
Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

Caching Intermediate Result of SPARQL Queries
Mengdong Yang
Southeast University

Nanjing, China

mdyang@seu.edu.cn

Gang Wu
Northeastern University

Shenyang, China

wugang@ise.neu.edu.cn

ABSTRACT
The complexity and growing scale of RDF data has made data
management back end the performance bottleneck of Semantic
Web applications. Caching is one of the ways that could solve this
problem. However, few existing research projects focus on
caching in RDF data processing. We present an adaptive caching
scheme that caches intermediate result of basic graph pattern
SPARQL queries. Benchmark test results are provided to
illustrate the effectiveness of our caching scheme.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

General Terms
Management, Performance.

Keywords
Intermediate Result, SPARQL, Cache

1. INTRODUCTION
SPARQL is a standard RDF query language for RDF. The
directed, labeled data model of RDF makes the query processing
of SPARQL more complex. Although diverse measures including
indexing, query optimizations, parallelization, etc., are employed
to speed up query processing in mainstream RDF data
management approaches, few of them concentrate on caching.
Caching scheme is usually designed based on spatial/temporal
locality principle to improve system performance with reasonable
space expense. Caching techniques have been widely developed
and applied in both RDBMS and RDBMS-based web 2.0
applications. Server-side caching systems based on application
object caching like Memcached are widely applied. Other systems
employ a client-side semantic data caching approach [1].

As for Semantic Web applications, [2] builds a proxy cache layer
between web application and RDF repository where both query
caching and application object caching are employed. There is
some research on a similar topic: [3], [4] and [5] automatically
materialize frequent join paths based on statistics information. [6]
allows manual build of materialized views according to
application context. However, materialized view isn’t a caching
scheme after all because it doesn’t have a replacement principle
and has to be built before issuing query on the database.

2. APPROACH
Suppose a scenario that two SPARQL queries Q1 and Q2 are

select ?p ?n ?a
where { ?p type human .

?p name ?n.
?p age ?a }

select ?p ?n ?g
where { ?p type human .

?p name ?n.
?p gender ?g }

select <?p, type, human> select <?p, name, ?n>

?p=?p

<?p> <?p, ?n>

<?p, ?n>

select <?p, age, ?a>

?p=?p

<?p, ?a>

<?p, ?n, ?a>
result

select <?p, type, human> select <?p, name, ?n>

?p=?p

<?p> <?p, ?n>

<?p, ?n>

select <?p, age, ?a>

?p=?p

<?p, ?a>

<?p, ?n, ?a>
result

Q1 Q2

Execution Plan of Q1 Execution Plan of Q2

P1 P2

N1

N3

N2

N5N4

N6

N7

N10N9

N8

Figure 1. Two SPARQL Queries with Common Part

issued sequentially, and they have their Algebra Expression Trees
(AETs) for query execution as shown in Figure 1. Take the AET
of Q1 for example, the query engine first tries to get the output of
N1, finding that the output of N1 depends on N2 and N3. So it
evaluates N2 and N3, finding the output of N2 further depends on
N4 and N5. Hence, the query engine evaluates N4 and N5, and then
evaluates N2 with their outputs. After evaluating N3, N1 is
evaluated together with the output of N2 and N3, and eventually
Q1 is answered. The answering of Q2 has a similar process. Note
that the AETs of Q1 and Q2 have common sub AET annotated by
dash line. Observing that adjacent SPARQL queries may have
such common structure, we cache the result of sub AETs for
future reuse. If the result of P1 is cached, the execution of P2 can
be omitted, thus improves query answering performance.

2.1 AET Normalization and Identification
The first thing we need to do in caching the result of an AET is
normalization. Literally different SPARQL queries may have the
same query logic due to variable naming (e.g. use ?person in a
query for a person entity but use ?p in another one). Therefore,
AET normalization needs to be performed to convert those
logically equal AETs to a uniform one. In our normalization
approach, a pre-order traverse in the AET is performed. During
this process, variables are labeled with sequential integers i.e. 1,
2, 3… A normalized AET can identify a specific query execution
plan with unique query logic regardless of variable naming. To
specify the equality of two existing AETs, we present a simple
recursive definition of equality of two AETs:

Definition 1. Given two AETs TA and TB with their
corresponding root node RA and RB, then TA is equal to TB if and
only if the left sub AET of RA is equal to the left sub AET of RB
and the right sub AET of RA is equal to the right sub AET of RB.

Base on the above definition, we can serialize a normalized AET
to generate an identifier, which can identify the result of the AET.
A normalized AET is converted into a function-call style
expression. Take the AET of Q1 in Figure 1 for example, its sub
A E T P 1 w o u l d h a v e a s e r i a l i z e d e x p r e s s i o n l i k e

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

159

?p=?p(<?1, type, human>, <?1, name, ?2>).

Figure 2. Cache Entity Storage in the Cache Repository

2.2 Cache Build and Utilization
With the identifier, we can do our cache work. We perform the
caching by adding some extra work steps to the query engine
during query answering. Before evaluating the output of a node N
in the AET, the query engine first computes the serialized
expression S of the sub AET, whose root node is N, and looks up
S in the cache repository. If a cache entity is hit, the query engine
directly accesses it avoiding the evaluation work from N
downward. Otherwise the query engine evaluates the output O of
N in normal way and stores SO in the cache repository. Cache
entity storage in the cache repository is shown in Figure 2.

Note that this process can be performed multiple times during the
execution of one SPARQL query. For complex basic graph
pattern SPARQL queries, its corresponding AET can have
complex structure as well. Such AETs have different sub AETs at
different tree level. Cache hit may happen less probably in a node
NH at a higher level because the sub AET which takes NH as the
root node takes a larger portion of the global AET. But the output
size of such an AET is usually small. Plus the fact that a cache hit
at a higher level contributes more to query answering
performance, so caching such AETs is worthwhile. Oppositely, a
small, simpler sub AET may have a big output, which makes the
caching of such AETs more space-consuming. But simple sub
AETs stand for simple graph patterns, and they are more likely to
appear in different query contexts.

3. EXPERIMENTAL EVALUATION
We implement our caching scheme on Sesame. The system has a
two-level (memory-disk) cache architecture. LRU cache
replacement strategy is employed. Two mainstream benchmarks
LUBM and SP2Bench are applied to test the performance of our
caching system. The following metrics are measured to evaluate
the performance of the system:

1. Temporal Improvement. Three values are compared in this
metric: 1) time consumption of query evaluation with
conventional means without our caching scheme; 2) time
consumption of query evaluation with our cache scheme at cache
warm-up phase, when few cache hits happen; 3) time
consumption of query evaluation with our cache scheme at warm
cache phase, when cache hit happens relatively more frequently.
Temporal improvement is shown in Figure 3.

2. Space Consumption. Space Consumption evaluates how much
disk space our caching scheme consumes, shown in Table 1.

1

10

100

1000

10000

100000

LUBM(10) LUBM(100) LUBM(1000)

T
im

e
in

 S
ec

on
d

Benchmark Result on LUBM Benchmark Result on SP Bench2

1

10

100

1000

2.5M 10M 40M

No Cache

Cache Warm-up

Warm Cache

Figure 3. Benchmark Result on LUBM and SP2Bench

3. Cache Hit. As the engine evaluates the AET top-down, cache
hit may happen at any level of it. We here define that a Cache Hit
happens at the evaluation of a query whenever a cache item is hit
at any level of the corresponding AET. For LUBM, no cache hit
happen at cache warm-up phase because there are few
associations between LUBM test queries. SP2Bench test queries
have more similarities, so some cache hits happen at cache warm-
up time on SP2Bench. At warm cache phase the system has a
relatively good cache hit rate.

4. FUTURE WORK
Future work includes: 1) Considering AET heterogeneity. 2)
Supporting more SPARQL operations. Only join is supported at
present (basic graph pattern queries). 3) Considering context
information and mining association triples.

5. ACKNOWLEDGMENTS
This work is supported by the National Natural Science
Foundation of China under Grant No. 60903010, the Natural
Science Foundation of Jiangsu Province under Grant No.
BK2009268, and the Key Laboratory of Advanced Information
Science and Network Technology of Beijing under Grant No.
XDXX1011.

6. REFERENCES
[1] Shaul Dar, Michael J. Franklin, Bjorn T. Jonsson, Divesh

Srivastava, and Michael Tan. Semantic Data Caching and
Replacement. In Proc of VLDB 1996.

[2] Michael Martin, Jorg Unbehauen, and Soren Auer. Improving
the performance of Semantic Web Applications with SPARQL
Query Caching. In Proc of ESWC 2010.

[3] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach.
Scalable Semantic Web Data Management Using Vertical
Partitioning. In VLDB, 2007.

[4] E. I. Chong et al. An Efficient SQL-based RDF Querying
Scheme. In VLDB, 2005.

[5] Thomas Neumann and Gerhard Weikum. RDF-3X: A RISC-
Style Engine for RDF. Proc. VLDB Endow., 2008.

[6] Roger Castillo, Christian Rothe, and Ulf Leser. RDFMatView:
Indexing RDF Data for SPARQL Queries. Technical Report

Table 1. Space Consumption of the Caching System
Original=Original Sesame Repository Size, Cache=Cache Repository Size, both in MB

 LUBM(10) LUBM(100) LUBM(1000) SP2Bench 2.5M SP2Bench 10M SP2Bench 40M

Original 112.60 1.18GB 11.77GB 282.89 1.08GB 4.30GB

Cache 21.77KB 1.77 17.24 10.11 47.62 60.66

WWW 2011 – Poster March 28–April 1, 2011, Hyderabad, India

160

