
Survivability-Oriented Self-Tuning of Web Systems
Bihuan Chen1, Xin Peng1, Yijun Yu2, Wenyun Zhao1

1School of Computer Science, Fudan University, Shanghai 201203, China
2Department of Computing, The Open University, Milton Keynes, UK

{09210240005, pengxin, wyzhao}@fudan.edu.cn, y.yu@open.ac.uk

ABSTRACT
Running in a highly uncertain and changing environment, Web
systems cannot always provide full set of services with optimal
quality, especially when the workload is high or failures in sub-
systems occur frequently. It is thus desirable to continuously
maintain a high satisfaction level of the system value proposition,
hereafter survivability assurance, while relaxing/sacrificing cer-
tain quality/functional requirements that are not crucial to the
survival of the Web systems. In this paper, we propose a require-
ments-driven self-tuning method for survivability assurance of
Web systems. Using a value-based feedback controller plus a
requirements-oriented reasoner, our method makes both quality
and functional requirements tradeoffs decisions at runtime.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – methodologies.

General Terms
Algorithms, Reliability, Measurement, Performance

Keywords
Survivability, Self-Tuning, Value, Requirements, Reasoning

1. INTRODUCTION
Failing to have such a Web system that is reliably working and
resilient to changes in the running environment, the business can
lose their customers because it is easy for customers to transfer to
competing Web sites [1]. On the other hand, the uncertainty and
unpredictability of the running environment of Web systems
makes it hard to constantly provide full set of services with op-
timal quality, especially when the workload is high or failures in
subsystems occur frequently. Rather than absolute reliability, it is
therefore survivability that is more practical and reasonable for
Web systems. Here survivability is the capability of ensuring criti-
cal system services under adverse conditions, with acceptable
quality degradation or even sacrifice of some desired services [2].
In this work, we show that survivability can be assured by auto-
nomic runtime reconfigurations rather than by error-prone human
intervention on the runtime structures and behaviors of the soft-
ware system. Furthermore, survivability can be interpreted quanti-
tatively to guide the reconfigurations precisely.

In order to achieve autonomic survivability assurance, we adopt
the MAPE (Monitor, Analyze, Plan, Execute) control loop [3] and
propose a requirements-driven self-tuning method. Extending our
previous work on runtime tradeoffs about quality requirements [4],
the proposed method further takes into account runtime tradeoffs
about functional requirements. Quality tradeoffs concern when
and which desired quality requirements may be relaxed to ensure
other more critical but conflicting ones. Similarly, functional tra-

deoffs concern when and which desired functional services can be
unbound to ensure the critical and essential services and their
quality, and such unbound services can be bound to preserve the
functional integrity whenever it is possible. To make such func-
tional tradeoffs decisions, we use a reasoning algorithm that is
performed on an enriched requirements goal model. Then we
interpret survivability from the perspective of value-based soft-
ware engineering [5] as the capability of maximizing the satisfac-
tion level of the system value proposition, which defines how the
“earned business value” at system side is measured to facilitate
the “when” part of the problem. On the other hand, the goal mod-
els enriched with annotations of value contributions facilitate the
“which” part of the problem.

2. OUR METHOD
2.1 Value-Based Survivability
We use goal modeling [6] to provide a formal representation of
runtime requirements to facilitate reasoning. The goal model for
an online shopping system is presented in Figure 1. Observing
that some hard goals in rounded rectangles can be unbound with-
out influencing the achievement of their parent goals, e.g., cus-
tomers can partially achieve Online Shopping even if Make Re-
view is unbound from the system. We enrich AND/OR decompo-
sitions of the goal model with the relative parent value to reflect
the relative importance of sub-goals or their value contribution to
parent goals from a business perspective. For simplicity, the rela-
tive parent value is defined as a ratio between 0.0 and 1.0. When it
is 1.0, the goal must be retained to achieve the value of its parent
goal; otherwise, the value of the parent goal can still be partially
achieved even when this goal is unbound. The value contribution
annotations are provided by business experts to deal with econom-
ic and marketing factors such as consuming behaviors of custom-
ers.

Figure 1. A goal model enriched with relative parent values.

Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

23

To gauge the satisfaction level of system value proposition, it is
required to measure the earned business value formally. However,
many factors can influence the earned business value in a direct or
indirect way. In our example, sales is a direct factor while prod-
ucts’ details, recommended products, customers’ reviews and
consultations are indirect factors. Hence, a formula should be
provided by a comprehensive analysis on such complicated fac-
tors by marketing experts. To illustrate the point, we simplify the
formula in our example by considering the above 5 factors: each
corresponds to a kind of runtime transaction that produces certain
profit, e.g., a transaction of making review produces $0.032.

2.2 Self-Tuning Framework
To achieve the requirements-driven self-tuning of Web systems,
our method postpones the design-time quality and functional tra-
deoffs decisions to the runtime, and adapts them autonomically in
response to changes in the environment in order to maximize the
satisfaction level of system value proposition. Figure 2 presents
our self-tuning framework, illustrating the main components and
their mappings to the MAPE control loop.

Figure 2. Our self-tuning framework.

Monitor. We use sensors to collect runtime data, e.g., the fail-
ure/success of a payment service, etc., through logging records;

Analyze. By analysis of the runtime data, we use value indicators
to measure the earned business value as shown in Section 2.1, and
obtain the quality measurements, e.g., availability of the payment
service, etc., of related quality requirements;

Plan. Based on analyze, we use the PID controller to decide
whether or not to make quality or functional tradeoffs decisions to
maximize the satisfaction level of system value proposition. In the
former case, the PID controller is also used to rank the preference
of related soft goals to guide the reasoning for a reconfiguration to
the goal model;

Execute. Finally, we use the goal model configurator to reconfi-
gure the goal model according to the planned goal reconfiguration,
and then we use the architecture configurator to execute the adap-
tation by reconfiguring the runtime architecture according to the
mappings between the goals and the architectural components.
Such architecture reconfigurations are currently supported by a
reflective component model.

The monitor runs all the time while analyze, plan and execute
run iteratively at regular time unit, e.g., per every minute. Fur-
thermore, there are three possible planning paths.

(p1) When the earned business value decreases by a certain degree,
the quality goal reasoner is triggered to generate a set of configu-

rations that reach the satisfaction levels of high-ranked soft goals
while relaxing the satisfaction levels of low-ranked soft goals.
Here every configuration is a selection of the OR-decomposition
goals.

(p2) If no new configurations are found by the quality goal rea-
soner, the functional goal reasoner is triggered to generate a re-
configuration that optimizes the satisfaction levels of high-ranked
soft goals while sacrificing one leaf-level hard goal with the mi-
nimal relative root value defined as the product of the relative
parent values along the path from root goal to the hard goal.

(p3) When the earned business value increases by a certain degree,
the functional goal reasoner is triggered to generate a reconfigu-
ration that improves the functional integrity of the Web system by
rebinding the recently sacrificed leaf-level hard goal.

Note quality tradeoffs decisions are made to replace one compo-
nent with another and the functional tradeoffs decisions are made
to unbind or bind a component. Comparing with a replacement,
unbinding or binding introduces more radical change to the archi-
tecture. And there is often an uncertainty in whether or not such a
radical action has taken effect on the target system [7]. As a result,
the system could suffer oscillations from such unbinding and
binding actions (e.g., alternating the same component). Thus we
adopt a timed delay for the effect of the action to be achieved in
functional tuning execution as suggested by S. W. Cheng et al. [7].

3. CONCLUSIONS
With our value-based interpretation of survivability assurance, we
have proposed a requirements-driven self-tuning method for sur-
vivability assurance of Web systems. The method employs both
quality and functional requirements tradeoff through goal-oriented
reasoning. We intend to investigate the timed delay and its impact
more deeply and more precisely in the near future and to apply
our method in the new paradigm of cloud computing.

4. ACKNOWLEDGMENTS
This work is supported by National Natural Science Foundation of
China under Grant No. 90818009.

5. REFERENCES
[1] J. Offutt. Quality Attributes of Web Software Applications.

IEEE Software, vol. 19, no. 2, 2002.
[2] J. C. Knight and E. A. Strunk. Achieving Critical System

Survivability through Software Architectures. Architecting
Dependable Systems II, Springer, 2004.

[3] IBM. An Architectural Blueprint for Autonomic Computing.
Technical Report, 2003.

[4] X. Peng, B. Chen, Y. Yu and W. Zhao. Self-Tuning of Soft-
ware Systems through Goal-based Feedback Loop Control.
The 18th IEEE International Requirements Engineering Con-
ference, 2010.

[5] B. Boehm. Value-Based Software Engineering. ACM SIG-
SOFT Software Engineering Notes, vol. 28, no. 2, 2003.

[6] A. Dardenne, A. van Lamsweerde and S. Fickas. Goal-
Directed Requirements Acquisition. Science of Computer
Programming, vol. 20, no. 1-2, 1993.

[7] S. W. Cheng and D. Garlan. Rainbow: Cost-Effective Soft-
ware Architecture-based Self-Adaptation. Carnegie Mellon
University, Pittsburgh, PA, 2008.

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

24

	1. INTRODUCTION
	2. OUR METHOD
	2.1 Value-Based Survivability
	2.2 Self-Tuning Framework

	3. CONCLUSIONS
	4. ACKNOWLEDGMENTS
	5. REFERENCES

