author.

This paper is authored by an employee(s) of the United States Government
and is in the public domain.
WWW 2011, March 28–April 1, 2011, Hyderabad, India
ACM 978-1-4503-0637-9/11/03.

(e.g. AJAX), creates challenges for automated processes
to access this information with the techniques developed for
extracting static web content.

The deep web, the part of the web accessible only through
such web interfaces, contains significant amounts of useful
information; while each individual piece of information is
readily available on some webpage, their manual extraction
and aggregation is often impractical due to the expense re-
quired for human users to tediously navigate the relevant
web interfaces for each query and extract relevant results.

As identified in [1], an appropriate automated tool for web
data extraction must be more than a mere screen scraper.
Useful, generalized extraction requires navigation of web ap-
plications in a way that simulates a human user as well as
the ability to accurately isolate the data for extraction while
capturing its association to other extracted results. Further,
extraction may occur over several web pages and data may
be extracted repeatedly over time, necessitating that such a
tool support identification of results even if multiple formats
are used or minor visual changes occur.

To enable automation, data accessible to humans through
existing web interfaces needs to be transformed into struc-
tured information. This is the task of web extraction tools.
To address these challenges, web extraction tools must (1) in-
teract with rich interfaces of (scripted) web applications to
find the interesting data and to perform actions on behalf
of the user, (2) provide extraction capabilities sufficiently
expressive and precise to specify the relevant data to be ex-
tracted in the majority of web extraction tasks, (3) while
remaining robust enough to compensate for changes in the
presentation of web content, yet (4) be easy to learn for web
developers and (5) scale well even if the number of relevant
web sites is large, and (6) embed easily in existing web pro-
gramming environments both on servers and in clients. The
latter two desiderata are essential for web extraction tools
to become a staple of web programmers to interact with web
applications, just as XPath or CSS are for accessing single
web pages today.

2. STATE OF THE ART
The automatic extraction and aggregation of web infor-

mation is not a new challenge. Previous approaches, in the
overwhelming majority, either (1) require service providers
to deliver their data in a structured fashion (e.g. the Seman-
tic Web); or, (2) “wrap” unstructured information sources
to extract and aggregate relevant data. The first case levies
requirements that service providers have little incentive to
adopt, which leaves us with wrapping as the only realistic

WWW 2011 – Ph. D. Symposium March 28–April 1, 2011, Hyderabad, India

409

choice. Wrapping a web site, however, is often tedious, since
many AJAX-enabled web applications reveal the relevant
data only through user interactions. As recognized in [1],
the transformation of the web from primarily static pages
to highly scripted web applications has posed a significant
challenge to existing web extraction and automation tools.

Traditional web extraction tools (e.g. [9] and [6]) are un-
able to deal with highly scripted web sites. More recent
tools have moved towards an approach of recording user ac-
tions in an actual browser and replaying those actions for
extracting data: Lixto [3] comprises a fully visual and inter-
active wrapper generator framework, based on the Mozilla
browser embedded in an Eclipse environment. Though data
extraction is based on the declarative, highly expressive Elog
language, actions are scripted separately in imperative ac-
tion scripts. There are also no guarantees on the number
buffered pages. In the spirit of Lixto, several visual wrap-
pers allow action replay, e.g. WARGO [14]. Lixto also uses
separate languages for navigation and extraction; its navi-
gation language is severely limited by the lack of iteration
and conditions.

Deep web extraction tools such as [4] have become adept
at dealing with scripted, highly visual web sites, but fol-
low an approach where extraction programs are inferred au-
tomatically from examples provided by the user. Though
this allows for easy wrapper generation, the precision nec-
essary for many fully automated tasks is sacrificed. They
also do not consider page management or evaluation com-
plexity. BODE [16] is a browser-based extraction tool with
an extraction language called BODED. But the language is
imperative and, though flexible for the integration of addi-
tional functionality, hard to optimize. Again, page buffering
is not considered.

There has also been previous work focused on finding a
language for web automation: a single sequence of user ac-
tion is replayed, rather than an exhaustive traversal of all
user action sequences leading to interesting data as in web
extraction. Thus efficiency and page buffer management
have not been considered extensively. Chickenfoot [5] is a
programming system for web automation that allows users
to program Javascript scripts that run in Firefox, having ac-
cess to the rendered view of a page. Though useful for rapid
wrapper generation, their results are often unpredictable to
users and lack the precision and formal semantics offered by
a declarative language. There are a number of other sys-
tems that rely on recording navigation from user actions,
e.g., WebVCR [2] and WebMacros[15] or more recently [12],
but all suffer from limitations on modern web pages and
consider only the replay of a single action sequence rather
than scalable multi-path data extraction.

3. PROPOSED APPROACH
Given the current state of web data extraction, we iden-

tify in Section 1 the six key requirements a data extrac-
tion tool must satisfy to deal with modern web applications.
The solution we propose is OXPath, a careful extension of
XPath, that allows the declarative specification of user inter-
actions with (scripted) web applications. We show that just
four concise extensions of XPath address all six requirements
and enable OXPath to effectively extract data from scripted
web applications while retaining XPath’s declarativity and
succinctness. Underlying these extensions is OXPath’s abil-
ity to access the dynamic DOM trees of a current browser

engine, reflecting all changes caused by scripting: (1) The
simulation of user actions, such as filling form fields or hov-
ering over a details button, enables interaction with AJAX
applications which modify the DOM dynamically. (2) Selec-
tion based on dynamically computed CSS attributes allows
navigation e.g. to the first green section title. (3) For ex-
pressing the interaction with forms, navigation exclusively
relying on visible fields is essential. (4) Extraction markers
allow identification of relevant pieces for extraction.

XPath forms an optimal foundation for OXPath as it is
(1) a declarative language, so we are able to readily adapt
its clean semantics, data model, and favourable evaluation
characteristics; (2) well known and studied by web practi-
tioners; and, (3) readily embeddable in other platforms.

Though XPath is the language of choice to query a set of
nodes in an XML or HTML tree, it is aimed at static XML
documents. However, many current Web applications, such
as GMail or Facebook, extensively rely on Javascript and
HTML events to implement complex user interactions that
cannot be adequately addressed in XPath.

OXPath, however, complements XPath with novel fea-
tures specific to HTML, allowing the full specification of
web data extraction tasks, including user interaction, itera-
tion over result pages, and extraction of relevant, structured
data.

Though there is an argument for more expressive lan-
guages for web extraction (such as monadic Datalog [7]),
we believe that OXPath hits the sweet spot of being easy
to learn, lightweight, and highly performant, yet capable
enough for most extraction scenarios. In [8] the value of
basic XPath as a component in data extraction is demon-
strated. We build on that and extend XPath for page nav-
igation, form filling, and extraction, turning it into a full-
fledged extraction language that is still compact and efficient
with optimal memory complexity. Further, OXPath is em-
beddable and familiar, making it ideal for deployment into
other web technologies.

4. METHODOLOGY
In this section, we present details of the OXPath lan-

guage and system. For space reasons, we omit discussion
here of the OXPath data model, semantics, our Page-At-A-
Time (PAAT) algorithm, and associated complexity results;
these are discussed in [13]. We define the language and pro-
vide an implementation so that appropriate experiments can
be conducted; in particular, we are interested in the time
and memory costs to OXPath query evaluation, the cost of
our additional features compared to standard XPath, and
a characterization of OXPath expression evaluation when
compared to page fetching and rendering time.

4.1 OXPath: Language
OXPath is an extensions of XPath: XPath expressions are

also OXPath expressions and retrain their same semantics,
computing sets of nodes, integers, strings or Booleans.

We extend XPath with (1) a new kind of location step for
actions and form filling, (2) a new axis for selecting nodes
based on visual attributes, (3) a new node-test for selecting
visible fields, and (4) a new kind of predicate for marking
data to be extracted. For page navigation, we adapt the
notion of Kleene star over path expressions from [11]. Nodes
and values marked by extraction markers are streamed out
as records of the result tables. For efficient processing, we

WWW 2011 – Ph. D. Symposium March 28–April 1, 2011, Hyderabad, India

410

cannot fix an apriori order on nodes from different pages.
Therefore, we do not allow access to the order of nodes in
sets that contain nodes from multiple pages.

Actions. For explicitly simulating user actions, such as clicks
or mouse-overs, OXPath introduces contextual action steps,
as in {click}, and absolute action steps with a trailing slash,
as in {click /} . Since actions may modify or replace the en-
tire DOM, OXPath’s semantics assumes that they produce a
new DOM. Absolute actions return DOM roots, while con-
textual actions return those nodes in the resulting DOMs
which are matched by the action-free prefix of the performed
action: The action-free prefix afp(action) of action is con-
structed by removing all intermediate contextual actions and
extraction markers from the segment starting at the previous
absolute action. Thus, the action-free prefix selects nodes on
the new page, if there are any. For instance, the following
expression enters “Oxford” into Google’s search form using a
contextual action—thereby maintaining the position on the
page—and clicks its search button using an absolute action.

doc("google.com")/descendant::field()[1]/{"Oxford"}
2 /following::field()[1]/{click /}

Style Axis and Visible Field Access. We introduce two
extensions for lightweight visual navigation: a new axis for
accessing CSS DOM node properties and a new node test
for selecting only visible form fields. The style axis is similar
to the attribute axis, but navigates dynamic CSS properties
instead of static HTML properties. For example, the follow-
ing expression selects the sources for the top story on Google
News based on visual information only:

doc("news.google.com")//*[style::color="#767676"]

The style axis provides access to the actual CSS properties
(as returned by the DOM style object), rather than only to
inline styles.

An essential application of the style axis is the naviga-
tion of visible fields. This excludes fields which have type or
visibility hidden, or have display property none set for them-
selves or in an ancestor. To ease field navigation, we in-
troduce the node-test field() as an abbreviation. In the
above Google search for “Oxford”, we rely on the order
of the visible fields selected with descendant::field()[1] and
following::field()[1]. Such an expression is not only easier
to write, it is also far more robust against changes on the
web site. For it to fail, either the order or set of visible form
fields has to change.

Extraction Marker. Navigation and form filling are often
means to data extraction: While data extraction requires
records with many related attributes, XPath only computes
a single node set. Hence, we introduce a new kind of qual-
ifier, the extraction marker, to identify nodes as represen-
tatives for records and to form attributes from extracted
data. For example, :<story> identifies the context nodes as
story records. To select the text of a node as title, we use
:<title=string(.)>. Therefore,

doc("news.google.com")//div[@class~="story"]:<story>
2 [.//h2:<title=string(.)>]

[.//span[style::color="#767676"]:<source=string(.)>]

extracts from Google News a story element for each current
story, containing its title and its sources, as in:

<story><title >Tax cuts ...</title>
2 <source>Washington Post</source>

<source>Wall Street Journal</source> ... </story>

E
m

b
ed

d
in

g
O

X
P

a
th

 E
n

g
in

e
W

eb
 A

cc
es

s

Web Access API

HtmlUnit

PAAT Algorithm

Basic OXPath Evaluator

OXPath API JAXP XPath API

Host Environment (e.g. Java, XQuery, CLI, …)
XPath Variable Bindings for Form Filling

DB

Visual OXPath

OXPath Parser & Rewriting

Browser XPathN
o

d
e

M
a

n
a

g
er

SWT Mozilla

Page Buffer

Page Modification Manager

Figure 1: OXPath System Architecture

The nesting in the result above mirrors the structure of the
OXPath expression: An extraction marker in a predicate
represents an attribute to the (last) extraction marker out-
side the predicate.

Kleene Star. Finally, we add the Kleene star, as in [11],
to OXPath. For example, we use the following expression
to query Google for “Oxford”, traverse all accessible result
pages, and to extract all contained links.

doc("google.com")/descendant::field()[1]/{"Oxford"}
2 /following::field()[1]/{click /}/

(descendant::a.l:<Link=(@href)>
4 /ancestor::*/descendant::a[.#=’Next’]/{click /})*

To limit the range of the Kleene star, one can specify upper
and lower bounds on the multiplicity, e.g., (...)*{3,8}.

4.2 OXPath: System
Our implementation consists of the three layers shown in

Figure 1: the embedding layer provides a development API
and a host environment, the engine layer performs the eval-
uation of OXPath expressions, and the web access layer ac-
cesses the web in a browser-neutral fashion.

Embedding Layer. To evaluate an OXPath expression, we
need to provide the environment with bindings for all occur-
ring XPath variables; the environment in turn provides the
final expression to the OXPath engine. Variables in OX-
Path expressions are commonly used to fill web forms with
multiple values. To this end, the host environment allows
value bindings based on databases, files, other OXPath ex-
pressions, or Java functions. In our default implementation,
we stream the extracted matches to a file without buffer-
ing, while other implementations may choose to store the
matches e.g. in a database instead. Finally, we offer a GUI
to support the visual design of the OXPath queries.

Engine Layer. After parsing, the query optimizer expands
abbreviated expressions, such as field(), and feeds the re-
sulting queries to our Page-At-A-Time (PAAT) algorithm [13].
This algorithm controls the overall evaluation strategy and
uses the browser’s XPath engine to evaluate individual XPath
steps and a buffer manager to handle page modifications.

Web Access Layer. For evaluating OXPath expressions on
web pages, we require programmatic access to a dynamic
DOM rendering engine, as employed by all modern web
browsers. We identified HtmlUnit (htmlunit.sourceforge.
net), the Mozilla-based JREX (jrex.mozdev.org), and the

WWW 2011 – Ph. D. Symposium March 28–April 1, 2011, Hyderabad, India

411

also Mozilla-based SWT widget (eclipse.org/swt) as back-
ends. To decouple our own implementation from their im-
plementation details, we provide the web access layer as a
facade which allows for exchanging the underlying browser
engine independently of our other code. In our current im-
plementation, we use HtmlUnit as backend, since it renders
pages efficiently (compared with the SWT Mozilla embed-
ding) and is implemented entirely in Java.

5. RESULTS
We have already achieved significant results. In particu-

lar, in [13], we prove the following theorem that establishes
an upperbound to OXPath expression evaluation based on
the eval function, the function implemented in the PAAT
algorithm:

theorem 1 (PAAT for OXPath). Evaluating an OX-
Path expression Expr using eval takes at most O((p ·n)6 ·q3)
time and O(n5 · (q + d)2) where q is the size Expr and n is
the maximum number of nodes in any page accessed by the
evaluation of Expr, p is the number of such pages, and d is
the maximum level of such a page.

Even with the theoretical worst case, OXPath remains
polynomial, and therefore, tractable. However, as our em-
pirical analysis will show below, OXPath expression eval-
uation time is dominated by page retrieval and rendering
time.

The other major result relates to page management in
OXPath. The buffer management features of the PAAT al-
gorithm ensures that pages are only buffered when they will
be needed for further evaluation. We are then able to proof
the following:

theorem 2 (Minimal Buffering). The minimal num-
ber of page buffers necessary for evaluating an OXPath ex-
pression Expr is the maximum number of branching points
on any path to a page in the page navigation tree that is
reached when evaluation Expr.

This notion of minimal buffering is empirically observed
by measuring the memory footprint over time during the
evaluation of an OXPath expression.

We continue with a brief discussion of evaluation of our
implementation. We profile OXPath’s evaluation time and
memory on complex queries. Further, we compare its per-
formance against both the speed for retrieval and rendering
of web pages in the underlying browser as well as the evalu-
ation time of its XPath engine. The experiments have been
performed on an Intel Core 2 Duo with four 3.00GHz cores
and 3 GB main memory, running Windows XP 32-bit using
Java 1.6.0.21.

Scaling OXPath. In order to demonstrate how OXPath’s
PAAT algorithm scales, in particular where memory use is
concerned, we run ten different types of queries that required
complex page buffering, traversal of as many as 1000 pages,
and extraction of thousands of pieces of information. Each
query is evaluated multiple times and the results are aver-
aged. The results of one such query is shown in Figure 2.
Pages retrieved and results extracted are linear w.r.t. time,
but memory size remains constant even as both the number
of pages accessed and the results extracted increases. The
jitter in memory use is due to the repeated ascends and de-
scends of the citation hierarchy. This same characterization
of memory, pages, and results over time was observed in all
of the tested expressions.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300
 0

 800

 1600

 2400

 3200

 4000

 4800

m
em

or
y

[M
B

]

m
at

ch
es

 /
pa

ge
s

time [sec]

memory
extracted matches

visited pages

Figure 2: Memory, results, and pages

Scaling from Basic XPath to Full OXPath. To judge the
practical performance of OXPath’s implementation, we com-
pare it with the built-in XPath engine of HtmlUnit (based
on Java’s default XPath engine). Second, we evaluate how
OXPath’s actions affect query evaluation, in particular how
contextual actions perform compared to absolute actions.
Finally, we show that the most expensive feature introduced
by OXPath, the Kleene star, still scales well with query size.
All queries are evaluated on Google.

HtmlUnit’s XPath engine (Xalan) is shown to be expo-
nential in increasing query size, whereas OXPath’s PAAT
algorithm is linear as expected. The queries tested were a
set of 15 expressions built as follow: starting with the base
query //div/parent::div, the (i + 1)th expression is obtained
by appending the pattern /div/parent::div to the ith one.
We also evaluated actions on pages that do not result in

new page retrievals, comparing absolute actions and con-
textual action evaluation. Contextual actions suffer a small
penalty to evaluation time compared to their absolute equiv-
alents, but generally the evaluation time does not increase
significantly with the number of performed actions. This
result is to be expected, as contextual actions “replay” their
action-free prefixes in order to find their place in the docu-
ment. This penalty is minimal, however. Our experiments
found the overhead was less than 15% even after six such
actions are evaluated as part of the same expression for a
reasonable web page consisting of a sophisticated web form.
This data was the average of several runs on the web form
found at google.com/advanced_product_search.

Our tests show the performance of the Kleene-star per-
forms linearly as expected with increasing number of expan-
sions of the Kleene star operation.

Profiling OXPath. In the final experiment, we profile the
influence of the different evaluation steps on the overall eval-
uation time of an OXPath expression. We evaluated the
same query on the following web pages: apple.com, bing.com,
diadem-project.info, www2011india.com, and the Wikipedia
page on Hyderabad, retrieving links on each of these pages,
clicking on all of them and extracting the html tag of each
result page. The average of profiling in several trials deter-
mined that OXPath evaluation was less than 2% of total
processing time, the rest of the time can be attributed to
initial browser setup (13%) and page fetching and rendering
(85%).

WWW 2011 – Ph. D. Symposium March 28–April 1, 2011, Hyderabad, India

412

6. CONCLUSIONS AND FUTURE WORK
OXPath is the first web extraction system with strict

memory guarantees to the best of our knowledge. These
memory guarantees reflect strongly in our experimental eval-
uation. Just as important, OXPath is built on standard web
technology, such as XPath and DOM, so that it is familiar
and easy to learn for web developers. We believe that it has
the potential to become an important part of the toolset
of developers interacting with the web. To further simply
OXPath expressions and enhance their robustness, we plan
to investigate additional features, such as more expressive
visual language constructs and multi-property axes.

While we are encouraged by our results so far, we are ex-
cited by the potential offered by further investigation into
OXPath. A strength of OXPath is that it is focused and
easily embeddable. We want to exploit that potential by
realizing OXPath in a variety of contexts: in the cloud for
large-scale extraction and in the browser for ad-hoc and de-
velopment use.

In the Cloud. OXPath is designed for highly parallel ex-
ecution: the host language can assign different bindings
for the same variable to create multiple OXPath queries.
These queries can be processed with separate web sessions
hosted on separate computing instances. We think this ap-
proach to parallel decomposition is ideally suited for the
share-nothing nature of computing instances in elastic com-
puting environments (e.g. Amazon’s EC2 service at aws.

amazon.com). The selection of a host language for the cloud
requires careful consideration: in particular, most existing
web programming languages, such as XQuery, do not pro-
vide access to a dynamic DOM. Beyond variable bindings,
any useful host language almost certainly requires aggrega-
tion and subquerying capabilities; for this reason, a possible
host language could extend SQL or XQuery.

Significant work remains to adapt OXPath to execute
favourably in a cloud. The naive approach replicates our
OXPath engine into arbitrary many computing instances.
Significant challenges to this approach warrant further in-
vestigation: (1) One significant challenge to consider is that
our current implementation requires a rendered DOM for
each OXPath expression. Replicating so many web browsers
may be undesirable. (2) Further, if we replicate our current
implementation in many cloud-based instances, a significant
fraction of action sequences may be repeated. Similarly, in
multi-way navigation, repeated paths also occur; these “re-
plays” may not always be necessary, demanding optimiza-
tions. (3) We also must address how to consolidate the out-
put extracted by OXPath expressions running in multiple
instances. The conventional engineering approach for such
a task in Amazon Web Services (AWS) is to store interim
results in ephemeral instance storage and combine them via
MapReduce or a similar technique. We will have to eval-
uate whether such an approach is appropriate for OXPath
or if new control mechanisms for cloud-based output must
be introduced into the language. (4) OXPath in a cloud
also necessitates formulation of etiquette rules. We cannot
allow OXPath, as a web “citizen”, to consume resources of
public web servers to such an extent that it degrades or in-
hibits their operation. One possible solution to explore is
detecting when caching pages is possible so that multiple
accesses do not involve the server. This would introduce a
notion of locality to our cloud, as we would have to manage

which instances store cached pages and optimally evaluate
appropriate expressions from them.

Each of these issues raises the question of how to opti-
mize the evaluation of several parallel OXPath expressions
in order to minimize expensive browser instantiations, un-
necessary replication of common action sequences, and how
to best consolidate output extracted by OXPath expressions
running in multiple instances. The design of a sufficient task
scheduler dictates how these features should be specified and
integrated within a coherent approach, balancing these fea-
tures between host language and core OXPath. Depending
on our findings, we may need to adjust our semantics to
support such optimizations.

In the Browser. Our implementation already proves the
viability of OXPath operation within a browser. Further
browser-based work includes development of a tool suite,
including a visual generation and debugging environment
for expressions. As a concise language with a clear formal
semantics, OXPath is amenable to significant optimization
and a good target language for automated generation of web
extraction programs. In particular, we consider the auto-
matic generalization of OXPath expressions to support ro-
bust web data extraction and ease usability with shorter and
clearer expressions.

7. REFERENCES
[1] A. Alba, V. Bhagwan, and T. Grandison. Accessing the

deep web: when good ideas go bad. In OOPSLA, 2008.
[2] V. Anupam, J. Freire, B. Kumar, and D. Lieuwen.

Automating web navigation with the webvcr. In WWW,
pages 503–517, 2000.

[3] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web
information extraction with Lixto. In VLDB, 2001.

[4] J. P. Bigham, A. C. Cavender, R. S. Kaminsky, C. M.
Prince, and T. S. Robison. Transcendence: enabling a
personal view of the deep web. In IUI, 2008.

[5] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller.
Automation and customization of rendered web pages. In
UIST, 2005.

[6] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A
survey of web information extraction systems. TKDE, 2006.

[7] G. Gottlob and C. Koch. Monadic datalog and the
expressive power of languages for web information
extraction. J. of the ACM, 2004.

[8] M. Kowalkiewicz, M. E. Orlowska, T. Kaczmarek, and
W. Abramowicz. Robust web content extraction. In WWW,
2006.

[9] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and
J. S. Teixeira. A brief survey of web data extraction tools.
Sigmod Rec, 2002.

[10] M. Liu and T. W. Ling. A rule-based query language for
HTML. In DASFAA, 2001.

[11] M. Marx. Conditional XPath. TODS, 2005.
[12] P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. López.

Automating navigation sequences in AJAX websites. In
ICWE, 2009.

[13] OXPath. http://www.diadem-project.info/oxpath.

[14] J. Raposo, A. Pan, M. Álvarez, J. Hidalgo, and n. A. Vi.
The Wargo system: Semi-automatic wrapper generation in
presence of complex data access modes. In DEXA, 2002.

[15] A. Safonov. Web macros by example: users managing the
WWW of applications. In CHI, 1999.

[16] J.-Y. Su, D.-J. Sun, I.-C. Wu, and L.-P. Chen. On design of
browser-oriented data extraction system and plug-ins. J. of
Marine Sc. and Tech., 2010.

WWW 2011 – Ph. D. Symposium March 28–April 1, 2011, Hyderabad, India

413

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

