
Einstein: Physicist or Vegetarian? Summarizing Semantic
Type Graphs for Knowledge Discovery

Tomasz Tylenda
Max-Planck Institute for

Informatics
Saarbruecken, Germany

ttylenda@mpi-inf.mpg.de

Mauro Sozio
Max-Planck Institute for

Informatics
Saarbruecken, Germany

msozio@mpi-inf.mpg.de

Gerhard Weikum
Max-Planck Institute for

Informatics
Saarbruecken, Germany

weikum@mpi-inf.mpg.de

ABSTRACT
The Web and, in particular, knowledge-sharing communities
such as Wikipedia contain a huge amount of information en-
compassing disparate and diverse fields. Knowledge bases
such as DBpedia or Yago represent the data in a concise
and more structured way bearing the potential of bringing
database tools to Web Search. The wealth of data, how-
ever, poses the challenge of how to retrieve important and
valuable information, which is often intertwined with trivial
and less important details. This calls for an efficient and
automatic summarization method.

In this demonstration proposal, we consider the novel prob-
lem of summarizing the information related to a given entity,
like a person or an organization. To this end, we utilize the
rich type graph that knowledge bases provide for each entity,
and define the problem of selecting the best cost-restricted
subset of types as summary with good coverage of salient
properties.

We propose a demonstration of our system which allows
the user to specify the entity to summarize, an upper bound
on the cost of the resulting summary, as well as to browse
the knowledge base in a more simple and intuitive manner.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; H.3.1 [Content Analysis and Indexing]: Ab-
stracting methods

General Terms
Algorithms

Keywords
summarization, knowledge bases, semantic search

1. INTRODUCTION

1.1 Motivation
Knowledge-sharing communities such as Wikipedia repre-

sent a huge and surprisingly reliable source of information
in a wide variety of fields. Knowledge bases such as DBpe-
dia[1], YAGO[10], or Freebase[5] are a concise, formal repre-
sentation of (specific pieces from) such encyclopedic sources.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

This opens up ways of using structured query languages for
knowledge discovery. By extracting or tagging entities and
their attributes in Web pages and linking them to corre-
sponding facts in a background knowledge base, this can be
further leveraged for semantic search on the Web.

Search engines for structured knowledge (in knowledge
bases or gathered from the live Web), such as Entity Cube
[3], Google Squared [6], Wolfram Alpha [7], sig.ma [4], or
NAGA [8], tend to either give very brief answers, merely
listing entity names, or overwhelm the user with the full set
of facts that they find in their underlying repositories. For
example, when you ask for ”Swiss people”, some of the above
engines merely return a list of names. The user can click
on each name to see more facts about the person, includ-
ing Web pages that contain the entity, but this is a tedious
way for knowledge discovery. Other engines show all – of-
ten hundreds of – facts about all Swiss people that DBpedia,
Freebase, and other linked-data sources offer; this is a cogni-
tive overload for most users. What we need instead is a kind
of semantic snippet per result entity, highlighting the most
salient facts about each but avoiding trivial or exotic in-
formation. For example, for the Swiss-people result Albert
Einstein, we may want to see a compact summary saying
that he was a scientist, won the Nobel Prize, was born in
Germany (but grew up in Switzerland), graduated at the
University of Zurich, and later was a professor at Humboldt
University and even later at Princeton.

Google Squared does return attribute-structured records
as answers to keyword queries – an adequate result granular-
ity. However, the attributes are the same for each entity in
the result set. For the Swiss-people query, Einstein is treated
the same way as Roger Federer (a Tennis player): the pre-
sented attributes are fairly generic properties like birth date,
birth place, death date, and death place.

1.2 Problem Statement
Explicit knowledge bases have very rich type systems,

partly inferred from Wikipedia categories, the WordNet tax-
onomy, and other sources of this kind. For example, Yago
knows 38 semantic classes to which Einstein belongs, and
these have more than 50 superclasses in the Yago type sys-
tem. Judiciously choosing a small subset of these could re-
turn more or less the ideal summary outlined above. Note
that type/category names can often be viewed as encoding
attribute values, such as class NobelPrizeWinners denoting
the fact hasWon: NobelPrize. Conversely, we can see groups
of entities with the same value for some interesting attribute
as a semantic type/class, such as bornIn: Germany defining

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

273

Figure 1: Yago type graph for Ronald Reagan shown in the browser. 1) controls of the browser and summarization algorithms,
2) type DAG, 3) relation view, 4) additional information about types.

the type peopleBornInGermany. Because of this duality, we
restrict our approach for generating semantic snippets to se-
lecting appropriate types from the rich repertoire available
in the knowledge base.

In most search- and exploration-related situations, a good
summary of an entity would contain between three and around
ten properties. These could then be refined by explicit user
interactions on specific subtype dimensions when needed.
However, Yago and DBpedia have an order-of-magnitude
larger number of types/classes to choose from. This is illus-
trated by the type graph for Ronald Reagan, as shown in a
Yago browsing tool in Fig. 1. Note that the type graph of
an entity is usually not a tree, but forms a directed acyclic
graph (DAG), with subtype-supertype edges and a generic
root type entity. For example, the type mayor has two su-
pertypes: politician and civil authority, which converge
in person.

Now we can define the problem addressed in this paper.
Given the type DAG of an entity and a desired number of
output types, select the most informative types. These will
then be used to generate semantic snippets for semantic-
search results.

The rest of the paper is organized as follows. In Section 2
we describe our summarization methods, while our system
is demonstrated in Section 3.

2. OUR SYSTEM
We start by giving a short description of how knowledge

Arg1 Relation Arg2
Albert Einstein bornIn Ulm
Albert Einstein hasAcademicAdvisor Alfred Kleiner
Albert Einstein type Swiss physicists
Swiss physicists subClassOf physicist
physicist subClassOf scientist

Table 1: An excerpt from YAGO. We are interested in type

and subClassOf relations.

bases are organized and in particular of Yago, which is the
one we shall use for our purposes.

2.1 The Knowledge Base
YAGO contains facts extracted from semi-structured parts

of Wikipedia (infoboxes and categories) and WordNet[2]. A
small excerpt is presented in Table 1. The named objects
in YAGO can be classified into entities which represent per-
sons, locations, organizations, etc., e.g. Albert Einstein and
Univ. of Zurich and types which form a categorization of
entities, e.g. physicist and Swiss physicists.

We are particularly interested in the relations type and
subClassOf. The former is defined between entities and types,
and the latter between types. Using the type and sub-

ClassOf relations we can build a direct acyclic graph rep-
resenting all types of an entity. Fig. 2 presents such a
DAG for Aimé Argand. The subClassOf relation is tran-
sitive (a → b ∧ b → c ⇒ a → c), but for clarity we do not
show transitive edges in type DAGs.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

274

Figure 2: Type DAG of Aimé Argand. Rectangular nodes
correspond to the wikicategories, oval nodes correspond to
WordNet synsets. For simplicity some nodes were removed.

2.2 Toward a good summarization method
We compile the following list of desirable properties that

any good summary should have.
Conciseness. A good summary should not be too long.

Depending on how the summary is shown to the user, we
consider two different measures of its size. If the types in
the summary are presented in a list with each item occupy-
ing a single line, then we assign a unit cost to every type
and enforce a simple cardinality constraint on the number
of types that might be selected. If the types are presented
as a list separated with commas, then the cost of each type
is defined to be equal to its length in characters.

Importance. There are types which carry valuable in-
formation about an entity, e.g. the type physicist is crucial
when we talk about Albert Einstein. On the contrary, other
types describe non-salient facts (left-handed person, vege-

tarian). Since our summaries are meant to provide users
with the most significant facts, our method should favor the
former kind of types.

Granularity. General types, which describe large cate-
gories of entities, e.g. person or location should not be in-
cluded in the summary. Similarly, too specific types which
describe a very small number entities, e.g. physicist born

in 19th century in Zug should not be included either.
Diversity. A summary should cover all aspects of an en-

tity, e.g. {member of the parliament, prime minister} is worse
than {politician, physicist}, because it focuses only on the
political career of the described person.

A natural summarization method could serve the user
with the top-ranked types according to some appropriate
weighting function. However, we argue that this method
would not deliver any good solution, as illustrated by the
following example.

Consider the task of summarizing the type graph in Fig. 2,
while having only a limited budget on the number of types
that can be selected. Summaries that we find to be the
best for cardinalities 1 to 3 are: S1 = {scientist}, S2 =
{scientist, inventor}, S3 = {inventor, physicist, chemist}.

If the budget is only one type, we prefer to use the more
“informative” scientist rather than “too general” person.
When the budget is increased to two types, we expand the
summary with the type inventor. However, when our bud-
get consists of three types it is better to substitute scientist

with physicist and chemist. In general, when the budget is
increased we do not just add more types, but choose different
types or “break” the types (scientist is broken into physi-

cist and chemist). Hence, simply returning the top-ranked
types to the user would not give satisfactory results.

2.3 Algorithms
In this section we discuss two methods to determine the

importance of a type, then we describe the problem of type
with missing argument and finally we present two algorithms
for summarization.

Some of our summarization methods require that we as-
sign positive weights to types, which reflect how well they de-
scribe the summarized entity (good nodes have high value).
Our system uses two summarization algorithms, which have
slightly different requirements, therefore we devised two im-
portance measures.

The first method exploits the fact that the entities in
YAGO were extracted from Wikipedia and therefore we can
easily obtain the lengths of their articles (in bytes). The im-
portance of a type is the average article length of its mem-
bers. Since it is calculated independently of the entity it
describes, physicist has equal weights for Albert Einstein
and Brian May, who is better known as a member of a
British rock band Queen. Interestingly, some non-crucial
types, such as vegetarian or left-handed person can have
large weights. We hypothesize, that the reason is as fol-
lows: famous people are be added to all possible categories,
whereas not-so-famous ones are only added to the most im-
portant categories.

The second summarization algorithm requires that weights
satisfy the following properties: i) the types low in the hi-
erarchy should have large weights as they are more precise,
more abstract types should be assigned low weights, ii) if a
type has multiple children (in a type DAG of a single en-
tity) its weight should be amplified, e.g. in Fig. 2 the weight
of scientist should be boosted, because it has two children,
which shows that it is more important for the entity, iii) a
single parameter should control the trade-off between choos-
ing types low in the hierarchy and the ones which are high.

We developed a method which is based on a random walk
on the type DAG. The walk starts at a leaf with probability
proportional to the average length of its Wikipedia articles
(the first weighting method). At each node we i) either
restart the walk (jump to a leaf) with probability α (1 in
sink nodes), ii) or, with probability (1 − α), we follow one
of the outgoing links of the node.

In addition to finding too general, too specific or unim-
portant types we also need to recognize types which lack an
argument, e.g. citizen versus citizen of Germany, or member

versus member of the European Union. The problem was al-
ready discussed in [9], but their results are applicable mostly
to Japanese. In our system we use a simple occurrence statis-
tic based method to find types with missing arguments. We
calculated the total number of occurrences of the noun, and
the number of occurrences with an argument pattern like:
<noun> of, ’s <noun>, (his|her|their|its) <noun> The ra-
tio of two values is used to decide whether an argument is
needed.

Our system implements two main algorithms for summa-
rization. The first one uses the fact that a type is a set
of entities. Given an entity with the type set T we choose
a small subset of T , such that: i) its intersection is small,
ii) the types are of medium cardinality. The first property
gives us the diversity of the summary, e.g. if a person is
both a musician and scientist, we will choose types which
describe each aspect of their career. The second one ensures
that the types we choose are not too general (e.g. person)
or too specific (e.g. German quantum physicist). The method
does not have any tunable parameters.

The second algorithm works on the type DAG of an entity.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

275

Nodes are assigned weights which should reflect how well
a type describes an entity. The summarization algorithm
chooses a subset of types of an entity, such that: i) the set is
smaller than the budget, ii) the sum of weights is maximized,
iii) no two types are connected by a directed path. The last
requirement ensures that we do not choose redundant types,
e.g. quantum physicist and scientist. The algorithm itself
does not have any tunable parameters, but the weighting
method that we used has one parameter which governs the
balance between general and specific types. Hence we are
able to tune the method to choose more general or specific
types.

In addition to the algorithms presented above, our sys-
tem can exploit simple heuristics to determine which types
are suitable for summaries. One of such heuristics uses a
short list of abstract types, such as entity, living thing,

object, and removes them before we run the summarization
algorithm.

3. DEMONSTRATION
The demonstration shows three contributions of our work.

Firstly, we developed a new browser for the YAGO database.
Secondly, we present the entity relation graph in a tree,
which offers intuitive navigation, easily expands and col-
lapses parts of the graph and uses little screen space. Fi-
nally, we implemented the summarization algorithms within
the browser, which facilitates interactive evaluation of the
summarization algorithms.

3.1 Yago Browser
The main window of the browser is shown in Fig. 1. In

the beginning the user has to choose an entity by selecting
it from a list, entering its unique identifier or by using the
built-in search box. The application shows the type DAG of
the entity (in the center of the screen), its relations (tree on
the left) and some additional information (bottom).

Let us look at the relation view in the example (Fig. 1).
The top node is the entity selected by the user. Its di-
rect children are the relations and the next level contains
their arguments, e.g. R. Reagan actedIn Beyond the Line of

Duty. The structure is recursive, that is the children of Be-

yond... are the relations, which have it as an argument.
All entities and values are show in black. The relations
can be red, blue or green. Red relations should be read
top-down, e.g. R. Reagan actedIn Beyond..., blue relations
have the opposite direction, e.g. Lewis Seiler directed Be-

yond.... Green relations describe metafacts (facts about
facts). Each fact in YAGO has a unique identifier, e.g. 400-
111025: R. Reagan actedIn Beyond.... The metafacts use
these ids to refer to facts they describe, e.g. 400111025 found-

In en.wikipedia.org/wiki/Ronald_Reagan.
The way in which we present the relations has several

advantages over graph views, similar to the one used for
type DAGs. Firstly, it is easy to implement in various pro-
gramming environments, since it uses only the standard tree
widget. Moreover, the users find it easier to use standard in-
terface than a custom graph view. The second advantage is
that tree views efficiently use screen space and allow the user
to easily expand nodes and collapse non-interesting parts of
the graph.

The bottom panel of the browser initially presents infor-
mation about the selected entity. When the user clicks on a
type in the central panel, more detailed information about

this type is presented, it contains the number of sub- and
supertypes, the number of instances, sample subclasses and
instances, and in case of types derived from WordNet also
the definition and synonyms.

3.2 Summarization
The browser shows the results of summarization of an en-

tity on the type DAG. The panel on the left controls which
summarization algorithm is used. The user can switch be-
tween no summarization, the set-based algorithm and the
graph based algorithm. The interface allows to select a cost
model based on the number of types or their lengths, as well
as some additional parameters, e.g. the trade-off between
specific and general types in the second algorithm. A sam-
ple summary is shown in Fig.1. The nodes with the red
outline were selected in the preprocessing phase and passed
to the summarization algorithm. Subsequently, the summa-
rization algorithm chose the summary, which consists of the
red nodes.

In the example in the Fig.1 we requested a summary of
the length at most 3 types. The filtering stage allows only
the nodes which are leaves or parents of leaves. Eventually,
the summarization algorithm chose three types: president,
politician and American film actors. Clearly, the summary
includes the most important types – president and politi-

cian. It is diverse, because it mentions that R. Reagan was
an actor, which is a valuable fact, as not many politicians
are also actors. Additionally, we avoided selecting uninter-
esting types like American adoptive parents and too general
ones like leader.

4. REFERENCES
[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
Dbpedia: a nucleus for a web of open data. In
ISWC’07/ASWC’07: Proceedings of the 6th
international The semantic web and 2nd Asian
conference on Asian semantic web conference, pages
722–735, Berlin, Heidelberg, 2007. Springer-Verlag.

[2] Christiane Fellbaum, editor. WordNet An Electronic
Lexical Database. The MIT Press, Cambridge, MA ;
London, May 1998.

[3] http://entitycube.research.microsoft.com/index.aspx.

[4] http://sig.ma/.

[5] http://www.freebase.com/.

[6] http://www.google.com/squared.

[7] http://www.wolframalpha.com/.

[8] Gjergji Kasneci, Fabian M. Suchanek, Georgiana
Ifrim, Maya Ramanath, and Gerhard Weikum.
NAGA: Searching and Ranking Knowledge. In 24th
International Conference on Data Engineering (ICDE
2008). IEEE, 2008.

[9] Kow Kuroda, Masaki Murata, and Kentaro Torisawa.
When nouns need co-arguments: A case study of
semantically unsaturated nouns. In Proceedings of the
5th International Conference on Generative
Approaches to the Lexicon, September 2009.

[10] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. Yago: A Core of Semantic Knowledge. In
16th international World Wide Web conference
(WWW 2007), New York, NY, USA, 2007. ACM
Press.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

276

