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ABSTRACT
Associative Classification leverages Association Rule Min-
ing (ARM) to train Rule-based classifiers. The classifiers
are built on high quality Association Rules mined from the
given dataset. Associative Classifiers are very accurate be-
cause Association Rules encapsulate all the dominant and
statistically significant relationships between items in the
dataset. They are also very robust as noise in the form of
insignificant and low-frequency itemsets are eliminated dur-
ing the mining and training stages. Moreover, the rules are
easy-to-comprehend, thus making the classifier transparent.

Conventional Associative Classification and Association
Rule Mining (ARM) algorithms are inherently designed to
work only with binary attributes, and expect any quantita-
tive attributes to be converted to binary ones using ranges,
like “Age = [25, 60]”. In order to mitigate this constraint,
Fuzzy logic is used to convert quantitative attributes to fuzzy
binary attributes, like “Age = Middle-aged”, so as to elimi-
nate any loss of information arising due to sharp partition-
ing, especially at partition boundaries, and then generate
Fuzzy Association Rules using an appropriate Fuzzy ARM
algorithm. These Fuzzy Association Rules can then be used
to train a Fuzzy Associative Classifier. In this paper, we also
show how Fuzzy Associative Classifiers so built can be used
in a wide variety of domains and datasets, like transactional
datasets and image datasets.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
Data mining

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Classification is a very old problem which involves build-

ing a model or classifier to predict the unknown class labels
of future data. This problem has been addressed in nu-
merous ways, prominent of which is by building rule-based
classifiers. Other previous studies such as decision trees [24],
naive-bayes [10] and other statistical approaches have devel-
oped heuristic/greedy search techniques for building classi-
fiers. Machine learning approaches like Support Vector Ma-
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chines (SVMs) [5] do classification by learning boundaries
between classes and checking on which side of the bound-
ary, the query lies. Thus, building accurate and efficient
classifiers for large databases is one of the essential tasks of
data mining and machine learning research.

A new classification approach called associative classifi-
cation has gained a lot of popularity of late, because of its
accuracy, which can be attributed to its ability to mine huge
amounts of data to build a classifier. It integrates associa-
tion rule mining and classification by using association rule
mining (ARM) algorithms, such as Apriori [1], to generate
the complete set of association rules. These methods mine
high quality association rules, and build classifiers based on
them. Associative classifiers have several advantages:

• Frequent itemsets capture all the dominant relation-
ships between items in a dataset.

• As these classifiers deal only with statistically signif-
icant associations, the classification framework is ro-
bust.

• Moreover, low-frequency patterns (noise) are eliminated
during the ARM stage.

• The rules, used for classification, are very transparent
and can be easily understood by the user, as opposed
to the black-box-like approach popular classifiers, like
SVMs and Artificial Neural Networks (ANNs) have.

However, the major problem with the associative classifi-
cation is that crisp associative classification is not suitable,
both theoretically and practically, for datasets and domains
which make heavy use of numerical attributes, or have a mix
of numerical and binary attributes. One method to circum-
vent this problem is to use binning or clustering to convert
numerical attributes to categorical attributes. But using
crisp binning or crisp clustering introduces uncertainty es-
pecially at the boundaries of bins or clusters, leading to loss
of information. Small changes in the selection of number
of bins or clusters may lead to polysemy (one bin or cluster
containing features with different meanings) and synonymy
(two features with same meaning mapped into different bins
or clusters), thus generating misleading results. A more ef-
fective way to solve this problem is having features belong
to clusters with some membership value in the interval [0, 1],
instead of belonging entirely to a particular cluster. Thus,
fuzzy features replace binary ones.
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2. RELATED WORK
CBA [17] was one of the first associative classifiers and

focuses on focusing on mining a special subset of association
rules, called class association rules (CARs). CMAR [16]
considers multiple rules at the time of classification using
weighted χ2. CPAR [28] takes a totally different approach
to associative classification in that it does not directly use
the rules generated by ARM, but only uses the frequent
itemsets and their respective counts to build a classifier using
a FOIL-like technique called PRM. Even before the advent of
associative classifiers, many non-associative classifiers were
proposed, prominent of which is C4.5, which is a widely
known decision tree classifier [24].

Thabtah in [25] provides a very detailed survey of current
associative classification algorithms. The author has com-
pared most of the well-known algorithms, like CBA, CMAR,
and CPAR among others, highlighting their pros and cons,
and describing briefly how exactly they work. He lays more
emphasis on pruning techniques, rule ranking, and predica-
tion methods used in various classifiers, and also provides
valuable insights into the future directions which should be
undertaken in associative classification.

Until now, the only algorithms being used for fuzzy ARM
are various fuzzy adaptations of Apriori [1]. Over the years
it has been shown [23], [13] that Apriori, per se, is a slow
ARM algorithm for most large datasets, even crisp ones.
Thus, fuzzy versions of Apriori do not perform fast against
very large datasets and datasets with a large number of di-
mensions/attributes. More details of Fuzzy Apriori, the de-
facto algorithm used for fuzzy association rule mining, can
be found in [27], [4], [26], [14].

[3], [27], [4] discuss in detail about fuzzy implicators and
t-norms for discovering fuzzy association rules, especially
negative association rules, from datasets. In [27] Yan et. al.
provide a strong motivation for the need of fuzzy associa-
tion rules. Though most of the papers on fuzzy ARM define
the support and confidence measures used, De Cock et. al.
in [4] clearly define in detail the actual semantics behind such
support and confidence measures. [3] tries to discover the
inherent two-sidedness of knowledge by mining association
rules by using positive as well as negative examples, which
need not necessarily be complementary. In order to do so,
the authors introduce new measures of quality, especially for
negative association rules. In fact, Dubois et. al. [8] make
a very detailed analysis of t-norms and implicators with re-
spect to fuzzy partitions, and provide a firm theoretical basis
for their conclusions. They define various types of implica-
tions that can be used in the context of fuzzy association
rules. Verlinde et. al. [26] describe in a fair amount of detail
as to how fuzzy Apriori can be used to generate fuzzy associ-
ation rules. In [14] Hüllermeier and Yi justify the relevance
of fuzzy logic being applied to association rule mining in
today’s data-mining setup. [7] describes in great detail the
general model and application of fuzzy association rules.

[11] uses k-Medoids (CLARANS) for the hard clustering,
where as [15] uses CURE for the same. The hard clusterings
so generated are then used to derive the fuzzy partitions.
In such cases, where hard clustering is used, typically the
middle point of each fuzzy partition is taken as reference
(membership μ = 1) with respect to which the memberships
for other values belonging to that partitions are calculated.

3. FUZZY ASSOCIATION RULE MINING
Most real-life data are neither only binary nor only nu-

merical but a combination of both. Quantitative attributes
such as age, take values from a partially ordered, numeri-
cal scale which is often a subset of the real numbers. The
general method adopted is to convert numerical attributes
into binary attributes using ranges (for example, any nu-
meric value for attribute Age would fit in ranges like “up to
25”, “25-60”, “60 and above”). This reduces the paradigm to
traditional association rule mining with binary values.

A better way to solve this problem is to have attribute val-
ues represented in the interval [0, 1], instead of just 0 and 1,
and to have transactions with a given attribute represented
to a certain extent (in the range [0, 1]). Thus, we need to
use fuzzy methods, by which quantitative values for numeri-
cal attributes are converted to fuzzy binary values. Doing so
ensures that there is no loss of information whatever may be
the value of any numerical attribute. Moreover, the inher-
ent uncertainty that is present in numerical data (as far as
ARM is concerned) is also appropriately taken care of. The
corresponding mining process yields fuzzy association rules.
For example, we have a crisp association rule like “People
between the ages of [25, 60] earn an income [$80K, $150K]”.
With this rule a 24-year old person earning $100K is not ac-
counted for. But a fuzzy association rule like, “Middle-aged
people earn high incomes”, is more flexible, and reflects this
person’s salary in a more appropriate manner.

A pre-requisite for any fuzzy associative classifier building
is to have efficient fuzzy ARM algorithms. There are many
efficient crisp ARM algorithms like ARMOR, especially for
large datasets which are omnipresent nowadays. But the
same is not true for fuzzy ARM algorithms. The fuzzy ARM
algorithms proposed (FAR-Miner and FAR-HD) try to solve
this problem so that the actual fuzzy associative classifier
building and classification can be done smoothly and quickly.

To obtain frequent patterns and fuzzy association rules,
we have come up with an efficient and fast fuzzy association
rule mining algorithm called FAR-Miner [20]. FAR-Miner
works very fast on even very large datasets (in the order
of millions of transactions). In fact, we are in the process
of refining many parts of FAR-Miner in order to make it
faster and more scalable to even larger datasets. From our
experiments on a medium-sized real-life dataset and a large
real-life dataset, we have observed that FAR-Miner is 8-19
times faster for large datasets, and 6-10 times for medium-
sized datasets as compared to fuzzy Apriori. This efficiency
in performance is obtained thanks to the properties like two-
phased tidlist-style processing using multiple partitions, and
also novel attributes, like the use of sub-partitions within
partitions, byte-vector representation of tidlists, effective
compression of tidlists, quicker generation of new tidlists,
and a tauter and faster second phase of processing.

4. PRE-PROCESSING FOR FUZZY ASSO-
CIATION RULE MINING

An important aspect of fuzzy ARM is the pre-processing
of the dataset to make it suitable for the fuzzy ARM process.
Unlike crisp ARM, any dataset cannot be used directly for
the fuzzy ARM process. A dataset needs substantial amount
of pre-processing before it can be used as input to any fuzzy
ARM algorithm. Any such pre-processing needs to neces-
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sarily be based on only fuzzy methods, like fuzzy clustering.
The pre-processing consists of three major steps:

• Creation of fuzzy partitions for each of the numerical
attributes in the crisp data set given.

• Then, using these fuzzy partitions to create a fuzzy
version of the dataset by converting crisp numerical
attributes and associated numerical values to fuzzy
attributes and associated values and membership de-
grees.

By standardizing the pre-processing and data representation
(using our algorithm called FPrep - Fuzzy Clustering driven
Efficient Automated Pre-processing for Fuzzy Association
Rule Mining [22]), we simplify the fuzzy ARM process and
bring it to a point from where any standard fuzzy ARM al-
gorithm can be used, depending on various specifications,
like domain and size of data-set. FPrep is much faster than
other such comparable transformation techniques, which in
turn depend on non-fuzzy techniques, like hard clustering
(CLARANS and CURE). It is nearly 9 to 44 times faster
than the CURE-based method, and 2672 to 13005 times
faster than the CLARANS-based method. FPrep is not only
much faster than other related methods, but also generates
very high quality fuzzy partitions and fuzzy versions of orig-
inal datasets, that too without much user-intervention.

5. FUZZY ASSOCIATIVE CLASSIFICATION
USING FUZZY ARM

In this section we present two fuzzy associative classifica-
tion algorithms which leverage fuzzy frequent itemsets and
fuzzy association rules for use in use in two different do-
mains and conditions - one for general databases/datasets
with a mix of binary and numerical features (Section 5.1)
and the other for specialized (image-related) datasets con-
taining only numerical features (Section 5.2).

5.1 FACISME
We have come up with a new fuzzy associative classifica-

tion algorithm called FACISME (Fuzzy Associative Classifi-
cation using Iterative Scaling and Maximum Entropy) [21].
It uses maximum entropy and iterative scaling to build a the-
oretically sound classifier which is meant for accurate and
efficient performance on any kind of datasets (irrespective
of size and type of attributes - numerical or binary). The
maximum entropy principle is well-accepted in the statis-
tics community. It states that given a collection of known
facts about a probability distribution, we choose a model
for this distribution that is consistent with all the facts,
but otherwise is as uniform as possible. Hence, the cho-
sen model for FACISME does not assume any independence
between its parameters that is not reflected in the given
facts. In FACISME, we use the Generalized Iterative Scal-
ing (GIS) algorithm [6] to compute the maximum entropy
model. Maximum entropy models are interesting because of
their ability to combine many different kinds of information.

Thus, FACISME integrates maximum-entropy-based as-
sociative classification with fuzzy logic. Because of the use of
maximum entropy, FACISME has a very strong theoretical
foundation, and does not assume independence of parame-
ters in the classification process, thus providing very good
accuracy. And, this accuracy is easily extensible over any

kind of datasets (irrespective of size and type of attributes -
numerical or binary) and domains, through the use of fuzzy
logic, by creating a fuzzy associative classifier.

We compare FACISME with state-of-the-art classifiers (as-
sociative and non-associative) on UCI-ML datasets. Fig. 1
shows the accuracy obtained by each classifier on the iris
dataset. FACISME performs the best in terms of accuracy
as compared to the other datasets. From Fig. 2 we get
to know the accuracies for all the classifiers on the breast
(breast cancer) dataset. And, FACISME performs nearly as
well as the most accurate classifier for this dataset. Finally,
Fig. 3 depicts the results of the experimental analysis done
on pima dataset. Even in this case, FACISME performs the
best as compared to the other classifiers. Thus, the basic
inference from this experimental analysis is that FACISME
consistently performs very well on the basis of accuracy, and
is even the best in two cases.

Figure 1: Experimental results on Iris dataset (Clas-
sifier vs. Accuracy)

Figure 2: Experimental results on Breast dataset
(Classifier vs. Accuracy)

Figure 3: Experimental results on Pima dataset
(Classifier vs. Accuracy)

5.2 I-FAC
I-FAC (Efficient Fuzzy Associative Classifier for Object

Classes in Images) [19] adapts fuzzy associative classifica-
tion to fit the image classification perspective, by leveraging
Speeded-Up Robust Features (SURF) that can be extracted
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from images [2]. SURF is a fast scale and rotation-invariant
interest point detector and descriptor for images. These in-
terest points which can vary in number from image to image,
can be used for further processing, like clustering and clas-
sification. Generally, obtaining the negative class set CN is
an issue in image classification due to its ill-defined nature
as compared to the positive class CP . Effectively, the neg-
ative class set CN = U − CP , where U is the universal set
of all images. But, conventional classifiers need both pos-
itive and negative classes for training. Because CN is not
well-defined, classifiers so trained (on a subset of the nega-
tive class) may not perform well on disparate test images.
The advantage of I-FAC is that only positive class samples
are required to train the classifier, with no reliance on neg-
ative class samples for training and without the need for
unlabelled examples or outliers. In the literature, one-class
classifiers which rely on unlabelled examples [12] or treat
outliers and noise as negative examples for training [18],
have been proposed.

In the bag-of-words (BOW) approach, each SURF point
belongs only to one of the clusters in the code-book, which
is created by applying crisp clustering (like k-means) on a
sizeable set of images. Using fewer number of clusters would
avoid synonymy, but would at the same time give rise to pol-
ysemy. Thus, in BOW deciding upon the number of clusters
that should be used is an important but difficult task, be-
cause of which ≈1000-3000 are generally used. But, I-FAC
relies on fuzzy c-means (FCM) clustering [9] and creates far
less number of clusters (≈100) using only the positive class
training images, as compared to the number of clusters used
for the code-book in BOW, thus avoiding synonymy. Due to
the fuzzy nature of clusters, it is able to address polysemy
as well. The salient features of I-FAC are:

• We use of fuzzy sets and logic in object class classifica-
tion in images. By doing so we can deal with polysemy
and synonymy better as compared to crisp sets.

• Next, I-FAC is an associative classifier, which unlike
traditional classifiers like SVM, relies on frequent item-
sets which encapsulate all dominant relationships be-
tween items in a dataset. This helps a lot in achieving
better results and making the algorithm resilient to
noise.

We compare I-FAC with two baseline approaches, namely
BOW and SVM, both based on SURF points. This compar-
ison is done on five standard image datasets which are, CAL-
TECH Cars Rear, TUD Motorbikes, ETHZ Giraffes, GRAZ
Bikes, and CALTECH Faces. I-FAC consistently performs
well on the basis of FPR-versus-recall when compared to ei-
ther BOW (by high margins on all five datasets) or SVM (by
high margins on three datasets - Cars, Faces, and Giraffes,
and by reasonable margins on the remaining two datasets -
Fig. 4). It especially performs very well at low FPRs (≤ 0.3),
which is highly desirable for an image classifier. The per-
formance of I-FAC can be attributed to two broad reasons.
First, its fuzzy nature helps avoid polysemy and synonymy,
which are common problems with BOW. Second, SVM has
to deal with a lot of noise in the training images, which
hampers the creation of a clear hyper-plane, affecting the
assignment of probability with which the positive class oc-
curs in a given image. This problem does not occur in I-FAC
which uses only the positive class for training.
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Figure 4: Results on Standard Datasets

6. FUTURE WORK
In this section, we describe briefly the work that we are

currently doing, or will be doing in the near future.

6.1 FAR-HD
Fuzzy association rules can also be derived from high-

dimensional numerical datasets, like image datasets, in or-
der to train fuzzy associative classifiers. But, because of
the peculiarity of such datasets, traditional fuzzy ARM al-
gorithms are not able to mine rules from them efficiently,
since such algorithms are meant to deal with datasets with
relatively much less number of attributes/dimensions. We
are currently working on FAR-HD (A Fast and Efficient Al-
gorithm for Mining Fuzzy Association Rules in Very Large
High-Dimensional Datasets) which is a fuzzy ARM algo-
rithm designed specifically for very large high-dimensional
datasets. FAR-HD processes fuzzy frequent itemsets in a
tree-like (depth first search – DFS) manner using a two-
phased multiple-partition tidlist-based strategy. It also uses
a byte-vector representation of tidlists, with the tidlists stored
in the main memory in a compressed form (using a fast
generic compression method). FAR-HD uses Fuzzy Cluster-
ing to convert each numerical vector of the original input
dataset to a fuzzy-cluster-based representation, which is ul-
timately used for the actual fuzzy ARM process.
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6.2 SEAC and F-SEAC
We are also currently in the process of implementing a

new associative classification algorithm called SEAC (Sim-
ple and Effective Associative Classifier) and its fuzzy version
called F-SEAC (Fuzzy-SEAC), both of which use association
rules directly for classification, after appropriate processing
and pruning. Until now it has been purported that asso-
ciative classification has a disadvantage in that it generates
a very large number of rules during ARM, and it takes a
lot of efforts to select high quality rules from among them.
Hence, the newer associative classification algorithms use al-
ternate techniques, like FOIL, PRM, and GIS, to generate
high quality classification rules from the itemsets generated
by algorithms like Apriori. But, with SEAC and F-SEAC we
take a diametrically opposite approach to associative classi-
fication and show that association rules can be directly used
for classification if suitable pruning is done and appropriate
information metric (information gain in the case of SEAC
and F-SEAC) is used for processing such rules.

SEAC is a holistic, straightforward, and fast classification
algorithm, which uses association rules directly for classifi-
cation, after two phases of processing and pruning. The first
phase performs association rule mining (ARM) and subse-
quent classifier building globally by taking the whole dataset
into account. The second phase does the same albeit locally,
i.e. only for those classes which are either under-represented
or not represented at all in the first phase. Doing so bol-
sters the accuracy, and drastically reduces the chances of an
unclassified tuple, with a rare consequent class label, being
misclassified or not classified at all. SEAC uses very few rel-
ative parameters, which can be very easily and effortlessly
configured. It relies on information gain and entropy to build
a set of optimal rules, which is a first as far as associative
classifiers are concerned.
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