
A Tool for Fast Indexing and Querying of Graphs

Dipali Pal
University of Missouri-Kansas City

Kansas City, MO 64110, USA
dp244@umkc.edu

Praveen R. Rao
University of Missouri-Kansas City

Kansas City, MO 64110, USA
raopr@umkc.edu

ABSTRACT
We present a tool called GiS for indexing and querying a large
database of labeled, undirected graphs. Such graphs can model
chemical compounds, represent contact maps constructed from 3D
structure of proteins, and so forth. GiS supports exact subgraph
matching and approximate graph matching queries. It adopts a
suite of new techniques and algorithms for (a) fast construction of
disk-based indexes with small index sizes, and (b) efficient query
processing with high precision of matching. During the demo,
the user can index real graph datasets using a recommendation
facility in GiS, pose exact subgraph matching and approximate
graph matching queries, and view matching graphs using the Jmol
browser.

Categories and Subject Descriptors
H.2 [Database Management]: Systems—Query processing

General Terms
Algorithms, Design

1. INTRODUCTION
Graphs are widely used to model data in a variety of domains

such as biology, chemistry, computer vision, and the World Wide
Web. In chemistry, chemical compounds can be represented by
labeled, undirected graphs. In proteomics, a field of biology, ter-
tiary (or 3D) structures of proteins are required to understand the
biological functions of proteins. Contact maps [4, 17], which can
model 3D structures of proteins, can be represented by graphs. In
the Semantic Web, the RDF data model represents data as graphs.

Pattern matching over graphs is an important task in a variety
of applications. Exact subgraph matching (or isomorphism) has
been a problem of interest for several decades and has been widely
used in areas such as chemical informatics, circuit design and ver-
ification, scene analysis in computer vision, and so forth. One
example is in chemical databases: By posing a query based on
exact subgraph matching, we can identify those molecules in a
database that contain a particular functional group (e.g., a phenyl
group C6H5) [6]. Another kind of matching called approximate
graph matching [18] is useful in applications where graphs similar
to a query graph are desired. Queries based on such matching are
extremely useful for tasks such as similarity searching of chemical
compounds [20], comparing biopathway graphs, and so forth.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

We present a tool called GiS for indexing and querying a large
database of labeled, undirected graphs. GiS supports exact sub-
graph matching and approximate graph matching queries. GiS is
available online at http://vortex.sce.umkc.edu/gis.

2. MOTIVATIONS
In recent years, many approaches have been developed for graph

indexing and query processing. We highlight some of their limita-
tions that motivate our work.

To cope with the NP-completeness of subgraph isomorphism, a
common methodology has been to first filter and identify candidate
matches, and then verify these candidates [16] to retain only the
true matches. Similarly, graph edit distance computation required
for approximate graph matching is NP-complete and hence, a filter
and verification approach seems to be a viable alternative.

Many of the recent approaches for exact subgraph matching,
load the index into memory before processing graph queries (e.g.,
gIndex [22], Tree+Δ [28], GDIndex [21], QuickSI [13], GCod-
ing [29]). As is, these approaches will fail when the graph database
becomes very large and the indexes cannot fit in main memory. An-
other common trend among recent approaches is to leverage fre-
quent pattern mining to extract features from graphs (e.g., trees,
subgraphs) for indexing (e.g., gIndex [22], Tree+Δ [28], TreePi [26],
QuickSI [13], FG-index [3]). These approaches are well-suited for
query patterns that are frequent. However, significant preprocess-
ing effort is required due to pattern mining that increases the cost
of index construction (e.g., when datasets contain large number of
distinct vertex labels or when graphs are large and dense with few
hundred vertices and edges [11]).

A recent non-mining approach called C-tree organizes graphs
into a hierarchical index by computing graph closures [7]. The in-
dex is built using hierarchical clustering and pseudo isomorphism
tests are applied to achieve high precision of matching. C-tree sup-
ports similarity searching on graphs. However, C-tree fails to index
large, dense graphs [11] such as protein contact maps. Recently,
Zeng et al. proposed APPFULL for approximate graph matching
queries [25]. APPFULL examines every graph in the database and
does not exploit an index.

3. OUR PROPOSED SYSTEM
We have developed a tool called GiS that adopts a suite of new

techniques for indexing and querying labeled, undirected graphs.
GiS is designed for data graphs that contain few hundred vertices
and edges (e.g., protein contact maps, chemical compounds) and
targets high selectivity queries.

Inspired by holistic XML pattern matching approaches that yield
superior performance than non-holistic ones (e.g., TwigStack [2]),
we have developed a holistic graph pattern matching approach. By

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

241

Graph G

L(G)

A

B A E

D
C

B

A,D
B,C

C,D D,E

A,E

A,B
A,B

(a) (b)

Figure 1: (a) Architecture of GiS (b) Graph and its line graph

this, we mean that the entire query is considered as a single unit to
search the index during query processing. In contrast, the state-of-
the-art mining-based approach for exact subgraph matching called
FG-index [3], is non-holistic: for a class of queries, it breaks a
query into smaller units and processes them individually, and fi-
nally intersects the partial results.

Our key technical contributions in this work are:
• a new representation of a graph by its signature, which is essen-
tially a multiset and captures the vertex and edge characteristics of
the entire graph, to enable holistic pattern matching;
• a new method based on the concept of line graphs to systemati-
cally expose more structural information about a graph, which can
be captured by its signature, and therefore improve the precision of
exact subgraph matching;
• a new disk-based index over graph signatures for efficient query
processing and a bulk loading strategy for fast index construction;
• and new algorithms for processing exact subgraph and approxi-
mate graph matching queries by leveraging the properties of graph
signatures and the index over graph signatures.

Next, we provide an overview of the key design principles in
GiS. Complete details on the design and implementation, includ-
ing performance comparison of GiS with FG-index and C-tree, is
available in an extended version [11]. Compared with FG-index
that supports only exact subgraph matching queries, GiS had su-
perior indexing and query performance. Compared with C-tree,
GiS had superior indexing performance and smaller index sizes,
and faster query processing times for both exact subgraph match-
ing and approximate graph matching queries. Both C-tree and GiS
achieved high precision of matching. GiS was able to index and
process queries efficiently on a real graph dataset with large, dense
graphs (i.e., protein contact maps). However, C-tree and FG-index
failed to index this dataset.

Architecture of GiS.
The architecture of GiS is shown in Figure 1(a). The main com-

ponents of GiS are the Storage Engine, the Signature Generator,
the Indexing Engine, and the Query Engine. The Storage Engine
stores the graphs and indexes on disk. In GiS, data graphs are trans-
formed to their graph signatures and these signatures are indexed on
disk. A query is also transformed into its signature. Query process-
ing involves the filtering phase followed by the verification phase.
During filtering, the query signature is used to search the index to

identify a set of candidate graphs. During verification, candidate
graphs are examined to identify true matches.

Signature Generator.
A graph is transformed into a signature that captures the vertex

and edge characteristics of the graph. Consider a graph without
edge labels. For an edge, we construct an ordered pair (u, v) where
u and v are the vertex labels of the edge such that u is less than v
in lexicographic order. Then we hash this pair using Rabin’s fin-
gerprinting [10]. We compute the hash value for every edge of the
graph by traversing it and together the multiset of hash values con-
stitutes a graph signature. The lexicographic ordering ensures that
the same signature is generated irrespective of the starting vertex
chosen for traversing the graph.

We have developed a novel method to tune the amount of struc-
tural information captured by a graph signature based on the con-
cept of line graphs proposed by Whitney (1932) [19]. A line graph
of a graph without edge labels is defined as follows.

DEFINITION 1. Suppose a graph G has a vertex set V and edge
set E. A line graph of a graph G = (V, E), denoted by L(G) =
(VL, EL), is a graph whose vertex set VL contains one vertex for
every edge in G. The edge set EL is constructed as follows: two
vertices in L(G) are adjacent, if and only if, their corresponding
edges in G are adjacent i.e., share a vertex.

We can construct the signature of a line graph using the method
discussed earlier. In fact, we can successively apply the line graph
computation n times on the input graph. (Line graph computation
is similar to a composable function.) We denote the graph result-
ing from n successive line graph computations by Ln(G), where
G is the input graph. (Note that L0(G) = G.) Now the signature
of Ln(G) can be constructed and this signature is more precise
than that on G. The reason is with successive computation of line
graphs, an edge in Ln(G) captures a (connected) subgraph struc-
ture in the original graph G [11]. Thus, the signature of Ln(G)
captures richer structural components in G than the signature of G,
resulting in high precision of exact subgraph matching [11]. The
tuning parameter n controls the richness of graph signatures. Note
that Ln(G) does not enumerate all subgraphs in G.

An example of a graph G and its line graph L(G) (one applica-
tion) is shown in Figure 1(b). We impose a lexicographic ordering
on the vertex labels of a line graph as it affects the hash values
computed during signature construction.

We can compute the space and time complexity of signatures on
line graphs using straightforward combinatorics [11]. (We required
at most two line graph computations for high precision of match-
ing on real and synthetic datasets.) Like FG-index, GiS supports
graphs with edge labels. Line graphs over such graphs can also be
computed. Due to space constraints, we refer the reader to [11] for
more details.

One key difference between GCoding [29], a main-memory based
approach, and GiS is that the graph code computed by GCoding
captures local tree structures around the neighborhood of vertices.
But in GiS, we capture subgraph structures in a graph via line graph
computations.

Indexing Engine.
GiS constructs a disk-based index over graph signatures using a

bulk loading strategy. We call the index a signature index. Because
signatures are multisets and operations on multisets are performed
during query processing, existing set indexing techniques cannot be
directly employed. A signature index provides high pruning power

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

242

(a) Exact subgraph matching (b) Approximate graph matching

Figure 2: Screenshots of GiS

Figure 3: Demo queries for ASTRAL dataset drawn using GraphViz (http://graphviz.org)

over graph signatures during the filtering phase of query process-
ing. The structure of the index is similar to an R-tree in the sense
that it hierarchically groups similar signatures together, just like an
R-tree that hierarchically groups nearby rectangles together. Each
non-leaf node in the index contains (sig, ptr) entries where sig de-
notes a multiset, and ptr denotes a reference to a child index node.
Each leaf node also contains (sig, ptr) entries where sig denotes
a graph signature, and ptr denotes a graph id. The sig value in a
non-leaf node entry denotes the (multiset) union of the signatures in
the child node pointed by the entry. This design provides pruning
opportunities for exact subgraph matching and approximate graph
matching [11].

The bulk loading algorithm in GiS creates groups of similar sig-
natures recursively until each group has enough signatures for the
given fanout. The algorithm begins by picking seed signatures and
distributing signatures into groups based on their similarity. Sim-
ilarity of two signatures s1 and s2 is given by ratio |s1∩s2|

|s1∪s2| . The
index is constructed in a bottom-up fashion starting with the leaf
nodes until a root node is created.

Query Engine.
GiS supports two types of queries over a graph database, namely,

exact subgraph matching and approximate graph matching queries.
Given a query graph Q, exact subgraph matching finds all graphs
in the database that contain a subgraph that is isomorphic to Q.
(This is also referred to as a subgraph containment query in prior
work.) On the other hand, given a query graph Q and a distance d,
approximate graph matching finds all graphs in the database whose
edit distance with Q is at most d.

GiS relies on the properties of graph signatures for query pro-

cessing. A graph signature is implemented as a sorted list so that
operations like subset, union, intersection, and difference on mul-
tisets can be performed in linear time. We have established neces-
sary conditions for exact subgraph matching (with and without line
graph computations) using the subset operation between the query
and data signature. (If k line graph computations are applied on
the data graphs, then k line graph computations are also applied on
the query.) We have proved necessary conditions for approximate
graph matching using the set difference operation between the data
and query signatures and the difference in their cardinalities [11].

During query processing, appropriate necessary conditions are
tested while traversing a signature index. Once the leaf nodes of
the index are processed, candidate matches are determined. (The
necessary conditions ensure that the recall is always one.) In the
verification phase, we apply exact subgraph isomorphism test [16]
or compute graph edit distance [9] to discard false matches.

4. DEMONSTRATION SCENARIO
In this demo, we will use 2 real graph datasets, namely, chemical

compounds from AIDS Antiviral Screen dataset 1 and protein con-
tact maps [4, 17] constructed from the ASTRAL dataset 2 using a
threshold distance of 7 Å between cα atoms of the protein residues.

There are 3 key activities a user will experience during the demo.
The first is the task of indexing graphs for exact subgraph matching.
Through the GUI, the user can choose a dataset, number of graphs
to index, and number of line graph computations n for that dataset.
Once the user completes the indexing process, the index construc-

1http://dtp.nci.nih.gov
2http://astral.berkeley.edu/pdbstyle-1.71.html

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

243

tion time and size are displayed. The user can select parameters
such as index fanout and number of buffer pool pages.

GiS has a Recommender to assist the user to choose an appro-
priate value of n for line graph computations. The Recommender
samples a user specified fraction of the input dataset and builds test
indexes on the sampled dataset for different number of line graph
computations. The user also specifies the maximum number of line
graph computations m. For each i, 0 ≤ i ≤ m, signatures are con-
structed on Li(G) on the sampled dataset and a test index is built
on these signatures. Queries are generated over the sampled dataset
for user specified selectivity. Once the queries are processed using
each test index, the average precision of exact subgraph matching
and the average query response time (filtering + verification cost)
are displayed to the user. GiS recommends a suitable value of n.

The second activity is the process of posing exact subgraph match-
ing queries. For ease of demonstration, we provide a list of differ-
ent types of queries for each dataset. (A few examples are shown
in Figure 3.) The user can also select and view the queries for exact
subgraph matching. Figure 1(a) shows a screen shot. Once the true
matches are output along with precision and processing time, the
user can select a matching graph and view the corresponding pro-
tein structure or chemical compound using Jmol [1]. The user can
test with different values of n for line graph computation to gauge
the effectiveness of the recommendation given by GiS.

The third activity is the process of posing approximate graph
matching queries. Note that the index built on the signatures of
the original graphs is used. The user can specify an upper bound
on each edit operation (e.g., vertex relabel, vertex delete, edge in-
sert) to yield higher precision of matching [11]. Once the query
is processed, the processing time and precision are reported and
the user can view the corresponding protein structure or chemical
compound using Jmol.

5. RELATED WORK
GraphGrep [5], GDIndex [21], and GString [8] are other meth-

ods for exact subgraph matching. Both GraphGrep and GDIndex
suffer from worst-case index size that is exponential in either the
path length or the size of the graphs. GString focuses on chemi-
cal compounds and supports approximate subgraph queries. Many
approaches have been developed for approximate subgraph match-
ing (e.g., SAGA [14], TALE [15], PIS [24], Grafil [23], GrafD-
index [12], SAPPER [27]). TALE and SAPPER support large data
graphs. GiS does not support approximate subgraph matching.

6. CONCLUSIONS
We have presented a tool called GiS for scalable and efficient

disk-based indexing and query processing over a large database
of labeled, undirected graphs. GiS processes queries holistically
and supports both exact subgraph matching and approximate graph
matching. It adopts a suite of new techniques for fast index con-
struction and query processing and high precision of matching.

7. ACKNOWLEDGMENTS
We are thankful to the authors of FG-index and C-tree for their

code and assistance. We thank Vasil Slavov for his help. This work
was partly supported by funds from University of Missouri-Kansas
City.

8. REFERENCES
[1] Jmol. http://www.jmol.org.
[2] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal

XML pattern matching. In Proc. of the 2002 SIGMOD Conference.

[3] J. Cheng, Y. Ye, and W. Ng. Efficient Query Processing on Graph
Databases. ACM Transactions on Database Systems, 34(1):1–48,
2009.

[4] N. V. Dokholyan, L. Li, F. Ding, and E. I. Shakhnovich. Topological
Determinants of Protein Folding. Proceedings of the National
Academy of Sciences, 99(13):8637–8641, 2002.

[5] R. Giugno and D. Shasha. GraphGrep: A Fast and Universal Method
for Querying Graphs. Intl. Conference on Pattern Recognition, 2002.

[6] A. Golovin and K. Henrick. Chemical Substructure Search in SQL.
Journal of Chemical Information and Modeling, 49(1):22–27, 2009.

[7] H. He and A. K. Singh. Closure-tree: An index structure for graph
queries. In Proc. of the 22th ICDE Conference, pages 38–49, 2006.

[8] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. GString: A novel approach
for efficient search in graph databases. In Proc. of the 23th ICDE
Conference, pages 566–575, 2007.

[9] D. Justice and A. Hero. A binary linear programming formulation of
the graph edit distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(8):1200–1214, August 2006.

[10] M. O. Rabin. Fingerprinting by Random Polynomials. Technical
Report TR 15-81, Harvard University, Cambridge, MA 02138, 1981.

[11] P. R. Rao and D. Pal. GiS: Fast Indexing and Querying of Graph
Structures. Technical report, University of Missouri-Kansas City,
Nov 2009. http://r.faculty.umkc.edu/raopr/TR-DB-2009-01.pdf.

[12] H. Shang, X. Lin, Y. Zhang, J. X. Yu, and W. Wang. Connected
substructure similarity search. In Proc. of the 2010 SIGMOD
Conference, pages 903–914, Indianapolis, 2010.

[13] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming Verification
Hardness: An Efficient Algorithm for Testing Subgraph
Isomorphism. In Proc. of the 34st VLDB Conference, pages 364–375,
New Zealand, 2008.

[14] Y. Tian, R. C. McEachin, C. Santos, D. J. States, and J. M. Patel.
SAGA: A Subgraph Matching Tool for Biological Graphs.
Bioinformatics Journal, 23(2):232–239, 2007.

[15] Y. Tian and J. M. Patel. TALE: A Tool for Approximate Large Graph
Matching. In Proc. of the 24th ICDE Conference (2008), pages
963–972.

[16] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of
ACM, 23(1):31–42, 1976.

[17] M. Vendruscolo, E. Kussell, and E. Domany. Recovery of protein
structure from contact maps. Folding and Design, 2(5):295 – 306,
1997.

[18] J. T. Wang, K. Zhang, and G.-W. Chirn. Algorithms for approximate
graph matching. Information Sciences - Informatics and Computer
Science, 82(1-2):45–74, 1995.

[19] H. Whitney. Congruent graphs and the connectivity of graphs.
American Journal of Mathematics, 54:150–168, 1932.

[20] P. Willett, J. Barnard, and G. Downs. Chemical Similarity Searching.
Journal of Chemical Info. and Comp. Sci., 38(6):983–996, 1998.

[21] D. W. Williams, J. Huan, and W. Wang. Graph database indexing
using structured graph decomposition. In Proc. of the 23th ICDE
Conference, pages 976–985, Istanbul, 2007.

[22] X. Yan, P. Yu, and J. Han. Graph indexing: A frequent structure based
approach. In Proc. of the 2004 SIGMOD Conference, France, 2004.

[23] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph
databases. In Proc. of the 2005 SIGMOD Conference, Baltimore.

[24] X. Yan, F. Zhu, J. Han, and P. S. Yu. Searching Substructures with
Superimposed Distance. In Proc. of the 22th ICDE Conference,
pages 88–99, Atlanta, 2006.

[25] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou. Comparing
Stars: On Approximating Graph Edit Distance. In Proc. of the 35st
VLDB Conference, Lyon, France, 2009.

[26] S. Zhang, M. Hu, and J. Yang. TreePi: A Novel Graph Indexing
Method. In Proc. of the 23th ICDE Conference, pages 966–975,
Istanbul, 2007.

[27] S. Zhang, J. Yang, and W. Jin. SAPPER: subgraph indexing and
approximate matching in large graphs. In Proc. of the 36st VLDB
Conference, pages 903–914, Singapore, 2010.

[28] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree + delta >=
graph. In Proc. of the 33rd VLDB Conference, pages 938–949, 2007.

[29] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A Novel Spectral Coding in a
Large Graph Database. In Proc. of the 11th EDBT Conference, 2008.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

244

