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ABSTRACT
In this work we propose that the high volumes of data on
real-time networks like Twitter can be harnessed as a useful
source of recommendation knowledge. We describe Buzzer,
a news recommendation system that is capable of adapt-
ing to the conversations that are taking place on Twitter.
Buzzer uses a content-based approach to ranking RSS news
stories by mining trending terms from both the public Twit-
ter timeline and from the timeline of tweets generated by a
user’s own social graph (friends and followers). We also de-
scribe the result of a live-user trial which demonstrates how
these ranking strategies can add value to conventional RSS
ranking techniques, which are largely recency-based.
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1. INTRODUCTION
We view the emergence of the real-time web as a way of

harnessing real-time and time-sensitive data, such as tweets
on public and personal Twitter streams, as a basis for rec-
ommending news items. Applied research has already been
published relating to Twitter data applications [2, 3, 4, 7].
We have previously presented an early basic prototype of
the Buzzer system [7] that focussed on real-time ranking.

Here, we widely extend the basic technique with four new
overlapping content-based recommendation strategies [1, 5]
and describe the result of a large-scale live-user trial with
35 users over a 1 month period, based on more than 30,000
news stories and in excess of 50 million Twitter messages.

Buzzer generates two indexes of content — one from Twit-
ter (including public tweets and Buzzer-user tweets) and one

∗This work is gratefully supported by Science Foundation
Ireland under Grant No. 07/CE/11147 CLARITY CSET.

Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

Figure 1: Buzzer’s personalized news results

from the RSS feeds of Buzzer users. Buzzer looks for co-
occurances of content between the terms that are present
in tweets and RSS articles and ranks articles accordingly.
In this way articles with content that appear to match the
content of recent Twitter chatter (whether public or user
related) will receive high scores during recommendation.

Figure 1 shows a sample list of recommendations for a
particular user. Buzzer is a web application and can take
the place of a user’s normal RSS reader: the user continues
to have access to their favourite RSS feeds but in addition,
by synching Buzzer with their Twitter account, they may
potentially benefit from a more informative ranking of news
stories based on their inferred interests.

1.1 Algorithms & Strategies
Each Buzzer user brings both their RSS subscriptions and

their Twitter social graph to the system. With these sources,
we build a number of different ways of combining tweets and
RSS content during recommendation, and in this paper we
explore 4 different recommendation strategies (S1−S4). For
example, stories/articles can be mined from a user’s personal
RSS feeds or those of the wider Buzzer community. More-
over, stories can be ranked based on the tweets of people
the user follows, or from the tweets of the public Twitter
timeline.
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We combine these sources to generate 4 strategies: S1
— Stories from Personal RSS Articles ranked by the Pub-
lic Twitter Feed, S2 — Stories from Personal RSS Arti-
cles ranked by your Twitter friends, S3 — Articles from the
Buzzer Community’s RSS Feeds ranked by the Public Twit-
ter Feed, S4 — Articles from the Buzzer Community’s RSS
Feeds ranked by your Twitter friends. Our evaluation uses a
5th strategy of recency of RSS articles as a benchmark.

The system generates results from these recommendation
strategies, by mining feeds of tweets and RSS items for co-
occuring terms, building a term-frequency vector of these
terms and uses this vector as a basis of retrieving relevant
RSS items from a given RSS index. Item scoring is a sum of
each TF-IDF score of each returned individual item across
the vector of terms, so if an item is in the result list of
many terms, its score is summed and added to a final re-
sult list and ranked. We do this process for each of the four
strategies outlined previously, and the system randomly in-
terleaves each of the five (S1-S5) strategies into one final
list.

2. USER TRIAL
The trial consisted of 35 active Buzzer users (used the sys-

tem two or more times) who were emailed a result list daily.
The results presented relate to usage data gathered during
the 31 days of March 2010. During this timeframe we gath-
ered a total of 56 million public tweets (for use in strategies
S1 and S3) and 537,307 tweets from the social graphs of
the 35 registered users (for use in strategies S2 and S4). In
addition, the 35 users registered a total of 281 unique RSS
feeds as story sources and during the trial period these feeds
generated a total of 31,137 unique stories/articles. During
the trial, Buzzer issued 1,085 emails. We considered the
participants as active Twitter users, with averages of 145
friends, 196 followers and 1241 tweets sent. Overall our in-
terest is not so much concerned with whether one strategy
is superior to others — because in reality we believe that
different strategies are likely to have a role to play in news
story recommendation — but rather to explore the reaction
of users to the combination of strategies.

2.1 Results
Figure 2A presents total click-throughs per strategy. Users

registered 15 or so RSS feeds as part of their Buzzer sign-
up and the stories ranked by S3 and S4, for a given user,
came from the 250+ other feeds contributed by the partic-
ipants. Overall, we can see that strategies S1 and S2 tend
to outperform the other strategies; for example, S1 and S2
received about 110 click-throughs each, just over 35% more
than strategies S3 and S4, and about about 20% more than
the default recency strategy, S5. There is a clear preference
for stories from personal feeds, strategies S1 and S2 attract
more click-throughs than when ranked by recency (S5). But
also, participants responded less frequently to stories ranked
highly by strategies S3 and S4, although these strategies still
attract about 30% of total click-throughs. We feel that this
highlights the power of item discovery in our system.

It is also useful to consider whether particular strategies
tended to win out over other strategies on a day by day basis.
We can judge a strategy Si to win on day dj if Si receives
more click-throughs than any other during dj . Figure 2B
shows the result of this analysis across the 31 trial days, for
each of the 5 strategies. Strategy S2 (user’s personal RSS
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Figure 2: Main Results

feeds ranked by the tweets of their social graph) wins out
overall, dominating the click-throughs of 10 out of the 31
days. Recency (S5) comes a close second (winning on 8 of
the days). Overall strategies S3 and S4 do less well here,
collectively winning on only 3 of the 31 days.

3. CONCLUSION
We have presented a novel content-based real-time news

recommendation and discovery system, with a large-scale
user trial and interesting results that influence our future
directions. We hope to expand the discovery system with
a hybrid approach (sharing activities of users as a rating
system) and focus on content and metrics from the users
personal social graph, as we feel it yields the most interesting
results. Further information and in-depth analysis of data
from this evaluation is also available [6].
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