
CONQUER: A System for Efficient Context-aware
Query Suggestions

Christian Sengstock
Institute of Computer Science

University of Heidelberg, Germany
sengstock@informatik.uni-heidelberg.de

Michael Gertz
Institute of Computer Science

University of Heidelberg, Germany
gertz@informatik.uni-heidelberg.de

ABSTRACT
Many of today’s search engines provide autocompletion while
the user is typing a query string. This type of dynamic
query suggestion can help users to formulate queries that
better represent their search intent during Web search inter-
actions. In this paper, we demonstrate our query suggestion
system called CONQUER, which allows to efficiently suggest
queries for a given partial query and a number of available
query context observations. The context-awareness allows
for suggesting queries tailored to a given context, e.g., the
user location or the time of day. CONQUER uses a sug-
gestion model that is based on the combined probabilities
of sequential query patterns and context observations. For
this, the weight of a context in a query suggestion can be
adjusted online, for example, based on the learned user be-
havior or user profiles. We demonstrate the functionality of
CONQUER based on 6 million queries from an AOL query
log using the time of day and the country domain of the
clicked URLs in the search result as context observations.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query for-
mulation; Search process

General Terms
Algorithms

Keywords
Dynamic query suggestion, Query context

1. INTRODUCTION
Query autocompletion provides an important functional-

ity of many of today’s search engines. Autocompletion aims
at helping users to formulate queries that better represent
their search intent. A well-known example is the Google
search autocomplete feature, which tries to predict queries
while the user is entering a query string. We call this func-
tionality dynamic prefix-based query suggestion, with prefix
meaning the partial query string typed by the user. The
circumstances when, where, and how a query is entered
can have a significant influence on the relevance of sugges-
tions. For a user in Berlin typing ‘pizza’, a local suggestion
like ‘. . . berlin mitte’ will have more relevance than ‘. . . hut’.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

Considering the temporal context, for a user typing ‘berlin’
the suggestion ‘. . . shopping’ might have more relevance at
2pm than at 9 pm, whereas it is the opposite case for the sug-
gestion ‘. . . concert’. In addition to geographic and temporal
contexts also other contexts like length of a query session or
the clicked country domains of the URLs in a query hit list
might have a valuable influence on suggestions.

While there exists a variety of approaches to query sug-
gestion (also called query recommendation, see, e.g., [1, 3, 4,
7, 9, 11]), the underlying models are not that flexible with
respect to the influence of query contexts. Furthermore, ex-
isting query recommendation approaches do not cover the
case of prefix-based suggestions. This means that the input
is a partial query string and should be extended by the in-
tended query. Although the latter property is not exclusive
for dynamic query suggestion, it is a valuable feature for
a text-field autocompletion feature. As mentioned above,
autocompletion features of today’s search engines already
take context information into account. However, there is
no related work on a detailed discussion of the models and
techniques underlying these approaches.

In this paper and the demonstration of our system called
CONQUER, we show how prefix-based query suggestions
can be efficiently realized by considering available context
observations. To achieve this functionality, our system com-
putes dynamic query suggestion based on combined proba-
bilities of occurring sequential query patterns and context
observations in real-time.

The remainder of this paper is organized as follows. In
Section 2, we review related work. In Section 3, the context-
aware query suggestion model is introduced. After an out-
line of the architecture of our system in Section 4, we give
an overview of our demonstration scenarios in Section 5.

2. RELATED WORK
Query suggestion, also known as query recommendation

or query intention prediction, is a growing research area.
Several approaches have been suggested to compute and
recommend queries similar to a given query string. Query
session-based approaches suggest similar queries if they hap-
pen in the same query session. Fonesca et al. [4] present
an approach to extract query transactions based on query
sessions and to employ association rules to suggest queries.
Zhang and Nasaroui [11] and Anagnostopoulos et al. [1]
also consider the sequential order of queries in their models.
A different approach to measure the semantic similarity of
queries is by looking at the clicks in the query result (hit
list). Mei et al. [7] model queries and URL-clicks in a graph
and use random walks to measure query distances. Sahami

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

265

and Heilman [9] propose a URL-click based kernel function
to measure query similarity. Content-based approaches mea-
sure query similarity using the content of the search result.
Baeza-Yates et al. [3] introduce an approach based on doc-
ument similarity of resulting URLs. Janses et al. [6] present
a technique to propose a categorization of the user intents
of Web queries using supervised and unsupervised clustering
and identified four major intents that might be incorporated
into suggestion models.

In contrast to these approaches, our base model is simple
in that it uses the frequency of sequential query patterns.
This textual similarity is an important property of dynamic
prefix-based query suggestion, which, to the best of our
knowledge, has not been studied in other work so far. Other
than in session-, click-, or content-based approaches, not the
semantic similarity but the frequency of textual patterns is
used to measure the relevance of suggestions. For this, the
relevance is tailored to the context within which the query
is entered by the user. Context-aware suggestion models are
also not covered in the related work on query suggestion so
far. An approach addressing this aspect is by Backstrom et
al. [2] where an evaluation of a large-scale query log regard-
ing the geographic distribution of queries was studied and
the importance of query contexts was shown.

3. QUERY SUGGESTION MODEL
In this section, we first present the basic query suggestion

model and then discuss an extension of the model to in-
clude query context observations for computing query com-
pletions.

3.1 Query Pattern Probability
We treat each query as a sequence of words. We assume

that a word subsequence in a query can be a valuable hint
for suggesting a completion of the query string a user is
starting to type. For example, assume that a lot of queries
are ‘italian restaurant’. A valuable suggestion for ‘it. . . ’
is ‘. . . alian restaurant’ and for ‘rest. . . ’ it is ‘. . . aurant’.
However, we want to be aware of query word boundaries.
For example, for the query ‘li. . . ’, ‘. . . an restaurant’ is not
a suggestion, because ‘lian restaurant’ is not a valid word
subsequence.

We assume a query log-file, which we transform into a
query-transaction database. For this, the queries are tok-
enized into word sequences. A query Q = 〈w1, w2, ..., wm〉
thus consists of a sequence of m words wi ∈ W , with W
being the set of all words that occur in the log. Now as-
sume the input query A is given as a sequence of words
(and not yet an arbitrary query string). A is a subsequence
of Q, denoted A v Q, if the sequence A is contained in
Q. Given a database of query transactions T = {T1, ..., Tn}
with Ti = (id,Q) being a query transaction consisting of an
id and a sequence of words Q, the support of an input query
A is the number of query transactions in T where A is a
subsequence, denoted support(A).

The probability that a word sequence Q exists in T is

simply the relative frequency P (Q) = support(Q)
|T | . The con-

ditional probability that a word sequence B exists, with B
being an extension of A (denoted A⊕B) is

P (B|A) =
P (A⊕B)

P (A)
. (1)

Given a query A as input, we can return the top-k query

extensions with the highest conditional probabilities P (B|A).
The suggestions based on the conditional probability given
A can be efficiently determined by first mining the set of
frequent sequential query patterns

Fδ = {Q | Q v T.Q ∈ T ∧ support(Q) > δ} (2)

with δ being a user-defined support threshold and F ∈ F
being a frequent sequential query pattern. By looking up all
super-sequences SA = {F | F ∈ Fδ ∧ A v F} calculating
the conditional probability for every extension B such that
S = A⊕B becomes

P (B|A) =
P (S)

P (A)
. (3)

If we know the frequent sequential query patterns and
their support values, we can concatenate the queries F ∈ Fδ
and index them in a character prefix-tree. By adding the
support information to the nodes where a query ends, we
can look up all frequent sequential query patterns that are
a superset of an arbitrary query string A and return the k
patterns with the highest conditional probabilities.

3.2 Query Context Probability
Assume that for each query transaction T ∈ T , a context

observation T.x exists. A query context observation can, for
example, be the time of the day when the query was submit-
ted, a geographic location or the age of the user. An obser-
vation T.x is a valid event for the complete word sequence
T.Q. Consequently, if the sequence Q = T.Q occurs n times
in the transaction database, we have a set of n observations
XQ = (x1, . . . , xn) for Q, which we treat as a random vari-
able describing the observations for Q. Since a transaction
T supports not only the word sequence Q = T.Q but also
every subsequence of Q, the observation T.x is a valid event
for every subsequence A v Q. This means that we have
a random variable XF for every sequential query pattern
F ∈ Fδ. For every word sequence Q, we can now use XQ to
calculate the probability P (XQ = x∗) that a given context
event x∗ happens.
For the simple case of a discrete random variable X describ-
ing the hour of the day when the query was submitted, we
can use the relative frequency to calculate the probability
that query Q was submitted on a given hour of the day x∗:

P (XQ = x∗) =
number of events in XQ where hour is x∗

number of all events in XQ
(4)

3.3 Combined Model
The conditional probability of a query extension B and

the probability that S = A ⊕ B happens given a context
parameter x∗ and the observations in XS can be combined
by parameterization of P (B|A):

P (B|A;x∗) = P (B|A) P (XA⊕B = x∗). (5)

If a number of context observations exists for each sequen-
tial query pattern, with Xi

Q, 1 ≤ i ≤ l denoting the ith of
the l context random variables for pattern Q, the general
context-aware probability can be formulated as

P (B|A;C,ω) = P (B|A)

l∏
i=1

P (Xi
A⊕B = Ci)

ωi (6)

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

266

Query-Log
incl. Context
Observations

Model GeneratorModel Generator

Model

Model Index

Query Suggestion ServiceQuery Suggestion Service

Model IndexModel Index

ClientClient ClientClient ClientClient

Index GeneratorIndex Generator

creates requests/reads

Figure 1: Basic components and data flow of CON-
QUER.

with Ci ∈ C being the ith context parameter and ωi ∈ ω
in the interval [0, 1] being a weight to control the influence
of the ith context parameter.

4. SYSTEM ARCHITECTURE
The architecture of the CONQUER system is composed of

(1) a model generation component, (2) a model index, and
(3) a suggestion service. The model generator performs the
offline model generation by mining frequent sequential query
patterns and their associated context aggregations (synopsis
data structures). The patterns and their synopses are then
used by the index generator to create the model index. The
suggestion service queries the model index and provides a
Web service interface to receive requests for query sugges-
tions. The basic architecture is shown in Figure 1.

4.1 Model Generator
The model generator mines a query transaction database
T for frequent sequential query patterns and aggregates the
context observations of each pattern in synopsis data struc-
tures. The output of the model generator is a set M =
{M1,M2, ...,Mp} of p tuples Mi = (Q, count, syn1, ..., synl)
with Q being a frequent sequential query pattern, count
the number of times the pattern occurs in the transaction
database T , and syni the synopsis data structure summa-
rizing the ith of the l contexts of the pattern.

A synopsis can be any data structure that can summarize
observations iteratively and that can be merged with an-
other synopsis. A simple synopsis is a sparse vector keeping
track of the number of added discrete observations and the
total number of observations. Thus, one can easily retrieve
the relative frequency of a given context value. Different
synopses can be used to summarize continuous observations.
However, we will not discuss them in this paper and refer
to Zhang et al. [10] for a detailed discussion of an approach
using the Clustering-Feature-tree.

To mine frequent sequential query patterns, we use an
extended FP-Growth implementation. FP-Growth, intro-
duced by Han et al. [5], is a divide-and-conquer algorithm
for mining frequent itemsets. We use a preprocessing phase
to add item-prefixes and a post-processing phase to extract

l

h a _ i

synop

99

11
k

r

w

o
synop11

synop11synop11

d

stroot

synop

11
k Query end node

Support

Context Synopsis

Figure 2: Query pattern prefix-tree containing
count and context synopsis information.

only valid sequential patterns to allow for sequential pat-
tern mining. An extension to FP-Growth for sequential
pattern mining was proposed by Pei et al. [8]. However,
for our needs a standard FP-Growth extension is sufficient.
During the mining process the synopsis information is up-
dated and merged in the same way as the pattern counts
during conditional FP-tree construction. The additional
space and runtime-complexity of our FP-Growth extension
depend solely on the chosen synopsis data structure to ag-
gregate the context observations. For example, aggregating
the time of day observation using a histogram with bins rep-
resenting fixed-size time intervals will cause an additional
space-complexity of O(1) per node in the FP-tree and O(1)
runtime-complexity overhead for each node update opera-
tion. Thus, it will not change the overall FP-Growth space-
and runtime-complexity.

4.2 Model Index and Scoring
The model M generated by the model generator is in-

dexed by a prefix-tree to allow for efficient query extension
lookups, as shown in Figure 2. For this, the word sequences
are concatenated to strings and each end node of a query
pattern is marked in the tree with its count and synop-
sis data structure. This allows to efficiently determine the
frequent sequential query patterns SA, given an arbitrary
partial query string A. For each query extension B with
S = A ⊕ B, a score is calculated using the generic context-
aware probability score(B) = P (B|A;C,ω). Given an arbi-
trary query string A, a list of context parameters C, and the
context weights ω, the index can then be queried to return
the top-k scored extensions.

4.3 Query Suggestion Service
The suggestion service provides an interface to receive

requests for query suggestions from clients (JSON/REST-
based). The layer input is a query prefix A, the context
parameters C and their weights ω. The layer forwards the
input to the model index layer to look up the top-k scored
query extensions. The service layer is able to receive the
index results as asynchronous notifications in parallel envi-
ronments. When all parallel running tree traversals returned
their query suggestions, the top-k results can be merged and
are returned to the service client.

5. DEMONSTRATION
Our demonstration is based on the AOL-query log-files

published in 2006. The complete dataset contains 60M query
transactions. For each query, the following parameters are
available: userID, query, timestamp, clicked URL, and posi-
tion of clicked URL in result list. We use a sample of 6M
query transactions and extract the hour of the day from the

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

267

Figure 3: AOL-query suggestion showing completions for query work at 6 am, 3 pm and 9 pm.

timestamp as a statistical observation. We also extract the
country domain of the clicked URL as a discrete observa-
tion. This allows to suggest queries based on a given query
prefix A and the context parameters hour of day and clicked
country domain in the query result. Mining for frequent se-
quential patterns with a minimum support threshold of 3
results in a total number of 841, 255 query patterns indexed
in the model index. The demo includes a Web GUI that
allows to type an arbitrary query string for which a maxi-
mum of 10 query suggestions are displayed while entering the
query. The suggestions are ordered by their score. Sliders
and check-boxes permit to change the context parameters
and to set the weight of a context.

5.1 Explore Context Dependency
The GUI allows to change the values of the context param-

eters on the fly so that the context dependency of the sugges-
tion can be explored dynamically. For example, when typing
the query prefix A = ‘work’, 10 suggestions are displayed
that are dominated by the very frequent pattern ‘works’.
When moving the hour slider, the suggestions change as
shown in Figure 3. At 6 am one of the top suggestions is
‘workwear’ while at 3 pm it is workerforce and at 9 pm it is
‘workout’. Sliding the hours gives intuitive results for a large
number of queries and demonstrates the great dependency
of query suggestions by time of day.

Exploring the dependency for the clicked country domain
in the query result context is possible by selecting a corre-
sponding domain check-box. This ranks those query sugges-
tions higher where users have more likely clicked a URL with
the checked country domain. The AOL query logs are domi-
nated by .com domains and consequently the dependency of
the queries by the context value is less significant than the
temporal context. However, some valuable examples exist
for country specific queries like berlin, with the according
country domain selected. For example, the suggestion berlin
germany gets a lower score due to its higher relevance for
English speaking users. Also, when preferring queries lead-
ing to .gov pages by selecting the corresponding check-box,
a significant change to suggestions having a governmental
content can be recognized.

5.2 Dynamic Context Weight
As indicated in Section 3, the context dependency can be

weighted. A weight of 0 means that the context has no in-
fluence on the suggestion, a value of 1 means that the query
pattern probability for a given partial query A is multiplied
by the probability of the context value. Thus, if a suggestion
has a low probability for a given context value, it will less

likely be considered a suggestion. The weight of the context
influence can be set on the fly by moving the corresponding
slider. Given a query prefix A, the suggestions change dy-
namically while the slider is moved. Learning the context
weight dynamically can be a valuable feature, for example,
by evaluating the context probabilities of selected sugges-
tions. A user choosing suggestions that have a high context
probability can be supported by increasing the weight of the
context. In our demonstration we show how the suggestions
will change based on the chosen weight value.

6. REFERENCES
[1] A. Anagnostopoulos, L. Becchetti, C. Castillo, and

A. Gionis. An Optimization Framework for Query
Recommendation. In Proc. WSDM ’10, 161–170, 2010.

[2] L. Backstrom, J. Kleinberg, R. Kumar, and J. Novak.
Spatial variation in search engine queries. In
Proc. WWW ’08, 357–366, 2008.

[3] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
Recommendation using Query Logs in Search Engines.
In Int. Workshop on Clustering Information over the
Web (with EDBT ’04), 588–596, 2004.

[4] B. Fonseca, P. Golgher, E. de Moura, and N. Ziviani.
Using association rules to discover search engines
related queries. In Proc. LA-WEB ’03, 66–71, 2003.

[5] J. Han, J. Pei, Y. Yin, and R. Mao. Mining Frequent
Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach. Data Mining and
Knowledge Discovery, 8(1):53–87, Jan. 2004.

[6] B. J. Jansen, D. L. Booth, and A. Spink. Determining
the User Intent of Web Search Engine Queries. In
Proc. WWW ’07, 1149–1150, 2007.

[7] Q. Mei, D. Zhou, and K. Church. Query suggestion
using hitting time. In Proc. CIKM ’08, 469–478, 2008.

[8] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto,
Q. Chen, U. Dayal, and M.-C. Hsu. Mining sequential
patterns by pattern-growth: the PrefixSpan approach.
IEEE Transactions on Knowledge and Data
Engineering, 40(11):31–1440, Nov. 2004.

[9] M. Sahami and T. D. Heilman. A Web-based Kernel
Function for Measuring the Similarity of Short Text
Snippets. In Proc. WWW ’06, 377–387, 2006.

[10] T. Zhang, R. Ramakrishnan, and M. Livny. Fast
Density Estimation Using CF-kernel for Very Large
Databases. In Proc. KDD ’99, 312–316, 1999.

[11] Z. Zhang and O. Nasraoui. Mining Search Engine
Query Logs for Query Recommendation. In
Proc. WWW ’06, 1039–1040, 2006.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

268

