
CoSi: Context-Sensitive Keyword Query Interpretation on
RDF Databases

Haizhou Fu
North Carolina State

University, Raleigh, NC
hfu@ncsu.edu

Sidan Gao
North Carolina State

University, Raleigh, NC
sgao@ncsu.edu

Kemafor Anyanwu
North Carolina State

University, Raleigh, NC
kogan@ncsu.edu

ABSTRACT
The demo will present CoSi, a system that enables context-
sensitive interpretation of keyword queries on RDF databas-
es. The techniques for representing, managing and exploit-
ing query history are central to achieving this objective. The
demonstration will show the effectiveness of our approach for
capturing a user’s querying context from their query history.
Further, it will show how context is utilized to influence the
interpretation of a new query. The demonstration is based
on DBPedia, the RDF representation of Wikipedia.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Pro-
cess; H.2.4 [Database Manager]: Query Processing

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Query History, Keyword Query Interpretation

1. INTRODUCTION
Keyword queries are an easy-to-use interface for (semi-

)structured databases. However, the task of interpreting
keyword queries can present various challenges due to their
ambiguous nature. Labeled graph models such as RDF
databases permit labels on data and metadata and support
simultaneous querying of data and metadata. Consequent-
ly, in order to process keyword queries on RDF databases
effectively, effort must be made to distinguish the roles of
the keywords in a query. This demands a more sophisti-
cated approach than the meaning-as-match interpretation
paradigm used in IR and Web Search where the meaning of
a query is considered as a set of objects containing “match-
es”to keywords. As an example, consider a query containing
the keyword “River”. This keyword could be part of a label
of an attribute (e.g., a street address “765 River Bank Rd” )
for a specific location entity or the label of a particular river
entity “Mississippi River”. On the other hand, it could also
be interpreted as a concept or class indicating “a large body
of water”, which will need to be interpreted as its set of in-
stances, many of which do not necessarily contain matches

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

to the keywords, e.g., “the Amazon” or “the Nile”. There-
fore, interpreting keyword queries in this context requires
disambiguating the meaning of each keyword by identify-
ing its specific role in the query. Correct identification of
roles for keywords will enable the appropriate return vari-
ables and conditional expressions to be constructed as part
of the structured query generation process preceding query
processing.

There have been some recent approaches [2, 4, 5] focused
on this problem of keyword query interpretation that utilize
ranking schemes to rank the most likely intended interpreta-
tion higher in the list of interpretations presented to users.
However, their ranking techniques are based on properties of
the database which do not capture user characteristics and
context. As a result, these approaches provide the same in-
terpretation for the same set of keywords regardless of user
intended meaning. One direction that remains unexplored
is the use of a user’s query history to ascertain querying con-
text and hence guide the interpretation process. Techniques
that use query logs [3] have been widely adopted in the area
of IR. However, to the best of our knowledge, the idea or
storing and managing history of structured queries has not
been considered previously.

Motivating Example: We exploit the observation that
users tend to issue conceptually related queries in close se-
quence. Therefore, exploiting query history can identify the
“most likely intended” interpretations for a new query. For
example, in Figure 1, given a keyword query “Mississip-
pi River Bank”, where “Mississippi” has three occurrences,
“River”has four and“Bank”has five, existing techniques will
always select the interpretation “part of the name of a bank”
as the most likely intended ones. The reason is that they
are in the same database term and has the smallest connec-
tion subgraph. However, if a user had previously queried
about “Mortgage Loan”, then it is more reasonable to select
the interpretation of the current query as being that of the
financial institution “Mississippi River Bank”. On the other
hand, if a user’s previous query was “Fishing Techniques”
it may make more sense to interpret the current query as
referring to the “bank of the Mississippi River”.

Contributions: We present a system CoSi that imple-
ments context-sensitive keyword query interpretation on RD-
F databases. Techniques (including a sophisticated index s-
trategy, a dynamic context representation model and a con-
text sensitive query generation algorithm) are employed to
endow CoSi with the ability to “sense” the querying context
and therefore, to increase the likelihood of generating the
most likely intended intepretation.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

209



Figure 1: RDF Schema and Data Graph (the numbers after those keywords are serial numbers showing
different matches of those keywords)

2. SYSTEM ARCHITECTURE
The CoSi system architecture consists of three core com-

ponents: an indexer, a context-sensitive cost model and a
query interpreter.

2.1 Indexer

Figure 2: Graph Summarization

There are two types of index that are maintained by the
Indexer. The Summary Graph Index is a graph summa-
rization of a RDF data graph and its schema graph, called
summary graph. Figure 2 shows an example of a summary
graph. In the summary graph, each internal node is a hyper-
node that contains the labels of a leaf schema class and all
labels of its super-classes following the class hierarchy tree.
Every literal node is also a hyper-node containing all literal
values of a particular attribute. As is shown in Figure 2 , one

literal node in the summary graph includes all literal values
for attribute “bName”, which means it contains the names
of all banks. The advantage of using summary graph is that
it is a much smaller graph than a data graph, and candidate
query interpretations can be generated as subgraphs of the
summary graph. The pattern shown at the top of Figure 2
is an example of graph pattern query that is equivalent to
this summary graph for a keyword query “Mississippi River
Bank”.

The other type of index, i.e., SL − Trie index is an ad-
vanced inverted list structure for fast matching from key-
words to summary graph elements(nodes/edges). More im-
portantly, the SL − Trie offers an efficient way to identify
the most relevant (most related to the context) matches of
a particular keyword. Since such a relevance based ranking
of keyword matches is dynamic due to the constantly evolv-
ing context, SL − Trie provides an effective mechanism to
maintain this dynamic information. The cost model to e-
valuate the relevance between matches and the context will
be discussed in the next sub-section. The discussion of the
algorithm for keeping the dynamic index updated will not
be elaborated in this proposal.

2.2 Cost Model
The goal of the cost model is to assign weights to the sum-

mary graph such that the weights reflect the impact of the
context on the summary graph. The degree of relevance be-
tween the context (i.e., the past query interpretations) and
the summary graph is determined by two factors: chrono-
logical age and conceptual scope. Intuitively, summary graph
elements(nodes/edges) hit by more recent queries (with s-
maller chronological age) should have higher weights. Fur-
ther, we prefer to give higher weights to the summary graph
elements in the close proximity of a query in the query-
ing context (within the conceptual scope). To achieve this
overall effect, our cost model records the impact of a previ-
ous keyword query Kt (issued at time t) on its directly hits
and closely related summary graph elements. Further, the

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

210



strength of this impact must be maximal at time t but must
decay as the Kt ages out of the query history.

Consequently, our cost model consists of two factors: the
historical impact factor hif(t) and the region factor rf(dt).
The region factor is a decreasing function of distance dt
between a summary graph element and a previous query;
The historical factor is designed as a decreasing function of
chronological age, and the older a query is, the lower the
impact it exerts.

2.3 Query Interpreter
The query interpreter is responsible for generating the

context-sensitive top-K structured query interpretations for
a given keyword query Kt, at time t. Given a weighted
summary graph SGt, where the weights have been dynam-
ically updated to reflect the user’s current query contex-
t, this context information can then be used to bias the
graph exploration procedure. We propose a COntext Aware
Bidirectional Expansion algorithm, called CoaBe, that iden-
tifies an near-optimal Minimum Steiner tree (MST). The
CoaBe algorithm tries to construct a sub-tree of the sum-
mary graph that a) connects every hit of the keywords in
the given keyword query; b) the total cost of the sub-tree is
the minimum one only among all the other trees that satisfy
condition a). Further there is a significant difference be-
tween CoaBe and traditional graph exploration algorithms
such as [4]. For a given keyword and its two matches, CoaBe
gives the one with relatively higher degree of relevance to the
context a higher velocity during the graph expansion phase.
This special feature enables a preference for keyword match-
es that are more related to the querying context.

2.4 Workflow
Generally, as shown in Figure 3, the system works in an

iterative way. Given an RDF data/schema graph, a sum-
mary graph is the first to be built by the indexer. As is
shown in Figure 3, the weights are assigned/re-assigned to
nodes/edges in the summary graph by using the cost model:
SGt+1 = w(SGt, Qt), where Qt is the last query interpre-
tation in the query history. Given a keyword query Kt and
the weighted summary graph SGt, the Query Interpreter is
executed to generate new candidate top-k queries. After
that, the top-1 query interpretation (or user specified inter-
pretation) is passed to the indexer and the cost model will
update the weighted summary graph for next search itera-

Figure 3: System architecture and Workflow

tion (i.e., user issues a new keyword query). At the initial
stage, if there is no queries in the query history, each graph
element has equal weight. A user can choose to select the
best interpretation from those candidates.

3. DEMONSTRATION
We will demonstrate that the CoSi system can improve the

quality of the keyword query interpretation task by using
query history as context information. The system will be
demonstrated using a very large real-world dataset DBPedia
[1]. CoSi is a desktop application that will be run locally
using a laptop or desktop PC. The end users can interact
with several features of the system.

3.1 System Interface
Figure 4 shows the graphical user interface. By default,

CoSi enables a context-sensitive interpretation mode. Users
can also manually change the mode by clicking the “Search
Mode” button. The users can start a new session by choos-
ing“New Query Session”on the menu. By clicking the “New
Search” button, user can start issuing keyword queries and
browse the results. After user click the “Interpret” button,
the system will generate a ranked list of up to five candidate
interpretations. By selecting one of the candidate interpre-
tations, the corresponding SPARQL query will be shown in
the text box under the “Interpret” button. Users can also
view any interpretation from the list and a sub-graph that is
equivalent to the interpretation of the keyword query will be
shown on a panel in the main interface. Any information re-
lated to issued queries such as keywords, candidate interpre-
tations (subgraphs and SPARQL queries) will be recorded.
User can select to view the information of any query in the
query history by clicking that query in the list shown on the
top-right carousel panel control. The entire history of query
interpretations can be saved by using the “Save Query Ses-
sion” function on the main menu. CoSi also provides users
a “weights viewer” to see the subgraph of the weighted sum-
mary graph. The size of the red circle in the node reflects
the value of the weight. The subgraph contains nodes and
edges related to all the queries in the query history. The
users can observe the changes of subgraphs caused by the
evolving context. Finally, the end users can choose to inves-
tigate the results of using context-agnostic mode, where the
traditional approach is applied.

3.2 Demonstration Scenarios
This demonstration will show you some interesting fea-

tures of the CoSi system. We will demonstrate how CoSi
can provide effective solutions to compensate for limitations
of traditional interpretation system. Three interesting user
cases are given:

Scenario A: The end users can choose to issue a se-
quence of related keyword queries under different search
modes (context-sensitive and context-agnostic). In this way,
they can observe how queries in recent query history influ-
ence the interpretation of newer queries.

Scenario B: Scenario B shown in Figure 5 illustrates a
more interesting feature of CoSi. Given a keyword query
“Apple Manhattan”, assume that two possible interpreta-
tions are I − A and I − B. Given two different query his-
tories (The end users can load existing query logs by click-
ing “open query session” from the main menu), CoSi ranks

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

211



Figure 4: Graphical User Interface

Figure 5: Scenario B: Different contexts different
rankings

Figure 6: Scenario C: The impact of length of query
history on interpretation

I −A higher by loading “Query History 1” because the con-
ceptual scope of this search session is about “artist” and
“album”. Alike, CoSi ranks I − B higher if “Query History
2” is loaded because the context is all about “company” and
“products”. Therefore, CoSi can detect the context which re-
flects the users’ focus and interests during the specific query
session, while traditional methods (using context-agnostic
mode) will always return the same ranking regardless of the
context.

Scenario C: Another important capability of CoSi is
demonstrated by scenario C shown in Figure 6. The CoSi
system is capable of learning the knowledge from query logs.
The longer the query history the more information can be
digested and utilized by the CoSi system, and therefore, the
disambiguation process will be more accurate. In this sce-
nario, three query logs are given, and as is shown in Figure 6,

each log contains one more keyword query than the previ-
ous one. By looking at the target query “Rose”, there is
no idea what the users want to ask, which is a usual case
that the users themselves sometimes do not know how to
issue a query for what they really want. Therefore, they
may issue a sequence of queries for a clue. But traditional
interpretation systems are not helpful because they are not
context-sensitive. Users still need to sift through the search
results. But with CoSi, when people search in an explorato-
ry way by issuing serial queries, CoSi will learn what they
are really asking for and rank the intended interpretation
higher such that the end users can find them more easily.

4. ACKNOWLEDGEMENT
The work presented in this paper is partially funded by

NSF grant IIS-0915865.

5. REFERENCES
[1] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J.,

Cyganiak, R., and Ives, Z. G. Dbpedia: A nucleus
for a web of open data. In ISWC/ASWC (2007),
pp. 722–735.

[2] Kasneci, G., Ramanath, M., Sozio, M., Suchanek,
F. M., and Weikum, G. Star: Steiner-tree
approximation in relationship graphs. In ICDE (2009),
pp. 868–879.

[3] Shi, X., and Yang, C. C. Mining related queries from
search engine query logs. In WWW (2006),
pp. 943–944.

[4] Tran, T., Wang, H., Rudolph, S., and Cimiano, P.
Top-k exploration of query candidates for efficient
keyword search on graph-shaped (rdf) data. In ICDE
(2009), pp. 405–416.

[5] Wang, H., Zhang, K., Liu, Q., Tran, T., and Yu,
Y. Q2semantic: A lightweight keyword interface to
semantic search. In ESWC (2008), pp. 584–598.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

212




