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ABSTRACT 
The complexity and growing scale of RDF data has made data 
management back end the performance bottleneck of Semantic 
Web applications. Caching is one of the ways that could solve this 
problem. However, few existing research projects focus on 
caching in RDF data processing. We present an adaptive caching 
scheme that caches intermediate result of basic graph pattern 
SPARQL queries. Benchmark test results are provided to 
illustrate the effectiveness of our caching scheme.   

Categories and Subject Descriptors 
H.2.4 [Systems]: Query processing 

General Terms 
Management, Performance. 

Keywords 
Intermediate Result, SPARQL, Cache 

1. INTRODUCTION 
SPARQL is a standard RDF query language for RDF. The 
directed, labeled data model of RDF makes the query processing 
of SPARQL more complex. Although diverse measures including 
indexing, query optimizations, parallelization, etc., are employed 
to speed up query processing in mainstream RDF data 
management approaches, few of them concentrate on caching. 
Caching scheme is usually designed based on spatial/temporal 
locality principle to improve system performance with reasonable 
space expense. Caching techniques have been widely developed 
and applied in both RDBMS and RDBMS-based web 2.0 
applications. Server-side caching systems based on application 
object caching like Memcached are widely applied. Other systems 
employ a client-side semantic data caching approach [1]. 

As for Semantic Web applications, [2] builds a proxy cache layer 
between web application and RDF repository where both query 
caching and application object caching are employed. There is 
some research on a similar topic: [3], [4] and [5] automatically 
materialize frequent join paths based on statistics information. [6] 
allows manual build of materialized views according to 
application context. However, materialized view isn’t a caching 
scheme after all because it doesn’t have a replacement principle 
and has to be built before issuing query on the database.  

2. APPROACH 
Suppose a scenario that two SPARQL queries Q1 and Q2 are  

select ?p ?n ?a
where { ?p type human .

?p name ?n.
?p age ?a }

select ?p ?n ?g
where { ?p type human .

?p name ?n.
?p gender ?g }
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Figure 1. Two SPARQL Queries with Common Part 

issued sequentially, and they have their Algebra Expression Trees  
(AETs) for query execution as shown in Figure 1. Take the AET 
of Q1 for example, the query engine first tries to get the output of 
N1, finding that the output of N1 depends on N2 and N3. So it 
evaluates N2 and N3, finding the output of N2 further depends on 
N4 and N5. Hence, the query engine evaluates N4 and N5, and then 
evaluates N2 with their outputs. After evaluating N3, N1 is 
evaluated together with the output of N2 and N3, and eventually 
Q1 is answered. The answering of Q2 has a similar process. Note 
that the AETs of Q1 and Q2 have common sub AET annotated by 
dash line. Observing that adjacent SPARQL queries may have 
such common structure, we cache the result of sub AETs for 
future reuse. If the result of P1 is cached, the execution of P2 can 
be omitted, thus improves query answering performance. 

2.1 AET Normalization and Identification 
The first thing we need to do in caching the result of an AET is 
normalization. Literally different SPARQL queries may have the 
same query logic due to variable naming (e.g. use ?person in a 
query for a person entity but use ?p in another one). Therefore, 
AET normalization needs to be performed to convert those 
logically equal AETs to a uniform one. In our normalization 
approach, a pre-order traverse in the AET is performed. During 
this process, variables are labeled with sequential integers i.e.  1, 
2, 3… A normalized AET can identify a specific query execution 
plan with unique query logic regardless of variable naming. To 
specify the equality of two existing AETs, we present a simple 
recursive definition of equality of two AETs:  

Definition 1. Given two AETs TA and TB with their 
corresponding root node RA and RB, then TA is equal to TB if and 
only if the left sub AET of RA is equal to the left sub AET of RB 
and the right sub AET of RA is equal to the right sub AET of RB.  

Base on the above definition, we can serialize a normalized AET 
to generate an identifier, which can identify the result of the AET. 
A normalized AET is converted into a function-call style 
expression. Take the AET of Q1 in Figure 1 for example, its sub 
A E T  P 1  w o u l d  h a v e  a  s e r i a l i z e d  e x p r e s s i o n  l i k e  
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?p=?p(<?1, type, human>, <?1, name, ?2>). 

 

Figure 2. Cache Entity Storage in the Cache Repository 

2.2 Cache Build and Utilization 
With the identifier, we can do our cache work. We perform the 
caching by adding some extra work steps to the query engine 
during query answering. Before evaluating the output of a node N 
in the AET, the query engine first computes the serialized 
expression S of the sub AET, whose root node is N, and looks up 
S in the cache repository. If a cache entity is hit, the query engine 
directly accesses it avoiding the evaluation work from N 
downward. Otherwise the query engine evaluates the output O of 
N in normal way and stores SO in the cache repository. Cache 
entity storage in the cache repository is shown in Figure 2. 

Note that this process can be performed multiple times during the 
execution of one SPARQL query. For complex basic graph 
pattern SPARQL queries, its corresponding AET can have 
complex structure as well. Such AETs have different sub AETs at 
different tree level. Cache hit may happen less probably in a node 
NH at a higher level because the sub AET which takes NH as the 
root node takes a larger portion of the global AET. But the output 
size of such an AET is usually small. Plus the fact that a cache hit 
at a higher level contributes more to query answering 
performance, so caching such AETs is worthwhile. Oppositely, a 
small, simpler sub AET may have a big output, which makes the 
caching of such AETs more space-consuming. But simple sub 
AETs stand for simple graph patterns, and they are more likely to 
appear in different query contexts. 

3. EXPERIMENTAL EVALUATION 
We implement our caching scheme on Sesame. The system has a 
two-level (memory-disk) cache architecture. LRU cache 
replacement strategy is employed. Two mainstream benchmarks 
LUBM and SP2Bench are applied to test the performance of our 
caching system. The following metrics are measured to evaluate 
the performance of the system: 

1. Temporal Improvement. Three values are compared in this 
metric: 1) time consumption of query evaluation with 
conventional means without our caching scheme; 2) time 
consumption of query evaluation with our cache scheme at cache 
warm-up phase, when few cache hits happen; 3) time 
consumption of query evaluation with our cache scheme at warm 
cache phase, when cache hit happens relatively more frequently. 
Temporal improvement is shown in Figure 3. 

2. Space Consumption. Space Consumption evaluates how much 
disk space our caching scheme consumes, shown in Table 1. 
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Figure 3. Benchmark Result on LUBM and SP2Bench 

3. Cache Hit. As the engine evaluates the AET top-down, cache 
hit may happen at any level of it. We here define that a Cache Hit 
happens at the evaluation of a query whenever a cache item is hit 
at any level of the corresponding AET. For LUBM, no cache hit 
happen at cache warm-up phase because there are few 
associations between LUBM test queries. SP2Bench test queries 
have more similarities, so some cache hits happen at cache warm-
up time on SP2Bench. At warm cache phase the system has a 
relatively good cache hit rate. 

4. FUTURE WORK 
Future work includes: 1) Considering AET heterogeneity. 2) 
Supporting more SPARQL operations. Only join is supported at 
present (basic graph pattern queries). 3) Considering context 
information and mining association triples. 
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Table 1. Space Consumption of the Caching System
Original=Original Sesame Repository Size, Cache=Cache Repository Size, both in MB 

 LUBM(10) LUBM(100) LUBM(1000) SP2Bench 2.5M SP2Bench 10M SP2Bench 40M 

Original 112.60 1.18GB 11.77GB 282.89 1.08GB 4.30GB 

Cache 21.77KB 1.77 17.24 10.11 47.62 60.66 
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