
Accelerating Instant Question Search with Database
Techniques

Takeharu Eda Toshio Uchiyama Katsuji Bessho
Norifumi Katafuchi Alice Chen Ryoji Kataoka

NTT Cyber Solutions Laboratories, NTT Corporation
1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa 239-0847 Japan

{eda.takeharu, uchiyama.toshio, bessho.katsuji,katafuchi.norifumi, alice.chen, kataoka.ryoji}@lab.ntt.co.jp

ABSTRACT
Distributed question answering services, like Yahoo Answer 1 and
Aardvark 2, are known to be useful for end users and have also
opened up numerous topics ranging in many research fields. In
this paper, we propose a user-support tool for composing questions
in such services. Our system incrementally recommends similar
questions while users are typing their question in a sentence, which
gives the users opportunities to know that there are similar ques-
tions that have already been solved. A question database is seman-
tically analyzed and searched in the semantic space by boosting
the performance of similarity searches with database techniques
such as server/client caching and LSH (Locality Sensitive Hash-
ing). The more text the user enters, the more similar the recommen-
dations will become to the ultimately desired question. This uncon-
scious editing-as-a-sequence-of-searches approach helps users to
form their question incrementally through interactive supplemen-
tary information. Not only askers nor repliers, but also service
providers have advantages such as that the knowledge of the ser-
vice will be autonomously refined by avoiding for novice users to
repeat questions which have been already solved.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Performance

Keywords
Question Authoring, Implementation, LSI, LSH

1. INTRODUCTION
Nowadays, distributed question answering (QA) services are ubiq-

uitous; a user can casually ask any type of question in hope of re-
ceiving an expert answer. Even casual information surfers are well
satisfied because QA services can hold a huge number of solved
problems (QA database) relating to possibly anything in life [1].

From the viewpoint of knowledge sharing, there is a trilemma
in QA databases as shown in Fig. 1. In order to compose read-

1http://answers.yahoo.com/
2http://vark.com/

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

Figure 1: The Trilemma in QA Services .

able and reasonable sentences, the asker needs to do several surveys
through the web or the QA database before submitting a question.
When repliers see repeated questions, they will insert several URLs
linking previous resolved questions, and may occasionally request
askers to clarify their questions in the case of ambiguous questions.
As a result, surfers and the service provider may consider the QA
database redundant and find it tedious to discover the knowledge
they want.

Thus, we need some method for users, especially beginners, to
avoid asking ambiguous questions or repeated questions that are
likely to receive replies containing only links to other questions.
Our approach is to assist users to edit their questions by recom-
mending similar solved questions as they input their sentences. If
the user found the almost same question she is going to ask, she
would be satisfied without asking any question. If she could not
find the question in the recommended questions, she will ask a new
question in the service, which will make the QA service the richer
knowledge database.

Retrieval of similar questions in our tool is achieved by combin-
ing VSM (Vector Space Model) and LSI (Latent Semantic Index-
ing). To improve the efficiency of the process, we also employ LSH
(Locality Sensitive Hashing) in addition to traditional inverted lists.
Question database is statistically analyzed and mapped into a high-
dimensional vector space where similarity search is accelerated by
indexing with LSH. Here, we have achieved a new interaction: in-
cremental concept search, where semantically similar questions are
immediately returned while users edit their question. We present
several representative use cases in our demo.

2. PROPOSED SYSTEM
Fig. 2 shows the overall processing flow and the system archi-

tecture. Our system creates two indexes; inverted lists and LSH
index, and the query processor combines both of the returned re-
sults. Such combination is a common technique for information

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

205

Figure 3: An Example Question. New indexed tokens are added while users edit question.

retrieval [3]. The reason why we chose this technique is that we
can gain benefits from both merits, namely the high precision for
small queries in VSM and better recall in LSI. First, we analyze the
question database using Wikipedia or Iwanami (Japanese) dictio-
nary and map words into a semantic space, a vector space with di-
mensionality greater than one hundred (Concept Database). Then,
question vectors in the concept database are indexed with LSH, and
similarity search based on their semantics can be processed very
efficiently. As the user types in a question, it is segmented into

Figure 2: System Architecture.
tokens, and only indexed tokens are used as to query the seman-
tic space. Finally, we calculate the centroid vector of the indexed
tokens and search the LSH index for similar questions.

2.1 Incremental Concept Search
In incremental keyword search (or instant keyword search), one

or more possible matches of documents containing the input key-
word are presented to the user immediately. In incremental concept
search, documents are presented immediately to the user. But they
do not necessarily have the matches of documents containing the
input keyword. They are similar to the input keywords in the se-
mantic space and may contain similar words to the input keyword.

When the user types her sentence, the sentence is segmented into

tokens. From the set of tokens, only indexed tokens are used as
query for searching similar questions. As users add more tokens,
more indexed tokens are included and the query changes (Fig. 3).
As a result, the user gets a different set of similar questions.

Since conceptually-similar questions are returned immediately
while users are adding/deleting tokens, they do not need to have
the complete sentence of the question in mind during the search.
Instead, they can edit and improve their sentences according to the
recommended questions available to them. Once a desired question
is spotted, the users can stop composing their question and access
the targeted link directly.

2.2 Concept-based Question Search
To locate similar questions, we employed a concept-based search

technique, a variant of latent semantic indexing technique [2]. Let
X be p×q co-occurrence matrix between words and questions. X
is decomposed by SVD as follows.

X = UΣV T

V T is the inverse matrix of V . r = rankX ≤ min(p, q),
UT U = V T V = I holds. Let Σ = (σij), σii ≥ σjj ≥ 0(1 ≤ i ≤
j ≤ r), σij = 0(i �= j). We call σii(1≤i≤r) singular values. Given
r′(1 ≤ r′ ≤ r), r′ first columns from U, r′ first columns from
V T , and r′ first columns and rows from Σ, the following equation
holds.

X ′ = U ′Σ′V ′T

We call the normalized column vectors of U ′ concept word vectors.
In this model, we consider a question Q as the centroid vector

VQ of the concept word vectors the question covers.

VQ =
Σwi∈Qwi

KQ

Here, KQ is a normalized constant. All questions are represented
as multidimensional vectors and indexed with LSH.

Intuitively, our model measures each question with its indexed
tokens, which are statistically analyzed in the concept word vec-
tor space. The reason why we employed this semantic smoothing
approach and rather than ordinary keyword search only is that this
rich semantic model has the power to capture the latent semantics
behind the question database. In other words, this method can lo-
cate semantically similar questions that do not necessarily have the
exact keywords entered by users, but that share semantically similar
keywords.

2.3 Locality Sensitive Hashing
Locality Sensitive Hashing (LSH) is an algorithm for solving ap-

proximate near neighbor search in high dimensional vector spaces.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

206

Figure 4: Locality Sensitive Hashing.

The key idea is to hash the points using several hash functions to
ensure that for each function, the probability of collision is much
higher for objects which are close to each other than for those that
are far apart.

We employed an algorithm that uses unary representation of vec-
tors and approximates l1 distance [5]. Fig. 4 shows how LSH is
used to index question vectors. Prior to indexing, random bit arrays,
are created, each of which has the same number of randomly cho-
sen bit positions for sampling. A question vector is concatenated
onto a string and the string is virtually transformed into unary repre-
sentation. The bit values, which are specified by random bit arrays,
are concatenated into sampled bits and stored in a bucket. When
the number of buckets becomes too large, the buckets are projected
into another set of buckets. Given two questions, the more frequent
the sampled bits are stored in the same bucket, the more similar the
two vectors are.

3. IMPLEMENTATION TECHNIQUES
Although both concept search and LSH are well-established tech-

niques, we implemented them into one system in order to improve
the response time of incremental concept search.

3.1 Detection of Index Tokens and Server/Client
Caching

In our scenario, users incrementally enter words in the search
form. If a new word is an indexed token, the centroid vector of
the question is updated and a new search is initiated. On the other
hand, if a new word is not an indexed token, the centroid vector is
not changed and the search result set does not need to be updated.
Thus, we cache the previous indexed tokens and detect any changes
while users are entering their question. This simple server caching
mechanism has a significant impact on the response time of incre-
mental concept search due to the fact that many tokens in a question
are likely to be non-indexed and can be omitted.

As for the performance concern for longer queries of VSM (Fig.
5), we implemented a novel client caching mechanism in a browser
using client side database storage 3. In our system, the previous
search result is cached in local storage. The local cache is fil-
tered with a newly inserted keyword and reranked based on the
approximate similarity to the query before sending the new request
to server. Cache refresh is triggered by the similarity score between
the current query and the documents in local cache. Thus, users do
not need to refresh the local cache manually .

3.2 Grouping Bit Positions
In the original LSH, random positions are chosen randomly among

3http://www.w3.org/TR/webdatabase/

Figure 5: Average query processing time of VSM at server-side.
For each Num. of tokens, ten queries are chosen randomly and
the average processing time is reported. The performance of
inverted lists degrades when the number of tokens in questions
increases.

Figure 6: Clock time for constructing LSH indices in the cases
of the Num. of hashes is 8 for a Japanese QA database.

each random bit array as shown in the lower part of Fig. 7. This
makes sampling bit values from unary representation costly since
the positions may cross among the arrays, thus we need multiple
scans of unary representation.

To improve the situation, we implemented the random bit arrays
by grouping them in the order of positions as shown in the upper
part of Fig. 7. At first, all of required positions are randomly cho-
sen, then we sort the positions and group them. By doing so, we
can get bit values with just a single scan of the unary represen-
tation. This bit array design has performance impact not only on
index construction (Fig. 6) but also on query processing. Further-
more, since the random array positions do not cross each other, we
can benefit from the parallel processing of the random array.

While this technique provides no theoretical guarantee, we ob-
served that the precision of similarity search is not degraded for the
dense vector space in LSI compared to naive LSH.

4. USER EXPERIENCES
The performance achieved by our database implementation tech-

nique is significant. From a question database holding more than 2

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

207

Figure 7: Grouping Bit Positions.

Figure 8: Topic Convergence: How the rank of the original
question is changed while a user composes the question as a
query? The more the user inserts the tokens, the higher the
original document is ranked.

million entries, similar questions can be retrieved in less than 0.1[s]
on average.

4.1 Demo Scenario
We’ve prepared the representative three use cases for our demo.

1. Existing question search

2. New question search

3. Local cache performance comparison

In the existing question search, users search questions existing in
the demo system. While a user enters her own question, she will
see that the range of topics covered in the pool of recommended
questions gradually changes and feel as if the results are converging
to the targeted question(Fig. 8) . In the new question search, users
can try to search the question in her mind. In the local cache perfor-
mance comparison, users can compare the recommended questions
and the response times of retrieving similar questions in both cases
of server side query processing and local filtering(Fig. 9).

Figure 9: An Interface of Our Demo System.

At this point, we have utilized a Japanese question answering
dataset (Oshiete-goo4) composed of more than two million ques-
tions and an English question answering dataset composed of more
than one hundred thousands questions which are still being crawled
now. We will be able to offer attendees the chance to try our incre-
mental concept search system in both English and Japanese.

5. RELATED WORK
There is some research on composing questions through con-

ceptual authoring but with a rather static setting [6]. The devel-
opment of Web 2.0 popularized Ajax-like dynamic interaction be-
tween users and data [4]. This paper shows that indexing algo-
rithms for high-dimensional vector space [5] enable us to enhance
Ajax-like interaction in such a dense vectors space like the one in
LSI, which is considered to be difficult to apply with inverted list
techniques [3] .

Recently, Ji et al. [7] proposed the interactive fuzzy keyword
search, where auto-complete keyword search is enhanced to sup-
port approximate keyword matching. They developed interactive
tool by explored efficient indexing algorithms. However, the match-
ing is approximate, as opposed to the semantic similarity matching
we exploited in this paper, both of which are complementary and
should be combined together for future work.

6. CONCLUSIONS
This paper proposes a user support tool that uses natural lan-

guage processing and database engineering to present recommen-
dations (solved questions) to users for composing questions in dis-
tributed question answering services. It incrementally recommends
similar questions while users are entering their question. The ques-
tion database is semantically analyzed and searched in the semantic
space, and the performance is enhanced by utilizing LSH. Our sys-
tem provides a new editing environment by a sequence of similar-
ity searches and offers users opportunities to improve the sentences
forming their questions.

Future directions include large-scale user evaluations in actuality
of their realistic settings. Since the semantic smoothing model used
in this paper is fully static, it is a more practical approach to employ
recently proposed incremental model [8] for a wholly dynamic and
autonomous incremental concept search system.

7. REFERENCES
[1] Lada A. Adamic, Jun Zhang, Eytan Bakshy, and Mark S. Ackerman. Knowledge

Sharing and Yahoo Answers: Everyone Knows Something. In Proc. WWW,
pages 665–674, 2008.

[2] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–407, 1999.

[3] Susan T. Dumais. Latent semantic indexing(lsi): Trec-3 report. In Proc. Text
REtrieval Conference(TREC-3), 1995.

[4] Jesse James Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com/publications/essays/archi-ves/000385.php, 2005.

[5] Aristides Gionis, Piotr Indyk, and Rajeev Motowani. Similarity Search in High
Dimensions via Hashing. In Proc. VLDB, pages 518–529, 1999.

[6] Catalina Hallett, Richard Power, and Donia Scott. Composing Questions through
Conceptual Authoring. Computational Linguistics, 33(1):105–133, 2007.

[7] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient Interactive Fuzzy
Keyword Search. In Proc. WWW, pages 371–380, 2009.

[8] Hu Wu, Dong Zhang, Yongji Wang, and Xiang Cheng. Incremental Probabilistic
Latent Semantic Analysis for Automatic Question Recommendation. In Proc.
Recommender Systems, pages 99–106, 2008.

4http://oshiete.goo.ne.jp/

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

208

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

