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1. INTRODUCTION
Epidemic outbreaks such as the recent H1N1 influenza show how

susceptible large communities are toward the spread of such out-
breaks. The occurrence of a widespread disease transmission raises
the question of vaccination strategies that are appropriate and close
to optimal. The seemingly different problem of viruses dissem-
inating through email networks, shares a common structure with
disease epidemics. While it is not possible to vaccinate every in-
dividual during a virus outbreak, due to economic and logistical
constraints, fortunately, we can leverage the structure and proper-
ties of face-to-face social networks to identify individuals whose
vaccination would result in a lower number of infected people.

The models that have been studied so far [3, 4] assume that once
an individual is infected all its adjacent individuals would be in-
fected with probability 1. However, this assumption is not realistic.
In reality, if an individual is infected by a virus, the neighboring in-
dividuals would get infected with some probability (depending on
the type of the disease and the contact). This modification to the
model makes the problem more challenging as the simple version
is already NP-complete [3].

Here we consider the following epidemiological model computa-
tionally: A number of individuals in the community get vaccinated
which makes them immune to the disease. The disease then out-
breaks and a number of nodes that are not vaccinated get infected
at random. These nodes can transmit the infection to their friends
with some probability. In this work we consider the optimization
problem in which the number of nodes that get vaccinated is lim-
ited to k and our objective is to minimize the number of infected
people overall. We design various algorithms that take into account
the properties of social networks to select k nodes for vaccination in
order to achieve the goal. We perform experiments on a real dataset
of 34,546 vertices and 421,578 edges and assess their effectiveness
and scalability.
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2. MODEL
We represent the social contact network by a graph G = (V,E),

where each individual is denoted by a node in the graph. There is
an edge between two nodes, if the probability of virus transmission
between its endpoints is non-zero. For example, in the case of flu
there is an edge between two co-workers.

In this graph, let qi be the probability that node i gets infected
initially (when this probability is assumed to be the same for all
nodes, we denote it by q). Also, let’s assume that for all i, j ∈ V ,
pij is the probability that j would get infected, given i is infected.

The problem that we consider in this paper is defined as follows:
Given a social contact network which is represented by G(V,E),
the probabilities qi and pij , and a parameter k; our objective is to
find k nodes to vaccinate such that the total expected number of
infected nodes is minimized. In other words, let T be the set of
vaccinated nodes and f(T ) be the expected number of nodes that
get infected after set T is vaccinated. The goal is to find a set T
(|T | = k) of nodes to vaccinate in order to minimize f(T ).

Given the set T of vaccinated nodes and set S of initial infected
nodes, let fS(T ) be the set of nodes that get infected through the
propagation of infection according to the random process. It can be
seen that f(T ) =

∑
S⊂V (G) q(S)fS(T ) where q(S) is the proba-

bility that the set S of nodes gets initially infected and is equal to
Πi∈SqiΠi ̸∈S(1− qi)

Evaluation Function. It can be shown that for any ϵ > 0, func-
tion f(T ) can be computed within a factor 1−ϵ in time polynomial
in the size of the input and 1

ϵ
[1].

Remark: f(T ) is a monotone function and is neither submodu-
lar nor supermodular. For proofs please refer to [1].

3. ALGORITHMS
Since the problem of vaccination is shown to be NP -hard [3],

we design several heuristic algorithms to tackle it. Our algorithms
have a common basic structure: for all of them, we define a measure
(M ) by means of which we calculate the vaccination priority of the
nodes. More precisely, we iteratively calculate M for all remaining
nodes of the input network and vaccinate the node whose M is
extremum, until sufficient number of nodes get vaccinated. We call
this template Iterative Candidate Selection Algorithm (ICSA).

In order to improve the running time of ICSA, we need to de-
crease the number of times it updates M . So we modify it in a
way that it only updates M when cn(n = 0, 1, 2, ...) percentage of
nodes have already been vaccinated. The reason that we update the
measure more frequently at the beginning is that deleting a node
when the graph is dense has probably more impact on the expected
number of infected nodes than when the graph has become sparse.

The rest of this section is devoted to the measures we have used.
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Figure 1: Performance of different heuristics on HEP-PH with p = 0.05.

High Degree. An intuitive vaccination strategy is to vaccinate
the individuals who have more contact with others. In order to
consider the likelihood of transmission of disease as well, we define
the expected degree of a node to be the sum of the probabilities (p)
of its incident edges. The High Degree heuristic is the (modified)
ICSA where its priority measure is set to expected degree.

High Betweenness. Another centrality measure that we consider
is node betweenness. Vaccinating nodes of high betweenness can
prevent an epidemic to be transmitted to a large group of nodes.

Again here, we take into account the likelihood that virus reaches
other nodes from a node and define expected betweenness of a node
to be the overall expected amount of flow that it receives. In the
High Betweenness Algorithm we use expected betweenness as the
measure M for the ICSA.

Greedy. A natural strategy for selecting good candidate nodes
is the greedy algorithm: in each step, vaccinate the node which
decreases f by the most value. The greedy algorithm would be
time-consuming for large networks, since at each step, one has to
try all nodes u ̸∈ T , and compute f(T ∪ {u}) via sampling. One
way to improve the running time is to compute f(T ∪{u}) only for
nodes in a priority queue that contains important nodes, like nodes
with high expected degree. By manipulating the size of this queue,
we can adjust accuracy and running time of the algorithm.

Local Search. To improve the results of the above algorithms,
one can try a natural local search, a.k.a Swap algorithm. An im-
proving swap here means to find u ∈ T and v ̸∈ T so as f(T ∪
{v}\{u}) < f(T ) and substitute u with v, i.e. T = T ∪{v}\{u}.
In the local search algorithm, we perform the swap that decreases
f by most value, as far as an improving swap exists. To make the
local search scalable, we examine only the possible swaps between
high expected degree nodes of V − T and T .

4. EXPERIMENTAL EVALUATION
We conduct experiments on our algorithms with the objective to

asses and compare their performance and running time. For this
work we have selected the HEP-PH citation dataset which was ini-
tially used in the 2003 KDD cup challenge and covers all the cita-
tions within a dataset of 34,546 papers with 421,578 edges. Cita-
tion/collaboration networks are shown to be good representations
of social networks [5, 2]. If a paper p cites paper q, the graph
contains a directed edge from p to q. For the purposes of our appli-
cation we treat the graph as undirected [6].

The experiments are run with the following parameters: c = 2,
ϵ = 0.001, p = 0.05, and 0.005 and q = 0.1, 0.01, and 5√

|V |
.

The results for the experiments with p = 0.05 are shown in Fig-
ure 1. The graphs are concave confirming that the nodes that nodes
that get vaccinated at the beginning have more marginal impact.
The experiments show that greedy is more effective, decreasing the

percentage of expected infected nodes to less than a third by only
vaccinating %16 of the nodes.

The local search algorithm depicted in Figure 1 is performed
on the results of the greedy algorithm, therefore it is expected to
perform at least the same. The results show slight improvements,
which implies that our greedy algorithm works well leaving mini-
mal space for improvements while taking much less time than the
local search operations. The above trends hold for the trial in which
p = 0.005 which is not shown here due to space constraints.

We also created an equivalent Erdos-Renyi graph and performed
the same experiments on them. All the algorithms are less effective
on random graphs as expected, but their relevant performance is the
same. The running times of the algorithms are shown in Table 1.
For figures and more details of the experiments please see [1].

Table 1: Running times in seconds.
Degree Betweenness Greedy LocalSearch

149 22069 64676 178703

5. CONCLUSION AND FUTURE
DIRECTIONS

In this work we consider the problem of vaccination (over a con-
tact network or an email network), where constraints only allow k
individuals to be vaccinated. We propose a few heuristics and com-
pare their performance and running time on a real citation network
with 34, 546 vertices and 421, 578 edges. In general, we observe
that by leveraging the properties of the network to select the best
candidates for vaccination, we get very good results. We show that
by vaccinating only a small fraction of the nodes we can decrease
the spread of viruses by a lot. We also conclude that greedy is
the best algorithm, both in terms of performance and running time.
Interesting future directions are devising improved heuristics and
possibly approximation algorithms, and also looking at the prob-
lem of minimizing overall cost when k is not given.
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