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ABSTRACT

Learning private information from multiple strategic agents
poses challenge in many Internet applications. Sponsored
search auctions, crowdsourcing, Amazon’s mechanical turk,
various online review forums are examples where we are in-
terested in learning true values of the advertisers or true
opinion of the reviewers. The common thread in these deci-
sion problems is that the optimal outcome depends on the
private information of all the agents, while the decision of
the outcome can be chosen only through reported informa-
tion which may be manipulated by the strategic agents. The
other important trait of these applications is their dynamic
nature. The advertisers in an online auction or the users
of mechanical turk arrive and depart, and when present, in-
teract with the system repeatedly, giving the opportunity
to learn their types. Dynamic mechanisms, which learn
from the past interactions and make present decisions de-
pending on the expected future evolution of the game, has
been shown to improve performance over repeated versions
of static mechanisms. In this paper, we will survey the past
and current state-of-the-art dynamic mechanisms and ana-
lyze a new setting where the agents consist of buyers and
sellers, known as exchange economies, and agents having
value interdependency, which are relevant in applications il-
lustrated through examples. We show that known results of
dynamic mechanisms with independent value settings can-
not guarantee certain desirable properties in this new signif-
icantly different setting. In the future work, we propose to
analyze similar settings with dynamic types and population.

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Economics; I.2.11
[Distributed Artificial Intelligence]: Multiagent systems

General Terms

Economics, Game Theory, Mechanism Design

Keywords

Incentive Compatibility, Individual Rationality, Nash Equi-
librium

1. INTRODUCTION
Dynamic mechanism design evolved primarily through auc-

tion theory. With the advent of the Internet, the sponsored
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search auction became one of the major resources of elec-
tronic commerce. Due to the dynamic nature of the inter-
action, the classical results, e.g., Vickrey [22], Myerson [13],
dealing with static auction were needed to be extended to
the settings where the agent-population or the types or both
evolve over time. Though the literature on dynamic auction
theory provides guarantees on truthfulness, voluntary par-
ticipation and no deficit, it is restricted to the setting where
agents are either all buyers or all sellers, with values in-
dependent across agents (this is also referred to as private
value setting, [4]). In a typical auction, the auctioneer is
not considered as a player, which is not suitable to model
the crowdsourcing websites or dynamic project outsourcing
problems, as the central organization is also critical for the
strategic interaction. This framework, consisting of a pop-
ulation of both buyers and sellers, is known as Exchange
Economies in the literature. We also note that the value of
a crowdsourcing center would depend upon the quality of
information provided by the crowd, inducing value depen-
dency. In this paper, we will address the above interesting
setting of exchange economy with dependent value struc-
ture, which has not been studied much in the literature on
dynamic mechanism design. To illustrate, we discuss a sim-
plified example of this general setting.

Motivating example: Consider a company, having re-
ceived a contract for a project, wishes to select a set of em-
ployees to execute it. The company does not deterministi-
cally know the efficiencies of the employees. Company’s rev-
enue (value) increases for a faster completion of the project,
and so, its goal is to allocate the project to the set of most
efficient employees and make appropriate payments. A typi-
cal dynamics of this game is shown in Figure 1, where player
0 denotes the company and the players 1 through n are the
employees. Let N = {0, 1, . . . , n}. In each round t, agent
i observes her true types θi,t, i ∈ N , analogous to the ef-
ficiencies for the employees and the project workload for
the company. Since the true efficiency levels are private in-
formation of the employees, reported types (θ̂i,t’s) may be
different from the true ones. The decision problem for a
mechanism designer is therefore to design a mechanism en-
dowed with efficient allocation and payment rules to ensure
truthfulness, voluntary participation etc. It is clear that the
cost of the project depends on the completion time, which
in turn depends on the efficiencies (types) of all the employ-
ees, and hence the costs to the employees (values) depend
on the types of other agents, making the values dependent.
The other point to note here is that the payment is made by
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Figure 1: An illustration of the motivating example

the company to the employees, giving rise to an exchange
economy.

The rest of the paper is organized as follows. In Section 2,
we look into the recent literature on dynamic mechanisms.
In Section 3, we present the challenges of designing mech-
anism in an exchange economy with dependent values and
present some initial results which satisfy certain desirable
properties under this setting. We conclude the paper in
Section 4 with a roadmap of proposed future work.

Due to space constraints, we cannot provide formal defi-
nitions of value, type, efficiency, quasi-linear payoff, ex-post
incentive compatibility, within period ex-post individual ra-
tionality, which can be found in literature on mechanism
design ([15], [14], [4]) and will be clear in the context.

2. PREVIOUSWORK
In this section, we will take a look into the existing litera-

ture on dynamic mechanism design. The literature on static
mechanism design is rich. However, they do not immediately
extend to dynamic settings, since decisions in the dynamic
setting often depend on the past behavior of agents which is
absent in a static setting. The literature on dynamic mech-
anism design can be classified according to the nature of the
dynamics. When the population of the agents is varying
with time, e.g., they have a certain arrival and departure
epochs in the system, the class is known as dynamic pop-
ulation mechanisms. While if the types of the agents are
varying with time, the class is known as the dynamic type
mechanisms. Figure 2 illustrates the different classes of dy-
namic mechanisms with a flowchart.

Efficient
(max social welfare)

Optimal
(max revenue)

Efficient
(max social welfare)

Optimal
(max revenue)

Dynamic Population

Dynamic Mechanisms

Dynamic Type

Figure 2: Different paradigms of dynamic mecha-

nisms

2.1 Dynamic Population Mechanisms
Under this class of mechanisms, efficient mechanisms are

those which maximize the total value (social welfare) of the
agents. The sequential allocation problem in dynamic pop-
ulation setting has been studied by Parkes and Singh [18].
Each agent has an arrival time and a departure time, and has
a utility function for decisions made while she is present, but
the mechanism designer does not know any of this informa-
tion. Their model considers patient buyers who are willing to
maximize their long term payoff, and proposes online VCG
mechanism as a solution. A sharp contrast to this problem
with impatient buyers have been studied in Gershkov and

Moldovanu [9], where the buyers wish to purchase an object
immediately upon their arrival on the market.

Said [20] discusses the allocation of a sequence of indivis-
ible goods to a dynamic population of buyers. The author
presents an efficient dynamic indirect mechanism where pa-
tient buyers demand a single unit of a perishable homoge-
neous good.

The other class called optimal mechanisms maximize the
revenue of an auction, following the taxonomy from Myer-
son [13]. The revenue-maximizing counterpart to the effi-
cient online VCG mechanism [18] is discussed by Pai and
Vohra [16] with patient buyers. The setting with impatient
buyers has been analyzed by Gershkov and Moldovanu [8].

Said [20] examines the assignment of a sequence of perish-
able goods to a population of patient buyers, and develops
and indirect mechanism.
2.2 Dynamic Type Mechanisms

The sub-classification into efficient and optimal mech-
anisms apply here as well. Let us discuss efficient mech-
anisms first. The infinite horizon dynamic type model has
been analyzed in Bergemann and Välimäki [3]. The pro-
posed efficient mechanism is called dynamic pivot mecha-
nism, which is a generalization of the Clarke’s pivotal mech-
anism in dynamic setting. Cavallo et al. [5] develop a mech-
anism similar to the dynamic pivot mechanism in a setting
with agents whose type evolution follows a Markov process.
In Cavallo et al. [6], the authors extend dynamic VCG to
settings in which buyers are periodically inaccessible and are
unable to make reports. Zoeter [23] applied dynamic VCG in
sponsored search to make the auction cheating-proof. Sarma
et al. [21] characterized mechanisms in multi-slot sponsored
search auctions.

Athey and Segal [1] consider a similar setting to that of
[3]. However, they are also interested in finding an efficient
mechanism that is budget balanced. They essentially gen-
eralize the AGV mechanism [7] to dynamic setting.

Kakade et al. [11] characterize the optimal dynamic mech-
anism for Multi-armed Bandit problems, finding its applica-
tions in sponsored search auctions.

Pavan et al. [19] generalize the results of Myerson [13] to
a general dynamic setting. In particular, they characterize
incentive compatibility and revenue in multi-period settings
with dynamic private information.

Literature summary: The literature on dynamic mech-
anism design addresses private value environment, and a
large share of them address auction setting. We would like
to emphasize that this paper asks questions about the de-
pendent value setting in an exchange economy, which dis-
tinguishes itself from the above literature.

3. DEPENDENT-VALUED

EXCHANGE ECONOMIES
In this section, we motivate the problem addressed and

show the subtle differences from the existing literature and
formally introduce the model, notation and assumptions.

3.1 Motivation for this work
Many social and network economics examples, discussed

in Section 1, involve exchange economies with interdepen-
dent values. The dynamic pivot mechanism or dynamic
VCG mechanism ([3], [6]), will not readily guarantee incen-
tive compatibility in this setting. For interdependent valua-
tions, if one restricts attention to single-stage static mecha-
nisms, then incentive compatibility is inconsistent with mak-
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ing efficient decisions, even if one does not impose any bud-
get balancing or individual rationality constraint (Jehiel and
Moldovanu [10]). Since dynamic mechanism design is in-
herently harder than static ones, designing dynamic mech-
anisms under such setting is a distinct nontrivial problem.

3.2 The Model
We consider a simple exchange economy setting, with sin-

gle buyer and multiple sellers trading over an infinite hori-
zon. The agents’ values at time t depend on the alloca-
tion in that round and the type profile of all the agents
present at that instant. This has the implication that if an
agent is removed from the system, she can no longer affect
the valuations of other agents in that round. We consider
a direct revelation mechanism with quasi-linear payoffs,
where the buyer chooses a single (or a set of) seller(s) for
procurement. Once selected, the agents perfectly observe
their realized values. These observed values are functions of
a random quantity called the state of the world (example:
random disturbance for a project completion) and we will
assume that it has a known stationary distribution. The
observed types and values are private information of the
agents.

3.3 Notation and Assumptions
The notation is summarized in Table 1. We summarize

the assumptions as follows.

• After the agents are allocated, they can observe their
realized true values perfectly.

• We consider a dynamic mechanism with types evolving
in a Markov process with the transitions independent
across agents, i.e., F (θt+1|at, θt) =

∏

i∈N Fi(θi,t+1|at, θi,t),
∀ t, at is the action chosen at t.

• The value of the center at t depends only on the true
types of the agents present at t.

• If an agent cannot increase her payoff by misreporting,
then she sticks to truth-telling.

• The absolute value of the valuation function is almost
surely bounded.

• The state of the world process has a stationary distri-
bution.

3.4 Dynamics of the Game
Since interdependent valuations prevent a single stage mech-

anism to simultaneously guarantee efficiency and incentive
compatibility ([10]), Mezzetti [12] decouples the allocation
and payment decisions by proposing two-stage reporting mech-
anism for static setting. Similarly in dynamic setting, we
assume that in each round, each agent observes her true
value after allocation, which depends on the realization of
the state of the world in addition to the true types of the
agents. In the example of Section 1, the exact completion
time of the project does not only depend on the efficiency
of the selected employee, but also on a random disturbance
(e.g., labor shortage, power cut etc.), and the cost is ob-
served after the project is executed.

Let us illustrate the dynamics of the game with a single
buyer (center) and n sellers (agents) as follows.

1. Agent i observes θi,t, at time t, i ∈ N .

2. Agents are asked to report types. They report θ̂i,t.

3. Mechanism decides the allocation of the job, at ∈ A

depending on θ̂t.

4. The state of the world, ω, realizes.

N = {0, 1, . . . , n} Set of agents, 0 denotes the buyer.
Θi Type set of agent i ∈ N .
Θ = Θ1 × · · · ×Θn Set of type profiles.
A Set of all possible allocations.
ω ∈ Ω State of the world.
Π ∈ △(Ω) Cumulative distribution of the

state of the world.
Vi : A×Θ× Ω → R Value function of agent i ∈ N .

The value given an allocation
depends on the types of the agents
present at time t and
on the state of the world.

vi : A×Θ → R Expected value function
of agent i ∈ N , expected
over the state of the world.

t = 0, 1, 2, . . . Discrete time index.

θi,t, θ̂i,t True type, reported type
of agent i ∈ N at time t.

θt, θ̂t True type profile,
reported type profile at time t.

V̂i,t Values reported by agent i ∈ N ,
at time t

V̂t Reported value profile at t.

at : Θ → A Allocation function acting on θ̂t.
Fi ∈ △(Θi) Prior of θi,0.
F ∈ △(Θ) Joint prior of θ0.
Fi(θi,t+1|at, θi,t) Stochastic kernel

associated with agent i.
F (θt+1|at, θt) Stochastic kernel

of the joint transition.
We assume that the joint kernel
is the product of the marginals.

δ Common discount factor
(infinite horizon).

p∗i : Θ× R → R Monetary transfer to agent i

at each stage given
the reported types and values.

W : Θ → R Total social welfare function
given a type profile θt.

W−i : Θ−i → R Social welfare function
excluding agent i
given a type profile θ−i,t.

Table 1: Notation.

5. Agents observe their true valuation Vi(at, θt, ω), i ∈
N , which is a realization of a random variable.

6. All agents are asked to report their observed values.
They report V̂i,t, i ∈ N .

7. Payments pt(θ̂t, V̂t) are decided by the mechanism.
Figure 3 gives a graphical illustration of the above dynamics.

true types

Agents observe
true values
Agents observeAgents

report types

Agents report

values

Stage 1 Stage 2

Allocation Payment

v̂0,t

v̂1,t
...

v̂n,t

At time t

θ0,t

θ1,t

θn,t

...
...

v0(at, θt)

v1(at, θt)

vn(at, θt)

... ...

θ̂0,t

θ̂1,t

θ̂n,t

... ptat

Figure 3: Graphical illustration of the proposed dy-

namic mechanism
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3.5 The Generalized Dynamic Pivot Mecha-
nism

Given the above dynamics of the game, the task of the
mechanism designer is to design the allocation and payment
rules. We note that the expected value of agent i (expected
over the state of the world) is given by,

vi(at, θt) =

∫

Ω

Vi(at, θt, ω)dΠ(ω) (1)

where Vi(at, θt, ω) is the realized value of the agent given
realized state of the world ω. The objective of the social
planner is to maximize social welfare given the type profile
θt, which is defined as,

W (θt)

= max
πt

Eπt,θt

[
∞∑

s=t

δ
s−t

∑

i∈N

vi(as, θs)

]

= max
at

Eat,θt

[
∑

i∈N

vi(at, θt) + δEθt+1|at,θtW (θt+1)

]

where πt = (at, at+1, . . . ) is the sequence of actions starting
from t. We assume that there exists a stationary policy
which maximizes the social welfare, i.e., ∀ θt ∈ Θt, ∃ a∗(θt)
such that,

a
∗(θt) ∈ argmaxat

Eat,θt

[
∑

i∈N

vi(at, θt) + δEθt+1|at,θtW (θt+1)

]

(2)
We seek a socially efficient mechanism in this setting. In the
following, we propose the generalized (two-stage) dynamic
pivot mechanism (GDPM) which guarantees efficiency, in-
centive compatibility and individual rationality.

Mechanism 1 (GDPM). Given the reported type pro-

file θ̂t, choose the agents a∗(θ̂t) according to Equation 2.

Transfer to agent i after agents report V̂t,

p
∗
i (θ̂t, V̂t) =

∑

j 6=i

V̂j,t + δEθt+1|a
∗(θ̂t),θ̂t

W−i(θt+1)−W−i(θ̂t)

(3)

Proposition 1. GDPM is efficient, within period ex-post
incentive compatible, and within period ex-post individually
rational.

Proof: The allocation is efficient by choice. Let us focus
on agent i. To prove ex-post incentive compatibility, we
assume all agents except agent i report their true types.
Hence, θ̂t = (θ̂i,t, θ−i,t). So, the discounted utility to agent
i at t given the realized state of the world ω is,

Ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt, ω)

= Vi(a
∗(θ̂t), θt, ω) + p

∗
i (θ̂t, V̂t)

︸ ︷︷ ︸

marginal flow utility

+

δEθt+1|a
∗(θ̂t),θt

[W (θt+1)−W−i(θt+1)]
︸ ︷︷ ︸

discounted future marginal utility

= Vi(a
∗(θ̂t), θt, ω) +

∑

j 6=i

V̂j,t + δEθt+1|a
∗(θ̂t),θ̂t

W−i(θt+1)

−W−i(θ̂t) + δEθt+1|a
∗(θ̂t),θt

[W (θt+1)−W−i(θt+1)]

where the last equality comes from Equation 3. We notice
that agent i’s payoff does not depend on her value report
V̂i,t. Hence, agent i has no incentive to misreport her ob-
served valuation, and this applies to all agents. Therefore,

by assumption, agents report their values truthfully, and we
get,

V̂i,t = Vi(a
∗(θ̂t), θt, ω) ∀ i ∈ N (4)

Hence,

Ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt, ω)

= Vi(a
∗(θ̂t), θt, ω) +

∑

j 6=i

Vj(a
∗(θ̂t), θt, ω) +

δEθt+1|a
∗(θ̂t),θ̂t

W−i(θt+1)−W−i(θ̂t) +

δEθt+1|a
∗(θ̂t),θt

[W (θt+1)−W−i(θt+1)] (5)

Now, we note that,

Eθt+1|a
∗(θ̂t),θ̂t

W−i(θt+1) = Eθt+1|a
∗(θ̂t),θt

W−i(θt+1) (6)

This is because when i is removed from the system (while
computing W−i(θt+1)), the values of all other agents do not
depend on the type θi,t+1 (this is by assumption, which is
credible, since the revenue of a company cannot depend on
the efficiency of an employee who is not present in the game).
And due to the independence of type transitions, i’s reported
type θ̂i,t can only influence θi,t+1. Hence, the reported value

of agent i at t, i.e., θ̂i,t cannot affect W−i(θt+1). Similar
arguments show that,

W−i(θ̂t) = W−i(θt) (7)

Hence, Equation 5 reduces to,

Ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt, ω)

= Vi(a
∗(θ̂t), θt, ω) +

∑

j 6=i

Vj(a
∗(θ̂t), θt, ω) +

(
(
(
(
(
(
(
(
(
((

δEθt+1|a
∗(θ̂t),θt

W−i(θt+1)−W−i(θt) +

δEθt+1|a
∗(θ̂t),θt

[W (θt+1)−
�
�
�
��

W−i(θt+1)]

=
∑

i∈N

Vi(a
∗(θ̂t), θt) + δEθt+1|a

∗(θ̂t),θt
W (θt+1)−W−i(θt)

(8)

where we get the first equality combining Equations 6 and
7. The utility of agent i given by Equation 8 depends on
a specific realization of the state of the world ω. It is clear
that, this utility of agent i is indeed random. Hence, the
correct quantity to consider would be the utility expected
over the state of the world, i.e.,

ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt)

=

∫

Ω

Ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt, ω)dΠ(ω) (9)

Hence, the expected discounted utility to agent i at t is,
using Equations 8 and 9,

ui(a
∗(θ̂t), (p

∗
i (θ̂t, V̂t)), θt)

=
∑

i∈N

∫

Ω

Vi(a
∗(θ̂t), θt, ω)dΠ(ω) +

δEθt+1|a
∗(θ̂t),θt

W (θt+1)−W−i(θt)

=
∑

i∈N

vi(a
∗(θ̂t), θt) + δEθt+1|a

∗(θ̂t),θt
W (θt+1)−W−i(θt)

≤
∑

i∈N

vi(a
∗(θt), θt) + δEθt+1|a

∗(θt),θtW (θt+1)−W−i(θt)

= ui(a
∗(θt), (p

∗
i (θt, Vt)), θt)
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where Vt = (Vi(a
∗(θt), θt, ω))i∈N . The second equality comes

from Equation 1, and the next inequality comes by defini-
tion of a∗(θt), Equation 2. Hence ex-post IC. We notice that
at this equilibrium, i.e., the ex-post Nash equilibrium, the
utility of agent i is,

ui(a
∗(θt), (p

∗
i (θt, Vt)), θt)

=
∑

i∈N

vi(a
∗(θt), θt) + δEθt+1|a

∗(θt),θtW (θt+1)−W−i(θt)

= W (θt)−W−i(θt)

≥ 0

Hence ex-post IR.

4. CONCLUSIONS AND FUTUREWORK
In this paper, we have motivated the need of studying

dependent-valued exchange economies in dynamic setting.
We have reviewed the literature on dynamic mechanism de-
sign for agents with independent value structure to show
that this setting has not been addressed. In this work, we
have performed a case study of this setting and proposed
a mechanism, that serves to perform as truthful and indi-
vidually rational. In general, the future work would be the
following.

• Design of mechanisms which would additionally sat-
isfy budget balance (i.e., the sum of the payments to
the agents is non-positive, so that the mechanism does
not run into deficit), consistent payments (i.e., buyers
pay and sellers get paid in each round of this dynamic
mechanism) under this setting.

• We would like to study the situation where the pa-
rameters of the decision problem is also learned over
time.

• We would study revenue properties in order to design
revenue optimizing mechanisms.

• We would be interested to study the dynamic popula-
tion model with the dependent value structure.

• We would study trade-offs between the strong notions
of truthfulness and the computational issues, some of
which have been addressed in [2], [17].

We hope that some of these directions will turn out to be an
exciting area of research and contribute to the community
of Internet commerce.
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