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ABSTRACT
Using a clickstream sample of 2 billion URLs from many
thousand volunteer Web users, we wish to analyze typical
usage of keyword searches across the Web. In order to do
this, we need to be able to determine whether a given URL
represents a keyword search and, if so, which field contains
the query. Although it is easy to recognize ‘q’ as the query
field in ‘http://www.google.com/search?hl=en&q=music’,
we must do this automatically for the long tail of diverse
websites. This problem is the focus of this paper. Since
the names, types and number of fields differ across sites,
this does not conform to traditional text classification or to
multi-class problem formulations. The problem also exhibits
highly non-uniform importance across websites, since traffic
follows a Zipf distribution.

We developed a solution based on manually identifying
the query fields on the most popular sites, followed by an
adaptation of machine learning for the rest. It involves an
interesting case-instances structure: labeling each website
case usually involves selecting at most one of the field
instances as positive, based on seeing sample field values.
This problem structure and soft constraint—which we
believe has broader applicability—can be used to greatly
reduce the manual labeling effort. We employed active
learning and judicious GUI presentation to efficiently train
a classifier with accuracy estimated at 96%, beating several
baseline alternatives.
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sifier design and evaluation; H.2.8 [Information Systems]:
Database Applications—Data mining ; H.3.3 [Information
Systems]: Information Search and Retrieval
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1. INTRODUCTION & MOTIVATION
Suppose it were possible to determine what keyword

searches are typically performed at sites all across the web—
not just at a single site, such as Google or your own
private web server. Such information could be useful for
marketing, building domain-specific web directories, dis-
covering competitors or potential collaborators, positioning
products and future development, etc. For a single, concrete
illustration of what could be done with such data, we show
for three seed websites in Table 1 their most similar websites,
based entirely on the similarity of searches performed by
users at those sites. The data indicate that gap.com had
similar searches as oldnavy.com and lanebryant.com, with
far less overlap with the searches executed at zillions of
other websites. This analysis was based on a sample of
2 billion URLs from 236,490 U.S. households who share their
browsing clickstreams as part of the Nielsen MegaPanel R©
dataset.1 Further details of this particular analysis are
outside the scope of this paper, as our goal here is to focus
on a key, pre-requisite problem, discussed next.

Table 1: Related websites based on similar searches.

recipe4living.com hp.com gap.com
rachaelray.com staples.com oldnavy.com

bettycrocker.com officedepot.com bananarepublic.com
tasteofhome.com bestbuy.com chadwicks.com

pillsbury.com circuitcity.com victoriassecret.com
recipes.com officemax.com lanebryant.com

cdkitchen.com tigerdirect.com childrensplace.com
dlife.com newegg.com aeropostale.com

In order to enable such analyses, we need an automated
method to determine whether a given URL represents a
keyword query by a user, and, if so, which of the set of
data fields contains the query itself. Figure 1 shows the
query URL that gets sent back to the web server when
the user initiates a query from the search box on several
example web sites. Following the ‘?’ character is a sequence
of field name=value pairs from the HTML form. The field
that carries the user’s query (highlighted in a box only for
presentation) is named ‘q’ in the first example. While this
is obvious in these cases, it is difficult to write an accurate
decision rule in general.

1http://www.nielsen-netratings.com/



http://help.beanstalkapp.com/search? q=your+search &x=5&y=4

http://www.netflix.com/Search?lnkce=iaswfOf& v1=your+search &lnkce=acsNoEnhRt

http://www.recipe4living.com/search?controller=recipes& searchterm=your+search

http://search.hp.com/query.html?cc=us&lang=en&charset=utf-8& qt=your+search &la=en

http://www.batteries.com/index.asp?N=0&Nu=p prodcode&Ntk=All& Ntt=your%20search &Nty=1

& D=your%20search &Ntx=mode+matchpartialmax&Dx=mode+matchpartialmax

Figure 1: Example query URLs that get sent back to their web servers.

(a) Linear graph with log-log inset. (b) CDF reveals substantial mass in the tail.

Figure 2: The Zipf-like distribution of web site clicks.

Unfortunately for data miners, each website designer is
free to use arbitrary field names, with no semantic naming
requirements. Moreover, there may be a variety of other
fields. Query URLs are often used for purposes that have
nothing to do with user queries, e.g., conveying user session
number, product identifiers, or preferred language.

We address this problem with a novel application of
machine learning classification described in Section 2. The
problem has an interesting dual structure, which we exploit
to greatly increase the efficiency of manual labeling of
training cases. Our software, described in Section 3, also
leverages active learning to bring the user some of the
most useful cases to label. In Section 4 we conduct a
series of experiments to compare our recognizer’s accuracy
against various baselines, such as decision rules that can be
implemented in software. The remaining sections discuss
related work, conclusions, and future work. We complete
the introduction with an additional note on motivation.

This learning problem has the additional aspect that Web
traffic is extremely skewed. To illustrate the distribution,
Figure 2a (and its log-log inset) shows for our MegaPanel R©
data sample the number of clicks to each web server on

the y-axis and the server’s rank on the x-axis. Because
this distribution declines so steeply, it is tempting to
analyze only the top couple hundred servers, which might
be manageably analyzed by hand. But in fact there are
many searches performed at the remaining websites. The
cumulative distribution of this data is shown in Figure 2b.
We see that the top 200 websites cover only about 40%
of the total user clicks in our sample, which is typical of
long tail distributions. Thus, if one desires to analyze
user searches for profiling or website characterization, a
significant volume of the searches would be missed with any
approach that observes searches only at Google or even at
the top several search engines. There has been a great deal
of existing research on clickstreams and query logs from a
single website, typically taken from private web server logs.
With our contribution one can get visibility into searches
performed at the many smaller websites in the long tail.
Arguably, one of the most useful pieces of information that
can be observed in a user’s data is the free text the user types
into website search boxes, since it, more than anything else,
is under the user’s direct control and indicates the user’s
immediate interest.



Table 2: Sample field values of 16 URLs for an
example web form with three fields.

h q h client h page
hp deskjet d1400 series c-h-r602-1 hpcom
HP Photosmart C5200 all-in-one s-h-e002-1 hpcom
photosmart express c-h-r602-1 hpcom
PP2182D c-h-r602-1 hpcom
PP2182D lithium-ion battery C-H-R2515-1 hpcom
hp pavilian 6000 C-S-R2515-1 hpcom
lap top battery C-S-R2515-1 hpcom
HP PSC 1350 Three in One C-S-R2515-1 hpcom
Officejet 7410 c-s-r295-1 hpcom
tshirt transfer c-s-r295-1 hpcom
6800series c-s-r295-1 hpcom
HP 88XL C-A-R163-1 filter
HP Deskjet D1420 C-A-R163-1 filter
HP Officejet 7210 Oxi C-A-R163-1 filter
Officejet7210oxi C-A-R163-1 filter
MFC-7820N C-A-R163-1 filter

2. DOMAIN & PROBLEM FORMULATION
In typical clickstream datasets only the URLs are avail-

able, not the HTML page contents. Given just a URL,
it can sometimes be impossible for a person to determine
whether any of its fields represent a keyword query, such
as when someone has searched for an error code number on
an obscure support website. But by aggregating the various
URL samples for a website, the pattern usually becomes
clear. Table 2 shows the field values of several separate form
submissions at a single website. Each of the three fields is
represented by a column of text values. Clearly the first is
the query field.

2.1 Case-Instances Structure
In most machine learning work, the terms instance and

case are used interchangeably, but in this domain there is
an interesting distinction. We reserve the term case to mean
a web site form, including all its fields (e.g., Table 2), and
the term instance to mean a single field of a case including
the sample values for the field (e.g., a single column in
Table 2). The duality between cases and instances, though
peculiar, is applicable to some other problem domains. For
instance, consider a photo album tagging scenario where
the objective is to go over photos in an album and tag
them based on the individuals in them. Typically, face
recognition is preceded by a face detection step where all
the candidate face regions in the photo are identified. This
tagging problem has a similar case-instances structure, as a
photo corresponds to a case and the candidate face regions
in the photo correspond to instances. We note that our
case-instance setting appears to be similar to the Multi-
Instance Learning (MIL) framework and we provide a fuller
comparison in the related work section (Section 5).

When manually labeling examples, it is more efficient to
show the user a whole case at a time, such as the example in
Table 2, and have them click to identify the keyword query
field (if any), than it would be to show each single instance
column in isolation and have the user label it as positive or
negative. Thus, labeling one case typically generates several
labeled instances. In the data we have labeled so far, cases

Table 3: Example features generated per instance,
based on its column of 100–5000 sample values.

◦ Percent of values that occur only once
◦ Percent of values that occur only once if lowercased
◦ Min, max, average and stdev. of each string feature:

• String length

• Average word length

• Number of words; capitalized words

• Number of: letters; lowercase; uppercase; digits; hex
digits; non-hex letters; whitespace; control
characters; non-ASCII

• Number of each punctuation character, such as ‘@’
(email addresses), ‘.’ (IP addresses), ‘$’ (prices), ‘ ’
(identifiers), ‘-’

◦ Percent of values having lowercase; uppercase; both
◦ Percent of positives among training instances with same
field name

tend to have 4–7 distinct fields (instances), and about 7%
of those fields are labeled as being search fields. One reason
that there are so many instances on average is that some
web pages contain many small forms, each of which has its
own set of fields. The number of fields that actually co-occur
in any given URL will typically be smaller.

2.2 Machine Learning Formulation
Labeling and/or classification decisions are made at both

the case level and the instance level. A labeled case indicates
which field(s), if any, are positive, i.e., contain user keyword
queries. In the dual view, this entails individually labeled
instances, which are positive or negative. We build a binary
classifier from the training set composed of all the labeled
instances, and then apply it to each of the fields of each case.

In order to apply machine learning to individual instances,
we must represent each instance with a feature vector.
Although we are dealing with text, the widely successful
bag of words feature space of text classification is not
appropriate here: user keyword queries are generally very
short, diverse, and domain-specific at particular web sites.
For example, if we were to label the query field name
used at http://shopping.hp.com, the query terms the system
would learn are likely to be computer-related and not useful
to predict query fields at other arbitrary sites, such as
http://cats.about.com (except perhaps the word mouse).
Also, general-purpose search engine sites have very large,
non-specific vocabularies rather than a focused set of topic
words associated with the positive class, as needed for
typical text classification.

Before we describe our features, we give a note on the
feature philosophy we used and how it impacts the choice
of classifier. Rather than laboriously engineer a few features
we supposed might be strongly predictive, our approach was
to quickly implement a large set of possibly useful features
that were easy to program, and trust that the downstream
classifier would be able to leverage the many weak features
to produce good accuracy. While this is not a good strategy
for building a decision tree classifier, which can only leverage
a few features given limited training data, it is a fine strategy



for a (linear) Support Vector Machine classifier, which excels
in text classification where there are many weak features.
Furthermore, we conditioned the feature space with BNS
feature scaling [5] to make the better features have a larger
effect on the linear kernel distance function. Later we
verified that a variety of other models gave substantially
inferior performance.

We constructed a set of statistical features based primarily
on the whole column of string values in the instance, plus a
pair of features based on the field names. Table 3 describes
most of the features we used. Eyeing the sample data
in Table 2, consider how many of these features may be
predictive but not conclusive. For example, the second
column of text will have especially low statistics for the
maximum and average number of whitespace characters, as
well as an unusually high minimum number of ‘-’ characters;
that said, one would expect some level of occurence of ‘-’ in
keyword queries, especially as a term prefix. Of our 211
features, all but two of them are generated by just 228 lines
of Java code, due to their regular structure. One exception is
a feature that estimates the prior probability (with Laplace
smoothing) that the current instance is positive based on the
count of positive and negative training instances that have
the identical field name. For example, if the field name for
a test instance is ‘q’ and 30 positive training instances have
that exact field name as well as 4 negatives, then the value
of the feature is (30 + 1)/(30 + 4 + 2) = 86%. In Section 4.5
we give an analysis of which features were most predictive.

3. SOFTWARE & EXPERIENCE
In this section, we describe the system used to perform our

experiments, the data used and the experimental protocol,
and we present the results of our experiments.

3.1 Case Extraction
The first task facing us is the decision of which URLs

to group together into cases. The näıve approach of
treating URLs as belonging to the same case only when
they have identical hostnames and paths would result in
fracturing the available data into an enormous number
of cases, most of which would have to be discarded as
containing too few URLs to be useful and many of which
looking indistinguishable from one another to a human
labeler. Ignoring the path and grouping together URLs with
identical hostnames ameliorates this somewhat, although
it still differentiates unnecessarily among different hosts
in domains that use consistent conventions throughout,
including domains in which load balancing is achieved by
means of servers named, e.g., www-28 and www-37. It
also introduces the problem of failing to distinguish when
different conventions are used for different paths on the
same host. Going further and grouping URLs by the host
component immediately below administrative domains such
as .com or .co.uk further helps and hurts in the same ways.
It is clear that for optimal case blocking, different domains
and hostnames need to be treated differently.

Our case extractor begins by obtaining from our 8-month,
2-billion URL sample of the 2008 Nielsen MegaPanel R©
database all of the URL strings that match the syntax of a
query and have at least one keyword/value pair, resulting
in approximately 1.2 billion URLs. For each URL, we
remove all pairs whose value is excessively long (more than
80 characters), is empty, or which does not contain any

alphabetic characters, discarding any URLs that have no
remaining fields. Next, whenever the same URL appears
more than once in temporal succession for any user, we
keep only one copy. This removes many URLs in the data
only due to refreshes or due to navigation to subsequent
pages within an article. The resulting corpus contains
approximately 738 million URLs.

This corpus is then sorted such that URLs from the
same top-level domain (e.g., hp.com or bbc.co.uk) wind
up together. For each such top-level domain, a lattice is
constructed in which the leaves represent actual host/path
combinations in the corpus and the parents of a node
represent possible generalizations, obtained by removing
either a leftmost component of the hostname or a rightmost
component of the path. For each node, we keep track of
the total number of URLs associated with dominated leaves
as well as counts of the number of times each named query
field appears in those URLs. Finally, the lattice is pruned
by removing a node’s children whenever no child considers
a query field “important” if the parent does not also do so,
where a field is considered important if it appears in at least
60% of the URLs. The leaves of the resulting pruned lattice
are taken to define the cases for that domain. For each case,
up to 5,000 randomly-sampled URLs are used to define the
features for the case and to present to the user for labeling.

After pruning, the case set contains 228,695 cases that
have at least 100 samples of support and which represent
429.3 million samples (58.2% of the total), for an average of
1,877 samples per case. Since the distribution is so skewed,
the median is considerably lower, at 230 samples per case.
Approximately 3.5% of the cases (7,945) have at least 5,000
samples apiece and account for 44.1% of the total samples
in the supported cases. (The top 32 cases each account
for at least a million samples apiece, and the top four each
have more than ten million, the highest having 33.1 million.)
At the other end of the distribution, 28.9% of the cases
(66,142) have between 100 and 150 samples apiece. The
cases also appear to follow a Zipf-like distribution, with the
top 200 cases encompassing 29.5% of the URLs and the next
1,000 cases only covering an additional 5.8% more. The final
100,000 cases with sufficient support only represent 1.9% of
the total URLs.

Along with the cases, the data set contains 1,455,059
instances, each representing a uniquely named field in a
query associated with a case. This represents 6.4 instances
per case on average, but again this distribution is quite
skewed, with a maximum of 8,310 instances associated with
one case but a median of only 4 instances per case. 406,655
of these cases represent “important” fields, by the measure
used in determining cases, and on average, each case had 1.8
important fields.

3.2 Labeling Protocol
Once the cases have been extracted, we can turn to

using them to train our classifier. Given the highly
skewed distribution we see, it is clearly imperative that the
classifier do well on the relatively small number of cases that
constitute the large portion of the URLs, and it therefore
appears reasonable to expend training effort in explicitly
labeling them. We therefore decided that we could take as
a baseline that the 200 most frequent cases would be part of
the training set (and that any resulting classifier would get
them correct) and that the task would be to see how such



Figure 3: GUI for active learning, labeling, training and holdout-validation.

a baseline classifier could be improved when judged on how
well it did on a random sample of the remaining cases.

Preparatory to the experiment, therefore, we labeled the
200 most frequent cases using the system described in
Section 3.3 to constitute the initial training set, removing
them from the pool of cases. We then labeled 1,000
randomly-drawn cases to constitute the validation set. All
performance measurements are made against this test set.

For the first experiment, a further 800 randomly-drawn
cases were labeled and added to the training set, bringing it
up to 1,000 cases.

For the second experiment, the 800 cases labeled in the
first experiment were returned to the unlabeled pool (and
their labels erased) and 800 cases were selected via active
learning, labeled, and added to the training set, with the
classifier being retrained after each case was labeled. The
selected case was the one that had an instance whose
predicted likelihood of being a search field was closest to the
threshold of 0.5, although an anytime algorithm was used,
which means that much of the time only some of the 228,000
cases had been rescored before the next case was requested.

For the purposes of the experiment, the positive class
was intended to be roughly “a field indicating something
arbitrary that the user was searching for on the web.”
Thus there was a semantic component that ruled out many
fields that obviously reflected user-typed input, such as user
names, addresses, chat messages, and even some searches,
such as white pages lookups. This made the task of the
classifier more difficult.

3.3 Classifier Training GUI
To label cases, we use a graphical training prototype

written in Java and leveraging the WEKA v3.6.0 machine
learning library [7], shown in Figure 3. The table at the
bottom left shows labeled cases, with positive instances
identified, the table at the top left shows the current pool of
cases to label, and the table at the right shows the current
case to label.

In this last table, each instance (field) is represented
by a column, and the rows in each column represent the
distinct values associated with that query field in URLs
within the case (or within the 5,000-URL sample for large
cases). When a particular value occurs more than once,
its multiplicity is shown, and the values in a column are
sorted by multiplicity. Thus the labeler can see at a glance
whether there are a large number of values that each appear
infrequently (often indicative of a hand-typed value) or a
relatively small number of values, many of which appear
many times apiece.

Further aiding the user, each time a case is displayed,
the current classifier is used to sort the fields so that
the most-likely-positive fields appear leftmost, with fields
that are predicted positive pre-selected. The user clicks
on fields to change their labels and then presses a key to
record the current labeling and move on to the next case.
As the classifier becomes reasonably good with a small
number of training cases, this turns largely into an exercise
of confirming that it is making the right predictions and
making occasional corrections, typically near the boundary
between positive and negative predictions. This is a



relatively simple task to perform in most cases and so
labeling a case rarely takes more than one or two seconds.

After each new case is labeled, we retrain the classifier
with the additional labeled instances and then re-scan the
whole pool for the best cases to label. We use the WEKA
Support Vector Machine2, which does not provide for
incremental retraining, although empirically, batch learning
appears to be reasonably fast typically taking only a few
seconds even with training sets in the thousands of instances.
(A consequence is that typically the classifier used to sort
the columns for the next case to label does not take into
account the instances in the most recently labeled case or
two. In practice, this does not appear to matter.)

For active learning, on the other hand, scoring the entire
228,000-case pool of candidates can take a substantial
amount of time (typically tens of seconds). Rather than
delay the user, we maintain a priority queue of the best
known cases to label as judged by the most recent classifier.
As we scan the pool in random order, we fill this priority
queue incrementally, yielding an anytime algorithm that
always has something to hand back to the user.

3.4 Evaluation Metrics
Although the classifier we train makes decisions about

instances, for our case-centric purposes, the normal instance-
based measures of accuracy and precision and the like are
inappropriate. If a validation case is labeled as having
one positive instance and ten negative instances, and the
classifier calls all of them negative, it would be misleading
to say that it was 91% accurate. From the case-centric point
of view, there was something there to find and it failed to
find it.

Designing case-centric evaluation metrics is still an open
question, but for the experiments analyzed in this paper,
for each case we consider only the instance most strongly
indicated by the classifier as being a search field. If this
indication exceeds the classifier’s threshold and the field is
labeled as being a search field, the case is considered to be a
‘correct positive’ (CP). If the indication does not exceed the
threshold and no instance within the case is labeled as being
positive, the case is considered to be a ‘correct negative’
(CN). In either situation, the case is considered to have
been correctly classified for purposes of computing accuracy,
otherwise it is considered to have been misclassified.

This case-based focus allows there to be three different
ways of getting a case wrong. First, an instance may
be deemed to be a positive even though the case has no
positively-labeled instances (a ‘missed negative’ or MN).
Second, no instance may be deemed to be positive, even
though the case has a positively-labeled instance (a ‘missed
positive’ or MP). And finally, the most strongly-indicated
instance may have been labeled as negative, but there
may be another instance that is labeled as a positive (a
‘wrong positive’ or WP). This last case could reasonably be
considered as either a false negative (the labeled-positive
instance was missed) or as a false positive (the instance
called positive was labeled negative). For computing
precision and recall, we count it against both. The case-
centric precision measure is CP/(CP + MN + WP ), the
number of correct positive cases divided by all cases that

2The classifier is weka.classifiers.functions.SMO with op-
tions -V 2 -M, to enable Platt scaling tuned with internal
2-fold cross-validation. It uses the default linear kernel.
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Figure 4: Learning curve by active learning vs.
random sampling.

the classifier predicts as having one or more search fields.
Similarly, the case-centric recall measure is CP/(CP +MP +
WP ), the number of correct positive cases divided by the
number of cases in which there was any search field to find.
Case-centric F-measure falls out straightforwardly as the
harmonic average of case-centric precision and recall, ( 2PR

P+R
).

3.5 Results
Figure 4 shows the results of running the experiments

described in Section 3.2, with the upper graph showing case-
centric F-measure and the lower graph showing case-centric
accuracy, both computed over the 1,000 randomly-selected
validation cases, as the number of training cases increases.
(Note that the y-axis scales are different in the two graphs
and that the accuracy curve is cropped at the bottom.) In
each graph, the first 200 training cases are the cases in the
pool that represent the greatest number of URLs, largest
first. Following this, the solid line represents the curve seen
when cases are added by active learning, and the dashed line
represents the curve seen when cases are added randomly.

Overall, extending the initial training set with 800 cases
selected by active learning resulted in a classifier whose F-
measure is 0.84 and whose accuracy is 0.96, while extending
it instead with 800 cases selected at random resulted in
a classifier with F-measure 0.79 and accuracy 0.95. The
accuracy numbers are superficially close together because
the class prior is highly skewed. F-measure is a preferred
metric under imbalance.

One thing to notice is that the curves are far from
monotonic over the first 200 training cases, displaying two



“cliffs.” The curves begin with 14 cases, when there are
enough positive instances to train the classifier, at an F-
measure of 0.61 and an accuracy of 0.89. This remains
relatively constant until case 18 is added, at which point
they drop to 0.22 and 0.17 respectively. They then rise to
an F-measure of 0.70 and an accuracy of 0.91 before case 194
is added, at which point they fall to 0.34 and 0.61. By the
time the two experiments begin, the baseline classifier they
are trying to improve has an F-measure of only 0.33 and
an accuracy of only 0.61. Thus the näıve business strategy
of simply labeling the most frequent cases may well be a
bad idea. Or, rather, whether it is a bad idea may depend
on where you stop. Stopping after 193 cases would have
produced a classifier that was far superior than one using
200, but, of course, that is only detectable with the hindsight
of having labeled a large number of validation cases.

Another thing to notice is that from case 240 onwards,3

both the accuracy and F-measure for the active learning
curve are higher than for the random curve.4 (The
statistical significance of this difference will be discussed in
Section 4.1.) At case 240, the active learning F-measure
jumps from 0.25 to 0.44, and at case 243, it jumps further
to 0.69. The random F-measure starts its recovery with
a jump at case 269, when it rises from 0.29 to 0.71, by
which point the active learning curve has already risen to
0.75. Another difference between the two curves is that the
active learning curve is relatively smooth, while the random
curve has another, less severe, cliff at case 331, when the
F-measure drops from 0.71 to 0.62 and the accuracy falls
from 0.93 to 0.88, recovering at case 362.

4. EXPERIMENTAL ANALYSES
In this section we answer a series of performance questions

by experiments.

4.1 Statistical Significance
When looking at the performance improvement in the

learning curve with active learning vs. random sampling in
Figure 4, it is natural to wonder how much of the difference
is due to the particular sequence of 800 randomly-drawn
cases labeled. The typical method of assessing this question
would be to perform many independent runs with different
sets of randomly-drawn cases, but unfortunately, this would
require many weeks of labeling effort and is infeasible. We
can, however, address the similar question of whether the
particular order in which the randomly-drawn cases were
labeled is important. Clearly, the end result with the
full 1,000 training cases will be identical, but it might be
the case that a different order would have taken a path
indistinguishable from, or perhaps superior to, the active
learning curve throughout much of its run. To address
this, we permute the randomly-selected cases and simulate
building classifiers by adding training cases according to the
permuted sequence.

Figure 5 shows the average learning curve under random
sampling and its 95% confidence interval, computed over
thirty such random permutations (always beginning with

3Note that the specific cases added will be different for the
two curves from case 201 on.
4The F-measure is always strictly higher. The accuracy of
the random curve ranges from 0.001 to 0.004 higher from
case 731 through case 737, but otherwise the accuracy for
active learning is higher.
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Figure 5: Active learning vs. 95% confidence
interval under random sampling.

the initial 200 most frequent cases). Overlaid on this graph
is the actual active learning curve we saw previously. From
case 243 on, the active learning F-measure and accuracy are
strictly above the 95% confidence intervals.5 So statistically
it is very likely that no matter what order the randomly-
selected cases were seen in, the active learning strategy
would have produced better results for all training set sizes
once the active learning strategy had recovered from the
poor performance of the initial training set. Indeed, looking
at the Figure 5, it is clear that the particular random
sequence we observed actually recovered more quickly than
could have been expected, and Figure 4 understates the
distinction between active learning and random sampling.

4.2 Non-monotonicity
Another question that arises is the degree to which the

“cliffs” noted in Section 3.5 are to be expected, as opposed
to simply being statistical flukes. In the experiment with
randomly generated cases, the F-measure dropped 13.4%
from 0.71 to 0.62 at case 331. In the 30 permuted runs
described in section 4.1, 20 (67%) had a drop of at least
that magnitude somewhere on their learning curves, 10 had
at least two such drops, four had at least three such drops,
and one had four. So a drop of that magnitude would appear
to be expected, at least given the particular set of cases used.

Of the 30 cases, 24 (80%) had an F-measure drop of at
least 10%, 10 had a drop of at least 20%, and three had a
drop of at least 30%. The largest drop in a permuted run

5Even where they appear to touch on the graph, the active
learning value is very slightly above.



ranged from 4.0% to 35.2%, with a mean of 16.9% ± 3.0%
and a median of 15.7%.

4.3 Influence of Most Frequent Cases
A further question is whether the first 200 most frequent

cases should be excluded from the training set. Considering
that the first 200 cases labeled might come from a
different distribution than the test set, they may violate
the assumptions of machine learning classification and lead
to an unfortunate training bias. So we ask whether the
learning curve would have been any better without these
initial cases. Again, we resolve this by repeatedly permuting
the case labeling order under random sampling, but now
without the initial 200 most frequent cases labeled. We
omit the graph for space considerations, but we found that
the average learning curve performance with and without
these first 200 frequent cases leads to roughly the same
performance mid-way in the curve. So it would seem that
these initial 200 frequent cases did not hurt the classifier.
But neither did they help as much as 200 additional random
cases might have. It is important to bear in mind that
the from a business perspective, the test set performance
does not account for the overwhelming importance of getting
the most frequent cases correct, so whether or not they are
added to the training set to develop the long-tail classifier,
some mechanism will probably need to be used to ensure
that they are handled correctly.

4.4 Comparisons with Baselines
It is also fair to ask whether programmed rules could

do as well. A common alternative to a machine learning
framework is to write some heuristic rules in software for
making the automated decisions. Although it is easy to
think up many heuristics, it can be extremely difficult to
combine them well and debug them for greater accuracy.
Prior to our approaching this whole problem, a programmer
in our organization had already attempted the heuristic
approach and ended up manually vetting and correcting
many of its decisions for just the top 209 popular websites.
So that we may have an apples-to-apples performance
comparison with our system, we tested his heuristic rules on
our 1000 validation cases. The rules achieved an accuracy of
0.87 on the cases and an F-measure of 0.44 (with a precision
of 0.46 and a recall of 0.44).

We also implemented another natural rule that basically
labels an instance as positive if the field name of the instance
matches with any of the search field names corresponding to
the labeled first 200 most frequent cases. This rule achieved
an accuracy of 0.92 on the cases with an F-measure of 0.60
(with a precision of 0.69 and and recall of 0.53).

Thus, the machine learning approach with active learning
does offer substantially superior performance, resulting in a
classifier with an accuracy of 0.96 and an F-measure of 0.84.

4.5 Evaluation of Features
Recall that our approach for feature construction was

mostly to generate many features that were easy to program,
hoping the machine learning classifier could combine them
successfully to produce an accurate classifier. This raises
the question of which of the many features were actually
useful. Table 4 shows the most successful features measured
in the 3190 instances in the validation set according to the
WEKA implementation of information gain (which involves

Table 4: Top predictive features by information gain

IG Feature
0.1589 avg.isWhitespace
0.1585 stdev.isWhitespace
0.1491 prior on field name
0.1474 max.isWhitespace
0.1167 stdev.length
0.1151 stdev.lowercase
0.1146 stdev.alphanum
0.1121 stdev.nonhex
0.1107 stdev.isLetter
0.0972 pct.lowercase
0.0907 prior given all case’s field names
0.0884 max.lowercase
0.0819 pct.lower and uppercase
0.0784 max.nonhex
0.0782 pct.unique samples
0.0779 avg.wordsCapitalized
0.0778 max.isLetter
0.0790 stdev.wordLength
0.0747 pct.unique values
0.0736 stdev.hex
0.0725 stdev.words
0.0724 avg.uppercase
0.0696 avg.words
0.0693 pct.uppercase
0.0669 avg.nonhex
. . .

a minimum description length discretization for each of our
numerical features). Some of the strongest features were the
average, maximum, and standard deviation of the number
of whitespace characters in the column of strings. The
third strongest feature is the prior on the field name of the
instance. Generally, many of these top features have to do
with the standard deviation of the count of some character
class, indicating that heterogeneity in many aspects is
characteristic of keyword search fields. By contrast, many of
the least useful features (not shown) involved the maximum
or minimum count of a special character or character class.

5. RELATED WORK
Active learning with pool-based sample selection [8] has

been used extensively in the supervised learning setting
when there is a shortage of labeled data and a cost associated
with acquiring labels. The literature on active learning is
concentrated on two types of methods: committee-based
methods [13, 10] and confidence-based methods [8, 14]. In
committee-based methods, multiple hypotheses are learned
and instances that lead to maximum disagreement in the
committee are picked for labeling. In confidence-based
methods, the confidence score of learned classifiers are
used to determine the most uncertain instances and hence,
considered to be the most informative ones. Implementing
committee-based methods involves learning/updating all the
classifiers after every round of labeling and having each
classifier score every unlabeled instance to pick the next set
of instances for labeling. In practice, this could affect the
real-time performance of the labeling software. By using
uncertainty sampling, having only a single classifier, the
time to retrain and scan the entire pool rarely exceeded 30
seconds.



Active learning has been used for acquiring labels in
several areas such as text classification [14], image/video
classification [1, 15], speech processing [6] and information
retrieval[16]. Discriminative methods like SVM-based active
learning [14] have traditionally outperformed other methods
in text-related domains and we also observed that for our
task, SVMs outperformed several other base learners in
cross-validation experiments not presented.

In Section 2, we introduced the distinction between cases
(websites) and instances (fields of the website) in our setting
and such a case-instance formulation is different from the
traditional multi-instance learning (MIL) setting [3]. In
the MIL setting, there are bags containing instances, and
labels are assigned at the bag-level both during training and
testing. The individual instances in a bag are not labeled,
and a positive bag contains at least one positive instance and
several negative instances. In our case-instance setting, the
learning problem is in identifying the label of every instance,
i.e., whether a query field is a search field or not. There is
some recent work on multiple-instance active learning [12,
9] in which the authors develop active learning strategies
for picking specific instances from positive bags for labeling
towards improving the overall bag classifier.

There are other related fields like information extrac-
tion [2] in which the task is to automatically extract relevant
information such as named entities from unstructured data
and database schema matching [11] (especially, instance
level matchers) which involves identifying specific targets
such as zip-code/employee names. Our problem is different
from these settings as our target concept is loosely defined
and very diverse, as it could range from different shoe types
to movies to printer models.

6. CONCLUSION & FUTURE WORK
In order to use this recognizer in production, we first apply

the classifier offline to all cases. From this, it records all
known keyword search fields with their associated website.
Matching this against millions or billions of clickstream
URLs is potentially a slow process if based on string-
matching. We have instead developed an efficient hash-
based recognizer, based on the ideas in [4].

The upshot of this research is that it is practical to
accurately identify the keyword searches of sample users
all across the web. This enables a wide variety of
analyses on user search behavior, once primarily able to
be conducted only with private search logs at Google or
AOL. Furthermore, the classifier could be trained to look for
other kinds of user input. For example, the recognizer could
be trained to look for mailing addresses, which would be
potentially useful for a catalog mail order company looking
to partner with websites that regularly obtain people’s
mailing addresses. Such an analysis would not be possible
from any single site’s server logs.

While active learning for individual instances is well re-
searched, active learning under the case-instances structure
has not. We have begun to research some possibilities here,
and we believe this area should have broader applicability.
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