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ABSTRACT
Online social media represent a fundamental shift of how informa-
tion is being produced, transferred and consumed. User generated
content in the form of blog posts, comments, and tweets establishes
a connection between the producers and the consumers of informa-
tion. Tracking the pulse of the social media outlets, enables com-
panies to gain feedback and insight in how to improve and market
products better. For consumers, the abundance of information and
opinions from diverse sources helps them tap into the wisdom of
crowds, to aid in making more informed decisions.

The present tutorial investigates techniques for social media mod-
eling, analytics and optimization. First we present methods for col-
lecting large scale social media data and then discuss techniques for
coping with and correcting for the effects arising from missing and
incomplete data. We proceed by discussing methods for extract-
ing and tracking information as it spreads among the users. Then
we examine methods for extracting temporal patterns by which in-
formation popularity grows and fades over time. We show how to
quantify and maximize the influence of media outlets on the popu-
larity and attention given to particular piece of content, and how to
build predictive models of information diffusion and adoption. As
the information often spreads through implicit social and informa-
tion networks we present methods for inferring networks of influ-
ence and diffusion. Last, we discuss methods for tracking the flow
of sentiment through networks and emergence of polarization.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining

General Terms: Algorithms; Experimentation.

Keywords: Social media analytics, Social networks, Information
diffusion, Information cascades, Influence maximization

1. INTRODUCTION
The emergence of the Web and Online Social Media represents a

fundamental shift as it has added important new dimensions to the
production and dissemination of news and information. Social Me-
dia allows for social interaction, using highly accessible and scal-
able publishing techniques. Users can generate content, access in-
formation, and potentially reach large audiences. Social Media also
replaces the traditional one-way mass-media to consumer commu-
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nication channel with an interactive dialogue, which allows for the
creation and exchange of user-generated content. This opens rich
venues for mining and analyzing social media data. Companies
analyze social media data to perform analytics, sentiment analysis
or find influencers. Users browse information and opinions from
diverse sources that helps them tap into the wisdom of crowds, to
aid in making more informed decisions. However, this also opens
a question of how do we overcome the information overload and
provide a rich and coherent user experience?

Social Media provides a connection between our social networks,
personal information channels and the mass media. Social Media
data in the form of user-generated content on blogs, microblogs like
Twitter, discussion forums, product review and multimedia sharing
websites presents many new opportunities and challenges to both
producers and consumers of information. Although there is a vast
quantity of data available, the consequent challenge is to be able
to analyze the large volumes of user-generated content and often
implicit links between users, in order to gain meaningful insights.

The goal of this tutorial is to address methods, metrics and pre-
dictive tasks, as well as actionable explanatory analysis of social
media data. The tutorial will survey recent methods and algorithms
for large scale social media analytics and address the following
questions:

• How do we collect massive amounts of social media data and
what techniques can be used for correcting for the effects and
biases arising from incomplete and missing data?

• What methods can be used to extract and track the flow of in-
teresting pieces of information that spread and diffuse among
the users? How can we identify the subset of content that is
discussing not only a specific entity, but higher level con-
cepts?

• Having identified the subset of relevant content, how do we
identify the most authoritative or influential authors? How
do we quantify the influence of users on the adoption and
spread of different topics? How do we maximize the overall
influence?

• How do we tease apart emerging topics of discussion from
the constant chatter in the blogosphere and other social me-
dia? How do we extract and model the temporal patterns by
which information grows and fades over time?

• How do we predict popularity of memes and other pieces of
information that spread through the social media networks?

• The information spreads via implicit networks. How do we
identify and infer such networks of influence and diffusion?
How do we discover implicit links between users?
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• How does sentiment flow through networks and how does
polarization occur?

• How do we overcome the information overload and provide
users with rich and coherent experience?

• How to deal with unreliable and often conflicting informa-
tion? What notions of trust are appropriate?
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