
Helix: Online Enterprise Data Analytics

Oktie Hassanzadeh1,2, Songyun Duan1, Achille Fokoue1,
Anastasios Kementsietsidis1, Kavitha Srinivas1, Michael J. Ward1

1IBM T.J. Watson Research Center 2University of Toronto
Hawthorne, NY, U.S.A. Toronto, Ontario, Canada

ABSTRACT
The size, heterogeneity and dynamicity of data within an
enterprise makes indexing, integration and analysis of the
data increasingly difficult tasks. On the other hand, there
has been a massive increase in the amount of high-quality
open data available on the Web that could provide invaluable
insights to data analysts and business intelligence specialists
within the enterprise. The goal of Helix project is to provide
users within the enterprise with a platform that allows them
to perform online analysis of almost any type and amount of
internal data using the power of external knowledge bases
available on the Web. Such a platform requires a novel,
data-format agnostic indexing mechanism, and light-weight
data linking techniques that could link semantically related
records across internal and external data sources of various
characteristics. We present the initial architecture of our
system and discuss several research challenges involved in
building such a system.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Infor-
mation Services; H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design

Keywords
Enterprise Data Management, Data Integration, Linked Data

1. INTRODUCTION
Businesses ranging from small companies to large corpo-

rations are facing today a data explosion [1, 5, 6]: every day,
businesses accumulate massive amounts of data from a vari-
ety of sources, and they employ an increasing number (often
measured in the thousands) of heterogeneous, distributed,
and often legacy data repositories to store them. Businesses
are already spending considerable effort to manage their
data, by having in place data warehousing, data integra-
tion, or Extract-Transform-Load (ETL) solutions. Part of
their challenge is to extend these existing solutions to deal
with the scale of this data explosion, to meet the contin-
uing requirements of their day-to-day operations. But an
increasingly important challenge for most businesses facing
this data explosion is one of semantics: Businesses don’t
know what they don’t know.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

Indeed, while existing data analytics solutions do a great
job in collecting data and providing answers on known ques-
tions, key business insights not only remain hidden in the
rest of the data, but due to the data explosion they are even
more difficult to find. Keyword search is the most popular
way of finding information on the Web, and the techniques
developed there have a proven track record for dealing with
massive amounts of data. However, keyword search is not
particularly compelling in the business context considered
here. Consider for example a business analyst of a technol-
ogy company who is interested in analyzing his company’s
records for customers in the healthcare industry. Given key-
word search functionality, the analyst might issue a “health-
care customers” query over a large number of repositories.
Such a search might identify records like Clinovia Health-
care that either mention the keyword “healthcare” explic-
itly, or records like Cromwell Hospital that mention some
derivative (e.g., synonym, hyponym/hypernym) of the key-
word. The search will probably not return a company like
British United Provident Association (BUPA) in its results
even though BUPA is a company in the healthcare industry,
since no terms in the company’s name relate to the keyword
query. Even worse, the search will probably return scores
of business records from the various repositories with no ap-
parent connection between them. So, it will fail to provide
a connection between BUPA and Cromwell Hospital, since
the former has acquired the latter (source Wikipedia), and
the fact that BUPA is also the parent company of Clinovia
Healthcare (source Wikipedia).

Our first objective is to develop techniques to not only
find, but also link information across enterprise repositories;
these techniques must be both precise with respect to the
user’s intent and scalable. Linking between entities across
repositories has been the focus of a large number of works
(including our latest paper [4]). However, the majority of
existing works perform entity linking in a batch, off-line fash-
ion. With huge data sets, and large number of repositories,
these methods will generate every possible link, between all
possible linkable entities. Generating thousands of links not
only requires substantial computation time and considerable
space to store them, but also requires substantial effort since
the generated links must be verified and cleaned, given the
inherently imprecise nature of linking methods. To com-
pound the problem, the same two entities may be linked
for a variety of reasons, each orthogonal to each other. For
example, two companies may be linked because one is a sub-
sidiary of the other (as is the case with BUPA and Clinovia),
or they may have the same CEO (e.g., as was the case for

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

225



Apple Inc. and Pixar). Generating all possible links, along
with evidence for the provenance of why each link was gen-
erated, is clearly impractical. Even if such an approach were
feasible, it will be a huge waste of resources to generate and
store all these links only to discover later that only a small
fraction of them is actually relevant to business analysis.

We address the shortcomings of existing linking approaches
by providing a dynamic and context-dependent linking mech-
anism. In more detail, we take advantage of user profile
metadata, in conjunction with metadata associated with the
input keywords (see details in later sections) to link dynam-
ically, i.e., at query time, only the entities that reside in
different repositories and are potentially relevant to the cur-
rent search. So in our previous example, our system will try
to identify only the healthcare-related companies from the
various repositories and to establish links only between those
(instead of between all the companies, and instead of estab-
lishing arbitrary links as in the case of common CEO’s).

The second objective of our work is to provide an exten-
sible framework in which new data sources, both internal
and external, can be easily incorporated to address chang-
ing business requirements. Enterprises continually produce
valuable data using informal methods like spreadsheets and
business mashups. These data sources may be critical to
evolving analytical tasks. Additionally, data that are useful
to business analytics will reside in external sources, no mat-
ter how much data an enterprise manages internally. These
external sources are often authorities in their fields; trying to
duplicate and independently maintain their data within an
enterprise makes little sense. Instead, the enterprise should
be able to leverage these external sources in its own ana-
lytics. In our example, our enterprise might have detailed
information for its customers and their transactions, but it
is missing data on company acquisitions. These data are
stored in external sources, like Wikipedia, Bloomberg or the
FCC, or most recently in RSS and Twitter feeds. By lever-
aging these external sources in our simple example, we are
not only able to identify BUPA as a company that is in the
health-care industry, but also establish links between BUPA
and its subsidiaries. Indeed, one of the main contributions
of this work is blurring the distinction between internal and
external sources in the enterprise and offering a framework
to seamlessly use both types.

In this demonstration, we will use our existing prototype
system and will walk users through the steps of several busi-
ness analysis tasks. During the presentation, we will issue
several live queries and show our system’s ability to (a) find
records relevant to the input query; (b) dynamically (and at
query time) establish links between the retrieved records; (c)
take advantage of external online sources in order to achieve
both steps (a) and (b). In the following sections, we present
the current architecture of our system, and provide details
about the various implemented features. Then, we provide
more details about the types of scenarios we are interested
in showcasing, and the types of sources we are planning to
use for these scenarios.

2. HELIX FRAMEWORK
Figure 1 shows the implemented architecture of the Helix

system. In what follows, we present an overview of different
components in this framework.

Schema 
Discovery and 

Analysis

Data Source Registry

Data Processor

Instance-
based 
Tagger

Full-Text 
Indexer

Query Processor

Parsing, 
Disambuguation, 

Keyterm Extraction 
and Keyword 

Query Cleaning

Query String Analyzer

Index Lookup

RDB

Internal Sources

XML

JSONCSV Text

RDF External 
Sources

(Web APIs)

User Profile

Interactive
Visual
User

Interface

Smart 
Facets

Possible Types 
(Disambiguation)

Query String

Results Set
for each Type

Keyterms and 
Query Type 
Information

Semantic 
Record Matching

Data Linker

Value SensesInstance Values

Schema Info

Online 
Aggregation

Keyterm 
Senses

Instance Values

Schema Info 
& Tags

Index Lookup 
Results

Cassandra 
Cluster ...

User Profile 
Senses

Query Type & 
Parameters
(Optional)

Figure 1: Helix Framework.

2.1 Data Source Registry
One of the primary objectives of the Helix system is to

allow analysis of highly heterogeneous enterprise data repos-
itories. Such repositories contain data of different formats
(e.g., text/CSV, relational databases, XML, RDF) and vary-
ing characteristics (e.g., very large number of small data
records, or small number of very large data records). In
addition, the system takes advantage of various online data
sources, with APIs that support different query languages
(e.g., SPARQL over RDF stores, MQL over Freebase API,
or keyword search query interface). Our system provides a
common interface to all the accessible data sources through
the data source registry component. The registry keeps a
catalog of available internal and external sources and their
access methods and parameters, such as the host name (server
IP or Web API URL), driver module (if any), authentication
information, and indexing parameters. Users can add data
sources to the registry and delete them from it as needed.

2.2 Data Processor
Given a set of available internal and external sources in

the registry, the data processor provides the other compo-
nents with a common access mechanism for all the data.
For internal data sources, it provides a level of indexing and
analysis depending on the type of data source. Note that no
indexing or caching is performed over external sources, i.e.,
we retrieve fresh data from external sources as needed. For
internal sources, the first step in processing is to identify and
store schema information and possibly perform data format
transformation. Our framework supports legacy data with
no given or well-defined schema, as well as semistructured
or schema-free data. Therefore, apart from looking up the
available schema information (for example from an RDBMS
data dictionary), we need to perform schema discovery, also
referred to as schema extraction, for some of the sources.
We use and extend existing schema discovery techniques [7].
Furthermore, we use a novel tagging mechanism to iden-
tify extended data type and semantic information about our
data, which we call the senses of the data. So, in the case
of relational data, our method picks a sample of instance
values for each column and issues them as queries to online
sources to gather possible senses of the instance values for
the column. The result is a set of tags associated with each
column, along with a confidence value for the tag. To il-
lustrate, assume a column from a relational database whose
values correspond to company names. By polling Freebase,
we get a set of sense tags, one set per company name. We
correlate the tags from all the values, and at the end of the
process annotate the column with senses like Company, In-

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

226



dustry, and possibly Healthcare (if most sampled companies
are from the healthcare industry). Notice that this process
is independent of the relational column name. So, it works
even if the column name is some acronym like COMP NM,
or some string representing an internal code.

Finally, our system uses a highly efficient full-text index
across all internal repositories, powered by a Cassandra1

cluster. We use different indexing strategies depending on
the source characteristics. For a relational source, for ex-
ample, depending on the data characteristics and value dis-
tributions, the indexing is performed over rows (where we
index values and store the primary keys of the tuples they
appear in), or columns (where we index values and store
the column(s) of the relations they appear in). For string
values, we build q-gram-based indices to allow fuzzy string
matching queries [2]. To identify indexed values, we cre-
ate URI’s that uniquely identify the location of the values
across all enterprise repositories. For example, indexing the
string BUPA, appearing as a value in column NAME of a
tuple with primary key CID:34234 in table CUST, of source
SOFT ORDERS, results in the URI /SOFT_ ORDERS/ CUST/
NAME/ PK= CID: 34324 , which uniquely identifies the source,
table, tuple and column in which the value appears.

2.3 Query Analyzer
The query analyzer is responsible for processing the in-

put search request and (a) determining the query type; and
(b) identifying key terms associated with the input query.
In more detail, the Helix query interface supports several
types of queries, ranging from basic keyword-based index
lookup to a range of advanced search options. Users can
either specify the query type within their queries or use an
advanced search interface. The main function of this com-
ponent is key term extraction and disambiguation. We build
upon previous work on keyword query cleaning [8] to detect
possible syntactic errors and semantic differences between
the user’s query and the indexed data instances as well as
to perform segmentation (identification of key terms).

As in many information retrieval systems today, terms
in the query string can be modifiers that specify the type
or provide additional information about the following term.
To permit individual customization, the query analyzer can
employ a user profile that contains information about user’s
domain of interest in the form of a set of senses derived
from external sources. The user profile can be built auto-
matically based on query history or can be built manually
by a user. In our motivating example, the user profile for an
analyst can include the simple senses “business” and “com-
puter” to indicate that the analyst is only interested in this
particular context. At query time, the senses of the identi-
fied input query key terms are found by querying external
sources, and these senses are matched with the user profile
to assist detection of the type of the key term (i.e., whether
it is a modifier or not) and therefore the query type. In our
example, if the analyst issues the simple keyword query“Ap-
ple”, the senses of this term will be retrieved from external
sources, including senses like “Fruit”, “Computer company”
and “Music” (due to Apple Corps, a corporation founded by
The Beatles). These senses will be matched with the user
profile, and therefore only the senses related to “Apple” as a
computer company will be used in any further processing.

1
The Apache Cassandra Project - http://cassandra.apache.org/

2.4 Query Processor
The query processor relies on the information it gets about

the input query from the query analyzer in order to process
the query and return its results. A key part of the query pro-
cessor is the data linking module. The query processor might
need to issue queries to the internal index as well as online
APIs, and put together and analyze a possibly large and het-
erogeneous sets of results retrieved from several sources. In
addition to retrieving data related to the user’s queries, the
processor may issue more queries to online sources to gain
more information about unknown data instances. The data
linking module consists of state-of-the-art record matching
and linking techniques that can match records with both
syntactic and semantic differences [4]. The matching is per-
formed between instances of attributes across the internal
and external sources.

To increase both the efficiency and accuracy of the match-
ings, the attribute tags (senses) created during preprocess-
ing are used to pick only those attributes from the sources
that contain data instances relevant to the target attribute
values. Once matching of internal and external data is
performed, unsupervised clustering algorithms are used for
grouping of related or duplicate values [3]. The clustering
takes into account the evidence from matching with the ex-
ternal data, which can be seen as performing online group-
ing of the internal data, as opposed to off-line grouping and
de-duplication. This allows us to enhance the quality of
the groupings and decrease the amount of preprocessing by
avoiding offline ad-hoc grouping of all internal data values.

To illustrate the functionality of the query analyzer and
processor, consider an analyst issuing a query string“health-
care in CUST INFO”, in an attempt to analyze internal
data about companies in the healthcare industry. Given this
query, the query analyzer identifies key terms healthcare and
CUST INFO, and also detects that healthcare is an indus-
try, and CUST INFO is a data source name in the registry.
Therefore, the analyzer sends two queries to the processor:
1) an index lookup for the whole query string 2) a domain-
specific and category-specific query“industry:healthcare data-
source:CUST INFO”. The second query results in more com-
plex processing in the query processor. For this query, the
query processor issues a query to Freebase API to retrieve
all the objects associated with object /en/healthcare (of type
/business/industry), which includes, among other things, all
the healthcare-related companies in Freebase. The data link-
ing module then performs efficient fuzzy record matching
between the records retrieved from Freebase and internal
data from data source CUST INFO. For effectiveness, only
those internal records are retrieved whose associated schema
element is tagged with a proper sense such as /freebase/

business/business_operation that is also shared with the
senses of the objects retrieved from Freebase (mostly com-
panies in this example).

2.5 User Interface
The main starting point for the users of our system is a

keyword query interface (a screen shot is shown in Figure 2).
Our system provides a web interface connected to our Java
implementation that runs in the web container of an Apache
Geronimo2 Tomcat open source application server. The user
interface interacts with the query analyzer module to guide

2Apache Geronimo - http://geronimo.apache.org/

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

227



Figure 2: The Helix query web interface.

the user in formulating and fixing the query string. The in-
terface also includes several advanced search features that
allow direct specification of query parameters and manually
building a user profile. In most cases, more than one query
type or set of key terms are identified by the query analyzer.
The query analyzer returns a ranked list of possible inter-
pretations of the user’s query string, and the user interface
returns the top k interpretations along with (a subset of)
the results. The users can then modify their query string or
pick one query type and see the extended results.

The user interface provides online dynamic aggregation
and visualization of the query results. For the graphical
rendering of the visualizations of our results (i.e., for the
bar-charts, the graphs) we use the Protovis graphical vi-
sualization toolkit3, and the communication between our
user interface and the other framework components is done
through JSON4 objects. The interface allows users to pick
from multiple ways of aggregating the results for different at-
tributes and data types, along with several types of graphs
and charts. At the bottom of Figure 2, we see examples of
two such aggregations, represented as bar-charts. Also, the
interface provides a glimpse into the system internals, and
offers a visual representation of the internal structures and
of the reasoning used to identify and return the presented
results. An example of such visualization is shown in Fig-
ure 3 where the senses associated with the input query, the
user profile, and the underlying enterprise data are plotted
and correlated so as to illustrate the key senses used in the
retrieval and matching of instance data.

3. THE DEMONSTRATION
In this demonstration, we will walk users through the

steps of several data analysis tasks like the one described
in previous section. In developing and testing Helix, we use
real data from IBM’s internal customer relationship man-
agement (CRM) repositories including customer service and
technical support logs. However, we cannot demonstrate
Helix using this data directly, for confidentiality reasons. In-
stead, we will generate synthetic datasets using the schemas
and attributes of our internal sources. For attributes like
company names or product names, we will randomly pick
values of the same category from Wikipedia, maintaining
the number of unique entries and their distribution from the
original datasets. To expose the data quality issues such as

3Protovis - http://vis.stanford.edu/protovis/
4JavaScript Object Notation - http://www.json.org/

Figure 3: The Helix senses graph.

misspellings and alternative representations that are found
in the original data, we will introduce a very small amount
of syntactic errors (by character deletion, replacement and
swapping) or replacements (such as replacing“Inc.”with“In-
corporated”) in the values picked from Wikipedia. For at-
tributes like dates or coded fields, we will randomly generate
values in the same ranges found in the original datasets. In
this way, we will be able to fully show all the features of our
implemented prototype and how the system performs online
analysis of enterprise data. To further show that the tech-
niques we employ in our system are not domain-dependent,
we also perform online analysis of two real data sources con-
sisting of IMDb movie data, and clinical trials data from
ClinicalTrials.gov, stored and treated as internal data.

4. REFERENCES
[1] B. Babineau. IBM Information Infrastructure Initiative

Tames the Information Explosion. IBM White Paper,
April 2009.

[2] A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi,
and D. Srivastava. Benchmarking Declarative
Approximate Selection Predicates. In ACM SIGMOD
Int’l Conf. on Mgmt. of Data, pages 353–364, 2007.

[3] O. Hassanzadeh, F. Chiang, R. J. Miller, and H. C.
Lee. Framework for Evaluating Clustering Algorithms
in Duplicate Detection. Proceedings of the VLDB
Endowment (PVLDB), 2(1):1282–1293, 2009.

[4] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J.
Miller, and M. Wang. A Framework for Semantic Link
Discovery over Relational Data. In Proc. of the ACM
Conf. on Information and Knowledge Management
(CIKM), pages 1027–1036, 2009.

[5] E. Knorr. Enterprise Data Explosion Will Only Get
Bigger.
http://computerworld.co.nz/news.nsf/management/

enterprise-data-explosion-will-only-get-bigger,
August 2010. [Online; accessed 14-October-2010].

[6] S. Lohr. A Data Explosion Remakes Retailing.
http://www.nytimes.com/2010/01/03/business/

03unboxed.html, January 2010. [Online; accessed
14-October-2010].

[7] R. J. Miller and P. Andritsos. On Schema Discovery.
IEEE Data Engineering Bulletin, 26(3):40–45, 2003.

[8] K. Q. Pu and X. Yu. Keyword Query Cleaning.
Proceedings of the VLDB Endowment (PVLDB),
1(1):909–920, 2008.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

228




