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ABSTRACT

The Web abounds with dyadic data that keeps increasing
by every single second. Previous work has repeatedly shown
the usefulness of extracting the interaction structure inside
dyadic data [21, 9, 8]. A commonly used tool in extracting
the underlying structure is the matrix factorization, whose
fame was further boosted in the Netflix challenge [26]. When
we were trying to replicate the same success on real-world
Web dyadic data, we were seriously challenged by the scal-
ability of available tools. We therefore in this paper report
our efforts on scaling up the nonnegative matrix factoriza-
tion (NMF) technique. We show that by carefully partition-
ing the data and arranging the computations to maximize
data locality and parallelism, factorizing a tens of millions
by hundreds of millions matrix with billions of nonzero cells
can be accomplished within tens of hours. This result ef-
fectively assures practitioners of the scalability of NMF on
Web-scale dyadic data.

Categories and Subject Descriptors

G.4 [Mathematics of Computing]: Mathematical Soft-
ware – Parallel and vector implementations

General Terms

Algorithms, Experimentation, Performance

Keywords

distributed computing, nonnegative matrix factorization,
MapReduce, dyadic data

1. INTRODUCTION
The Web abounds with dyadic data that keeps increasing

by every single second. In general, dyadic data are the mea-
surements on dyads, which are pairs of two elements coming
from two sets [13, 21]. For instance, the most well-known
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dyadic data on the Web is the term-by-document represen-
tation of the Web corpus, where the measurement on a dyad
(term, document) can be the count of how many times the
term appears in the document, or some transformed value
such as the TF-IDF score.

The list of dyadic data on the Web keeps growing, espe-
cially with the booming of social media. Because dyadic
data contains rich information about the interactions be-
tween the two participating sets, its usefulness for practical
applications has been repeatedly reported in previous work.
For instance, in Web search, the (query, clicked URL) data
is probably the most exploited source for query clustering
[12], query suggestions [3] and improving search relevance
[2]. In Internet monetization, the (bid keyword, ad) dyads
with measurements on impressions and clicks constitute a
valuable source for estimating click-through rate (CTR) and
optimizing ad placement [9]. Finally, the booming social me-
dia generate a lot of useful dyadic data, e.g., tags on flickr
images, users and their joined communities, etc.. Previous
work has shown that these data can be effectively leveraged
for improved image retrieval [31] and community recommen-
dation [8].

In general, Web dyadic data shares the following charac-
teristics.

∙ High-dimensional: The two involved sets are usually
very huge, e.g., the set of distinct terms and all Web
documents for the (term, document) dyadic data.

∙ Sparse: Measurements are sparse relative to the all
possible dyads. For example, a term does not appear
in all the documents and not all URLs are clicked for
a given query.

∙ Nonnegative: Most measurements on Web dyadic
data are based on event observations (e.g., impressions
and clicks), which are positive if observed and 0 oth-
erwise.

∙ Dynamic: Web dyadic data keeps growing every sin-
gle second, in terms of both the observed dyads and the
dimensionality, e.g., new users join the social network
and tag things they are interested all the time.

While exploiting the rich information of Web dyadic data,
we must face a grand challenge it poses at the same time:



Will our analysis tools scale to the Web-scale, and keep pace
with the explosion of Web data?

This paper gives an affirmative answer to this question re-
garding the nonnegative matrix factorization (NMF), which
is a handy tool in analyzing dyadic data. For the con-
venience of rigorous analysis within a formal framework,
dyadic data is usually modeled as matrices such that tech-
niques proposed for one dyadic dataset will appeal to other
forms of dyadic data. For instance, Latent Semantic In-
dexing (LSI) [15] and co-clustering [16] that are originally
proposed for (term, document) dyadic data have found their
ways into bioinformatics [20, 18].

Matrix factorization is a commonly used approach to un-
derstanding the latent structure of the observed matrix for
various applications (e.g., see [4, 40, 26]). There are many
forms of matrix factorization, and [39] offers a unified view
of several important factorizations including Singular Value
Decomposition (SVD) and NMF. We in this paper choose to
scale up NMF because it respects the nonnegativity that is
inherent in most Web dyadic data. Previous work has shown
that by respecting the nonnegativity, the factorization re-
sults will be easier to interpret while being comparable to,
or better than, other techniques like SVD on effectiveness
(e.g., [43, 38, 28]).

We are not the first to scale up matrix factorization on
noticing the data explosion. Many researchers have tried
to scale up different factorizations including NMF (e.g., [1,
44, 24, 25, 37]) through delicate algorithm designs. They
generally assume that the data can be held in memory (or
efficiently read from disk), and have reported on successes on
factorizing tens of thousands by tens of thousands matrices
with millions of nonzero values. While these studies aim
at “large scale,” the target of this study is the “Web scale,”
which can be informally interpreted as at least millions-by-
millions matrices with billions of observations. To analyze
Web-scale data, we can no longer assume the data can be
held on a single powerful desktop. We therefore propose to
scale up NMF through parallelism on distributed computer
clusters with thousands of machines.

Because of the wide utility of NMF, we are not the first
one trying to parallelize NMF either. Previous work has suc-
cessfully parallelized NMF for multi-core machines through
multi-threading [23, 36]. They propose to partition matrices
in a way that takes advantage of the lightweight data shar-
ing on multi-core machines. Unfortunately, these algorithms
do not transfer to distributed clusters because data sharing
is no longer lightweight in clusters (details in Section 3.1).
In order to maximize the parallelism and data locality, we
choose to partition matrices in the opposite direction to the
previous work, and successfully parallelize NMF on thou-
sands of machines in a distributed cluster. In contrast to
previous work on parallel NMF, our algorithm is termed
distributed NMF.

In summary, this paper makes the following contributions

∙ By observing a variety of Web dyadic data that con-
forms to different probabilistic distributions, we put
forward a probabilistic NMF framework, which not
only encompasses the two classic NMFs [28, 29] but
also presents the Exponential NMF (ENMF) for mod-
eling Web lifetime dyadic data (e.g., the dwell time of
users on browsed pages).

∙ A bigger contribution, as we deem, is the success of
scaling up NMF to (potentially) arbitrarily large ma-

trices on MapReduce [14] clusters. We show that by
carefully partitioning the data and arranging the com-
putations to maximize data locality and parallelism,
factorizing tens of millions by hundreds of million ma-
trices with billions of nonzero values can be accom-
plished within tens of hours. This is several-orders-
of-magnitude larger than the largest factorization re-
ported in literature, which essentially assures real-world
applications of NMFs on scalability.

∙ Finally, a set of systematic experiments on both sim-
ulated and real-world data are performed to demon-
strate the desired scalability and the usefulness of NMF.

While this paper focuses on scaling up NMF on MapRe-
duce cluster, the same scaling-up scheme can be easily ported
to MPI [34] clusters. Our preference of MapReduce clusters
to MPI clusters merely comes from the fact that the MapRe-
duce programming paradigm is often, if not always, imple-
mented on the same cluster where Web data is collected. It
is generally more convenient to run an algorithm where data
is stored.

The rest of this paper is organized as follows. Section 2
lays out the probabilistic NMF framework and elucidates the
Exponential NMF with details. Section 3 is devoted to de-
scribing how to scale up NMF on MapReduce clusters. We
report on the experimental evaluation in Section 4, and dis-
cuss related work in Section 5. Finally, Section 6 concludes
this study with brief discussion on future work.

2. PROBABILISTIC NMF
We use regular uppercase letters to denote matrices and

boldface lowercase letters to denote vectors. For example,

A ∈ ℝ
+m×n

is a m-by-n nonnegative real matrix, whose
element (i, j) is denoted by Ai,j . We use O to denote the set
of indices of nonzero values in A, i.e., O = {(i, j)∣Ai,j > 0},
and similarly define Oi = {j∣Ai,j > 0} and O

j = {i∣Ai,j >
0}.

Definition 1 (Nonnegative Matrix Factorization).

Given A ∈ ℝ
+m×n

and a positive integer k <= min{m,n},
find W ∈ ℝ

+m×k
and H ∈ ℝ

+k×n
such that a divergence

function D(A∣∣Ã) is minimized, where Ã = WH is the re-
constructed matrix from the factorization.

A probabilistic interpretation of NMF is to take Ai,j as
an observation from a distribution whose mean is parame-

terized by Ãi,j . In the following, we briefly review the two
most popular NMFs in this framework (Section 2.1), and
discuss the case using the Exponential distribution for Web
lifetime data in Section 2.2.

2.1 Gaussian and Poisson NMF
When we take

Ai,j ∼ Gaussian(Ãi,j , �
2),

maximizing the likelihood of observing A w.r.t. W and H
under the i.i.d. assumption

L(W,H ∣A) =
∏

(i,j)

1√
2��

exp{− (Ai,j − Ãi,j)
2

2�2
}

is equivalent to minimizing

D(A∣∣Ã) =
∑

(i,j)

(Ai,j − Ãi,j)
2 = ∣∣A−WH ∣∣2,



Table 1: A Variety of NMFs based on Different Probabilistic Assumptions

(a) Gaussian NMF (GNMF)

Ai,j ∼ Gaussian(Ãi,j , �
2)

H ← H. ∗ W TA

W TWH
(1)

W ← W. ∗ AHT

WHHT
(2)

(b) Poisson NMF (PNMF)

Ai,j ∼ Poisson(Ãi,j)

H ← H. ∗ W T A
WH

W TE1 (3)

W ← W. ∗
A

WH
HT

EHT
(4)

Note: E ∈ ℝ
+m×n

, Ei,j = 1

(c) Exponential NMF (ENMF)

Ai,j ∼ ℰxponential(Ãi,j)

H ← H. ∗ W
T [A./(WH)2]

W T [1./WH ]
(5)

W ← W. ∗ [A./(WH)2]HT

[1./WH ]HT
(6)

which is the Euclidean distance that leads to the most pop-
ular form of NMF [29]. We call it the Gaussian NMF or
GNMF in short.

Similarly, when the Poisson distribution is used to model
count data (e.g., click counts), i.e.,

Ai,j ∼ Poisson(Ãi,j),

then maximizing the likelihood of observing A

L(W,H ∣A) =
∏

(i,j)

exp{−Ãi,j}
(Ãi,j)

Ai,j

Ai,j !

becomes to minimizing

D(A∣∣Ã) =
∑

(i,j)

(Ãi,j −Ai,j log(Ãi,j)),

which is the generalized KL-divergence as used in [28]. The
resulting NMF is called Poisson NMF or PNMF in short.

Lee and Seung present a multiplicative algorithm that it-
eratively find the solution W and H for both GNMF and
PNMF [28, 29]. The update formulae are reproduced in
Table 1(a) and Table 1(b), respectively. Throughout this
paper, we use “.∗” and “./” (or equivalently “−”) to denote
the element-wise matrix multiplication and division.

2.2 Exponential NMF
Besides count and Gaussian data, another important kind

of measurements on dyads is the lifetime data. A good ex-
ample of lifetime data in the Web context is the dwell time
of a user on a webpage: the time until the user navigates
away from the page. Proper modeling of the dwell time can
help improving Web relevance and fighting Web spams [32].

Lifetime is usually modeled by the Weibull distribution

f(x∣, �) = 

�
x−1e−x/�.

But because its mean E(X) = �1/Γ(1 + 1

) involves two

parameters and hence cannot be parameterized by a single

value Ãi,j , we instead consider the Exponential distribution,
which is a special case of Weibull with  = 1 and E(X) = �.
The previous work on BrowseRank [32] also adopts the same
simplification while achieving reasonable results.

Specifically, when Ai,j is assumed to come from an Expo-

nential distribution with � = Ãi,j , i.e.,

Ai,j ∼ ℰxponential(Ãi,j),

maximizing the likelihood of observing A w.r.t. W and H

L(W,H ∣A) =
∏

(i,j)

1

Ãi,j

exp{−Ai,j

Ãi,j

}

becomes to minimizing

D(A∣∣Ã) =
∑

(i,j)

(log(Ãi,j) +
Ai,j

Ãi,j

).

We use gradient-descent algorithm to find the solution.

Some matrix calculus reveals that the gradient of D(A∣∣Ã)
w.r.t. H is

∂D
∂H

= W T [
1

WH
− A

(WH).2
],

which leads to the following update formula

H ← H + �. ∗W T [
A

(WH)2
− 1

WH
], (7)

and � > 0 is the step-size. When � takes H
WT [1./WH]

, we

obtain the multiplicative updating rule for the Exponential
NMF (ENMF in short) as

H ← H. ∗ W
T [A./(WH)2]

W T [1./WH ]
(8)

which, together with the formula for W , is summarized in
Table 1(c) for comparison with GNMF and PNMF. The
proof of convergence using Eqns. 5 and 6 is similar to that for
GNMF in [29], and it is skipped here due to limited space.

3. SCALING-UP NMF ON MAPREDUCE
MapReduce [14] is a programming model and associated

infrastructure that provide automatic and reliable paral-
lelization once a computation task is expressed as a series
of Map and Reduce operations. Specifically, the Map function
reads a <key, value> pair, and emits one or many interme-
diate <key, value> pairs. The MapReduce infrastructure
then groups together all values with the same intermediate
key, and constructs a <key, ValueList> pair with ValueList
containing all values associated with the same key. The
Reduce function takes a <key, ValueList> pair and emits
one or many new <key, value> pairs. As both Map and
Reduce operate on <key, value> pairs, a series of mapper
and reducers are usually streamlined for complicated tasks.
With the MapReduce infrastructure, a user can fully focus
on the logic of mappers and reducers, and lets the infrastruc-
ture deal with messy issues about distributed computing.
Open-source implementations of MapReduce infrastructure
are readily available such as the Apache Hadoop project.



(a) Parallel NMF (b) Distributed NMF

Figure 1: Different Partition Schemas for NMF

Even with the updating formulae laid out in Table 1, it
is still a nontrivial task to distribute NMF on MapReduce
clusters. In the first place, the giant matrices A, W and
H need to be carefully partitioned so that each partition
can be efficiently shuffled across machines when needed. In
the second place, we must arrange the computation properly
such that most computation can be carried out locally and
in parallel.

In the following, we first discuss how to partition the ma-
trices in Section 3.1, and then explain how to scale up GNMF
on MapReduce in Section 3.2. We finally illustrate how
to adapt the scaling-up scheme for GNMF to PNMF and
ENMF in Section 3.3. Because the updating formulae are
symmetric between W and H , we will limit our discussion
to the update of H .

3.1 Matrix Partition Schemes
Because matrix A is sparse, it is naturally represented as

(i, j, Ai,j) tuples that are spread across machines. For dense
matrices W and H , how to partition them will significantly
affect the final scalability.

Previous work on parallel NMF [23, 36] chooses to par-
tition W and H along the long dimension as illustrated in
Figure 1(a). This is a sensible choice because it conforms
to the conventional thinking of matrix multiplication in the
context of computing W TA and W TW (Eqn 1). By parti-
tioning W and H along the long dimension and assuming
A is in the shared memory, different threads can compute
corresponding rows of W TA on different cores. Similarly, as
all columns of W are held in the shared memory, W TW can
be also calculated in parallel.

Unfortunately, partitioning W and H along the long di-
mension does not prevail for distributed NMF. First, each
column of W can be simply too large to be manipulated in
memory, and it is also too big to be passed around across
machines. Second, partitioning along the long dimension
unnecessarily limits the maximum parallelism to the fac-
torization dimensionality k as there are only k columns in
W . Finally, when partitioning W along the long dimension,
W TA and W TW can no longer be computed in parallel be-
cause we can no longer assume A and all columns of W can
be accessible with low overhead.

To address these limitations, we propose to partition W
andH along the short dimension as illustrated in Figure 1(b).
As will be seen in the rest of this section, this way of par-
titioning not only enables the parallel computation of both
W TA and W TW but also maximizes the data locality to
minimize the communication cost. To be precise, this par-

tition renders the following view of W and H

W =

⎛
⎜⎜⎜⎝

w1

w2

...
wm

⎞
⎟⎟⎟⎠ and H =

(
h1h2 . . .hn

)
, (9)

where wi’s (1 ≤ i ≤ m) and hj’s (1 ≤ j ≤ n) are k-
dimensional row and column vectors, respectively. Con-
sequently, W and H are stored as sets of < i,wi > and
< j,hj > key-value pairs.

3.2 GNMF on MapReduce
The updating formula for H (Eqn. 1) is composed of three

components: X = WTA, Y = WTWH, and H ← H. ∗
X./Y , where X and Y are auxiliary matrices for notation
convenience. The three components are discussed in the
following three subsections, and Figure 2 depicts the entire
flowchart of updating H on MapReduce clusters.

3.2.1 Computing X = W TA

Let xj denote the jth column of X, then

xj =
m∑

i=1

Ai,jw
T
i =

∑

i∈Oj

Ai,jw
T
i .

It indicates that xj is a linear combination of {wT
i } over

the nonzero cells on the jth column of A, which can be
implemented by the the following two sets of MapReduce
operations.

∙ Map-I: Map < i, j, Ai,j > and < i,wi > on i such that
tuples with the same i are shuffled to the same machine
in the form of < i, {wi, (j, Ai,j) ∀j ∈ Oi} >.

∙ Reduce-I: Take < i, {wi, (j, Ai,j) ∀j ∈ Oi} > and emit
< j, Ai,jw

T
i > for each j ∈ Oi.

∙ Map-II: Map < j, Ai,jw
T
i > on j such that tuples with

the same j are shuffled to the same machine in the
form of < j, {Ai,jw

T
i } ∀i ∈ O

j >.

∙ Reduce-II: Take < j, {Ai,jw
T
i } ∀i ∈ O

j >, and emit
< j,xj >, where xj =

∑
i∈Oj Ai,jw

T
i .

The output from Reduce-II is the matrix X. In fact, as one
would have noticed, this scheme of using two MapReduce
operations can be used to multiply any two giant matrices
when one is sparse and the other narrow. Multiplying two
giant and dense matrices is usually uncommon because the
result will take too much storage.

3.2.2 Computing Y = WTWH

It is wise to compute Y by first computing C = W TW
and then Y = CH because it maximizes the parallelism
while requiring fewer multiplications than Y = W T (WH).
In fact, it is unrealistic to compute WH because the result
is a giant dense matrix that will easily overrun the storage.

With the partition of W along the short dimension, cal-
culation of WTW can be fully parallelized because

W TW =
m∑

i=1

w
T
i wi.

It means that each machine can first computewT
i wi (a small

k × k matrix) for all the wi’s it hosts, and then send them
over for a global summation, as implemented by



Figure 2: Computing H ← H. ∗ WT A
WT WH

on MapReduce

∙ Map-III: Map < i,wi > to < 0,wT
i wi > where 0 is a

dummy key value for data shuffling.

∙ Reduce-III: Take < 0, {wT
i wi}mi=1 >, and emit∑m

i=1 w
T
i wi, which is the W TW .

As summation is both associative and commutative, a com-
biner can be used to compute the partial sum of wT

i wi on
each machine and then passes the partial sum to the reducer
to reduce network traffic.

Now that C = WTW is calculated, computing Y = CH
becomes as trivial as run through the following mapper with
no data shuffled except copying the k × k matrix C to all
the machines that host hj ’s (as indicated by the dotted line
in Figure 2).

∙ Map-IV: Map < j,hj > to < j,yi = Chj >.

3.2.3 Updating H = H. ∗X./Y

Updating H ← H. ∗X./Y is parallelized through the fol-
lowing MapReduce operation.

∙ Map-V: Map < j,hj >, < j,xj > and < j,yj > on j
such that tuples with the same j are shuffled to the
same machine in the form of < j, {hj ,xj ,yj} >.

∙ Reduce-V: Take< j, {hj ,xj ,yj} > and emit< j,hnew
j >,

where hnew
j = hj . ∗ xj ./yj .

This finishes the update of H , and updating W can be car-
ried out in the same fashion. In the following, we will exam-
ine how the above scaling-up scheme carries over to PNMF
and ENMF.

3.3 PNMF and ENMF on MapReduce
Since the updating formulae of PNMF and ENMF share

the same structure as GNMF, the challenges in distributed
PNMF and ENMF still lie on how to compute the nominator
X and the denominator Y . Once X and Y are computed,
the same Map-V and Reduce-V can be re-used for the final
update.

3.3.1 Distributed PNMF

Computing the nominator X = W T [A./(WH)] for PNMF

is similar to GNMF because once Â = A./[WH] is com-

puted, it becomes X = W T Â. Furthermore, since Âi,j = 0

if Ai,j = 0, Â can be computed through two sets of MapRe-
duce operations: the first gets < i, j, Ai,j ,hj > and the sec-
ond obtains < i, j, Ai,j/(wihj) >.

In computing W T Â, we no longer need two more MapRe-
duce operations because we have already joined A with W in
the last step. We can instead output < j, [Ai,j/wihj ]wi >
from the last step and streamline the output directly to Map-
II. Not only does this save some time, but it also reduces
the network traffic.

The denominator Y = WE appears formidable because
it seems to multiply two giant dense matrices. But since all
elements of E is 1, all the columns of Y are the same, i.e.,
yj =

∑m
i=1 w

T
i , ∀j ∈ [1, m]. So we only need to calculate

any column yj , possibly in parallel, and copy it to all the
machines that host hj ’s for the update of H . Fortunately,
calculating yj is simply a sum of all rows of W , which can be
done is a similar way as calculating W TW . In conclusion,
distributed PNMF can be implemented on MapReduce.



3.3.2 Distributed ENMF

The computation of the nominator for ENMF is essen-
tially the same as that for PNMF, and the same optimiza-
tion to save one set of MapReduce operations applies as well.
But unfortunately, its denominator presents a challenge be-
cause it explicitly asks for the giant dense matrix 1./(WH).
To circumvent that, we can approximate it by only keeping
the cells corresponding to nonzero values of A.

Approximation is common (and necessary for some cases)
in scaling up algorithms to Web scale on distributed clus-
ters. For example, the parallel LDA [41] approximates the
Gibbs sampling, which is essentially sequential, by parallel
sampling in a batch mode, and it still achieves very good re-
sults as shown in [8]. We will leave a full exploration of how
to approximate ENMF on MapReduce and its applications
to Web lifetime data to the future work.

4. EXPERIMENTAL STUDY
This section reports on the experimental evaluation based

on GNMF because of its popularity in both literature and
practice. In Section 4.1, we examine how the performance
varies w.r.t. different factors using a dedicated sandbox clus-
ter. Then we demonstrate the effectiveness of NMF on web-
site recommendation and its scalability on real data in Sec-
tion 4.2.

4.1 Sandbox Experiments
In order to collect detailed execution statistics and prevent

the interference of other jobs on a shared computer cluster,
we construct a dedicated Hadoop cluster that hosts up to 8
worker machines as our sandbox. These machines are not in
the same configuration, but all have a Pentium 4 CPU with
1 or 2 cores, 1 to 2 GB memory, and a hard drive with more
than 150 GB free space.

We wrote a random matrix generator, which generates a

matrix A ∈ ℝ
+m×n

with sparsity � on given the parameters
m,n and �. By default, m = 217, n = 216, � = 2−7 and
k = 23. We put these parameters in the exponentials of 2
in order to see how the performance varies when a factor
doubles while covering a large parameter spectrum. We use
V to denote the number of worker machines in the cluster,
and it varies from 1 to 8.

In the following, we first examine the computation break-
down among the three components in Section 4.1.1, then
present how the performance varies w.r.t. �, k and V in
Section 4.1.2. Finally, we report on our experience on im-
plementing NMF using a distributed matrix library in Sec-
tion 4.1.3. This set of experiments is designed for a clear
understanding of the algorithms but not for showcasing the
scalability. All the reported time is for one iteration and it
is in minute.

4.1.1 Computation Cost Breakdown

Table 2 lists the computation cost of each component in
terms of both the amount of shuffled data (in MB) and the
elapse time, when k is varied on two matrices with sparsity
2−7 and 2−10.

The first thing to notice is that X = W TA dominates the
computation cost in terms of both shuffled data and elapse
time. The reason is that its computation involves two sets of
MapReduce operations as discussed in Section 3.2.1. Since
A is usually larger than W and H, we expect that the cost

will significantly drop when A becomes sparser, and this is
verified by the right half of Table 2. This is encouraging for
practice because the sparsity of real-world data is usually
much smaller than 2−7.

Second, we see that Y = WTWH does not throttle the
computation even though a single reducer is used to perform
the sum. This is attributed to the high locality and paral-
lelism in computing W TW as discussed in Section 3.2.2.

Finally, we note that analyzing the performance of a dis-
tributed job is a non-trivial task. Even with a dedicated
sandbox cluster, there are still many factors out of our con-
trol, such as data allocation and network communication.
But nevertheless Table 2 provides valuable insights into the
cost breakdown, which will help guide further optimization.
For example, knowing X = W TA is the dominant factor, we
would endeavor to save the set of MapReduce operations for
distributed PNMF and ENMF as discussed in Section 3.3.

4.1.2 Performance w.r.t. �, k and V

Figure 3 plots how the performance varies w.r.t. the spar-
sity �, the dimensionality k, and the number of worker ma-
chines in cluster V . Figure 3(a) plots the elapse time vs. the
number of nonzero cells in A when the sparsity goes from
2−8 to 2−4, which exhibits an expected linear relationship.

Figure 3(b), on the other hand, reveals the linearity be-
tween the elapse time and the dimensionality k. Specifi-
cally, it shows how the elapse time changes when k gradu-
ally quadruples from 8 to 512. The figure shows that the
slope for � = 2−10 is much smaller than that for � = 2−7.
This means that although the elapse time increases linearly
w.r.t. k, the normalized slope is much smaller than 1, and
the sparser the matrix A is, the smaller the slope will be.
For example, when k goes from 8 to 512 (64X), the elapse
time for � = 2−7 is 33X while that for � = 2−10 is merely
19X.

Finally, we examine how the number of worker machines
affects the performance. Figure 3(c) plots the speedup when
more and more machines are enabled in the cluster. The
ideal speedup is along the diagonal, which upper-bounds
the practical speedup because of the Amdahl’s Law. On
the matrix with � = 2−7, the speedup is nearly 5 when 8
workers are enabled. The gap between the practical and the
ideal speedup is due to many factors such as the overhead of
shuffling data across machines and logistics on job balancing
and check-pointing. Interestingly, we notice that when the
matrix becomes sparser, the speedup actually drops. This
suggests that the overhead actually outweighs real compu-
tation for these small datasets that can be processed with a
single powerful machine; in other words, the cluster is not
yet saturated.

4.1.3 GNMF using a Distributed Matrix Library

We also implemented GNMF based on a distributed ma-
trix library, called Hama, which aims at serving as a “dis-
tributed scientific package on Hadoop for massive matrix
and graph data.”2 Since Hama implements a set of generic
matrix operations, we could easily build the GNMF on top
of it and successfully ran through some small examples. Un-
fortunately, the implementation failed when the matrix be-
comes 215×214, which is a 16th of our default data set, with
error messages reporting “exhausted the java heap space.”

2http://incubator.apache.org/hama/ on 10/25/2009



Sparsity � = 2−7 Sparsity � = 2−10

Component k = 8 k = 32 k = 128 k = 8 k = 32 k = 128

Shuffle Telapse Shuffle Telapse Shuffle Telapse Shuffle Telapse Shuffle Telapse Shuffle Telapse

X = WTA 2206 11.64 6539 27.3 44799 121 327.3 3.25 921.1 5.24 5733.8 16.6

Y = WTWH 5.16 1.25 17.24 1.44 66.37 2.69 5.13 1.14 17.5 1.24 66.9 2.77

H = H. ∗X./Y 16.97 1.02 52.3 1.04 193.6 1.15 16.29 0.97 53.3 1.02 197.5 1.18

Table 2: Computation Breakdowns with Different k and �
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Figure 3: Performance w.r.t. �, k and V

A preliminary investigation reveals the following two fac-
tors that limit the scalability of Hama-based GNMF. First,
since Hama aims at a generic matrix library, its implementa-
tion divides the matrices into blocks and invokes a Mapper
and a Reducer for each block pair. This results in a huge
number of MapReduce operations and consequently a lot of
data is unnecessarily shuffled around. Second, Hama is built
on top of a random-access data system, called HBase, which
can be very costly when data becomes huge. This obser-
vation reaffirms our belief that specific design is needed to
fully exploit the algorithm-specific data access patterns for
the optimal scalability.

4.2 NMF on Website Recommendation
An important feature shipped in the recent Internet Ex-

plorer release is the “Suggested Site,” which recommends
related sites according to the site the user is browsing, as
shown in Figure 5. This feature can be implemented through
NMF-based collaborative filtering on user browsing logs. In
this section, we investigate the effectiveness of this approach
(Section 4.2.1), with a particular focus on its scalability (Sec-
tion 4.2.2), because a method that does not scale well will
be of limited utility in practice.

4.2.1 Effectiveness

We sample from one-week’s log data from a popular browser
in the English (US) market. The log contains the browsed
URLs for opted-in users. Each log entry contains an anonymized
user id (UID) and a browsed URL, together with some meta-
information such as the timestamp. As we are interested
in recommending websites (instead of URLs), each URL is
trimmed to the website level, e.g., http://www.cnn.com/

SPECIALS/2009/health.care/ is truncated to cnn.com. We
record a UID-by-website count matrix involving 17.8 mil-
lion distinct UIDs and 7.24 million distinct websites, and

Figure 5: Snapshot of the IE8 Suggested Site

apply the TF-IDF transformation as in common practice.
The idea is to first factorize the matrix, and then recom-
mend websites based on the re-constructed matrix from the
factorization.

For effectiveness test, we take the top-1000 UIDs that have
the largest number of associated websites, and this gives
us 346,040 distinct (UID, website) pairs. To measure the
effectiveness, we randomly hold out a visited website for each
UID, and mix it with another 99 un-visited sites. The 100
websites then constitute the test case for that UID. In the
end, there are 1000 test cases, one for each UID. The goal
is to check the rank of the holdout visited website among
the 100 websites for each UID, and the overall effectiveness
is measured by the average rank across the 1000 test cases,
the smaller the better. The same metric is used in a recent
study of community recommendation [8]. As expected, a
random algorithm will end up with a score around 50.

We run GNMF on the matrix with the holdout website for
each UID marked as 0, and Figure 4 plots the effectiveness
w.r.t. the number of iterations for different k’s. For compari-
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Figure 4: Effectiveness of GNMF on Website Recommendation

(a) Execution w.r.t. Iterations

Total Iter. Telapse Tsum Read Written Shuffle

1 89 3252 791 642 338

2 180 5772 1090 856 576

3 233 8905 1392 1072 812

6 419 16045 2301 1723 1495

(b) Execution w.r.t. k

k Telapse Tsum Read Written Shuffle

10 89 3252 791 642 338

40 168 6438 1357 1179 576

70 254 13753 1925 1719 1495

100 373 26012 2497 2261 1518

(c) Execution w.r.t. Sampling Time Period

Data Execution
m n N Size on Disk Telapse Tsum Read Written Shuffle

1 week 17.8M 7.24M 297M 38.8 GB 89 3252 791 642 338
2 weeks 26.4M 10.0M 540M 70.9 GB 94 3651 1495 1229 614
3 weeks 34.6M 12.0M 769M 101.1 GB 110 4498 2088 1711 839
4 weeks 42.7M 13.5M 996M 131.0 GB 129 6153 2712 2225 1124
5 weeks 51.0M 14.9M 1219M 160.5 GB 183 6551 3265 584 1334

Table 3: Scalability of Distributed GNMF on Real-world Data Sets

son, recommendations based on SVD are also plotted in each
figure. As can be seen, both NMF and SVD are much more
effective than random recommendation. Secondly, SVD and
NMF are comparable for this application (depending on the
choice of k) in terms of effectiveness. In the following, we
examine how well GNMF scales to real-world data.

4.2.2 Scalability

Table 3 reports on the scalability of GNMF on real-world
data sets, which are the same user browsing log but in a
much larger scale. Five statistics are reported for each job:
the elapse time Telapse, the sum of the elapse time on all
machines in the cluster Tsum, the IO “Read” and “Write”
and the amount of data shuffled across machines denoted
by “Shuffle.” The time is measured in minutes and data
is in GB. Tsum approximately characterizes the total com-
putation load, and the amount of shuffled data reflects the
communication cost. For example, the last row of Table 3(c)
shows that by sampling from 5-weeks’ log, we obtain a 51M-
by-14.9M matrix with 1.219 billion nonzero values that takes
160GB on disk. By setting k to the default value 10, it takes
183 minutes to run one iteration of the distributed GNMF on
top of the matrix. The overall time spent on all machines
for this job is 6551 minutes and 1334 GB data is shuffled
across machines for this job.

To be specific, Table 3(a) shows how the algorithm scales
w.r.t. iterations. On the one hand, it shows that the elapse
time increases linearly with the number of iterations, but
on the other hand, we note that the average time per itera-
tion becomes smaller when more iterations are executed in

one job. For example, running 6 iterations in one job takes
much shorter time than running 6 jobs one iteration each.
Quantitatively, if we normalize the elapse time by that of 1
iteration, and regress the normalized time to the number of
iterations, we see that the resulting slope is 0.72. The slope
of 0.72 actually comes from the cross-iteration optimizations
that are enabled by our distributed algorithm. For exam-
ple, when certain columns of H are updated, they can be
immediately used to compute corresponding part of HHT

and AHT for the update of W . As indicated by the slope
of 0.72, the cross-iteration optimization can significantly im-
prove the performance when multiple iterations are executed
in one job.

Table 3(b), on the other hand, shows the execution w.r.t.
k, when k varies from 10 to 100 with incremental of 30.
The table shows the same linear relationship as observed in
Figure 3(b).

Finally, Table 3(c) lists how the algorithm scales with in-
creasingly larger data sampled from increasingly longer time
periods. As can be seen, the algorithm scales smoothly with
the data, and it takes around 3 hours to run one iteration
on a 51M-by-14.9M matrix containing 1.2 billion nonzero
values. Considering the cross-iteration optimization and as-
suming that 20 iterations are enough as observed from Fig-
ure 4, the overall running time would be less than 60 hours.
In other words, if we launch the job in Friday evening, the
job would have already finished by the time we step back
into the office on Monday morning. In order to further push
the limit and make sure no hidden issues will explode the
algorithm, we test the distributed GNMF on a 43.9M-by-



769M matrix with 4.38 billion nonzero values, and it takes
less than 7 hours to finish one iteration. To the best of
our knowledge, this is the largest factorization reported in
literature, and it assures the scalability for practical usage.

5. RELATED WORK
Parallel operations on matrices (e.g., multiplication, in-

version, etc.) have been studied for decades because of the
ubiquitousness of matrices in many areas, and mature li-
braries are readily available, e.g., PSBLAS [19]. Because
these general-purpose libraries are designed for multi-thread
parallel computers, they cannot be easily ported to com-
puter clusters that hold terabyte to petabyte data. Unlike
on a parallel machine, data sharing and communication are
no longer lightweight on distributed clusters. It was not un-
til recently when data explodes with the booming of the Web
that people began to look for scalable approaches to manip-
ulating matrices that are too large to reside in memory, and
the ongoing Hama project is a representative of this effort.
While it is exciting to target a general solution, we believe
that dedicated design could better exploit the data locality
and parallelism that would otherwise be ignored in a gen-
eral solution, as we have demonstrated for the NMF case in
Section 4.1.3. On the other hand, experience gleaned from
scaling up different algorithms would help build a general
library. For example, the two MapReduce-based scheme in
computing W TA can be generalized for multiplying two gi-
ant matrices when one is dense but narrow and the other is
big but sparse.

Given the parallel library for matrices and the usefulness
of NMF, it comes with no surprise to find parallel NMF [23,
36] in literature. As discussed in Section 3.1, in response
to the characteristics of distributed clusters, we partition
W and H in the opposite direction to that adopted in [23,
36]. In general, this study reminds us that one needs to
carefully re-evaluate the parallelism scheme in order to port
an algorithm to distributed clusters for Web-scale data.

Distributed NMF is by no means the only data analysis
algorithm that is ported to MapReduce clusters. The gener-
ality of MapReduce computation model lends itself easily to
many interesting applications (e.g., see [7]). Das et al. dis-
tributed the probabilistic latent semantic indexing (which
uses EM) on MapReduce, and showcased its effectiveness
in building up personalized news service [11]. Nallapati et
al. investigate how to perform variational EM for the ap-
plication of learning text topics [33]. While the E-step can
be easily distributed, the M-step is still centralized, which
could potentially become a bottleneck. To over the bot-
tleneck, Kowalczyk and Vlassis proposed the Newscast EM
which decentralizes the M-step through gossip-based com-
munication model [27]. Wolfe et al. also decentralized the
M-step, and further showed that the decentralized M-step
can further take advantages of the network topology for im-
proved scalability [42]. Because the general applicability of
EM algorithm, success on distributed EM effectively enables
many real-world applications (e.g., [11, 8]).

Recently, Chu et al. show that many popular machine
learning algorithms, including locally weighted linear re-
gression (LWLR), k-means, logistic regression (LR), naive
Bayes (NB), SVM, ICA, PCA, gaussian discriminant analy-
sis (GDA), Expectation maximization (EM), and backprop-
agation (NN) can all be implemented within the MapReduce
paradigm [10]. Google, in response to the demand of ana-

lyzing huge amount of data in the Web era, has developed
parallel SVM (PSVM) [6] and parallel LDA (PLDA) [41] on
MapReduce clusters. Readers interested in a comprehensive
review of large scale data analysis through parallelism are
referred to their recent tutorial [5]. The distributed NMF as
developed in this paper adds to the arsenal of scalable tools
in analyzing Web-scale dyadic data.

There are numerous factorization techniques, and each of
them has many extensions to include additional constraints
like sparsity or orthogonality [39]. We here choose to scale
up NMF simply because of its respect to the nonnegativity
that is intrinsic to the Web data and the numerous successes
of NMF as reported in literature [30, 43, 38, 4, 40]. Besides
exploiting parallelism, many researchers have also tried to
scale up factorization from algorithmic aspects (e.g., [44,
35]). These algorithms can effectively factorize tens of thou-
sands by tens of thousands matrices with millions of nonzero
values. While these algorithms are not comparable to ours
in terms of the data scales, their algorithmic design could
be exploited to further boost the scalability on distributed
clusters.

6. CONCLUSIONS
Confronted with huge amount of Web dyadic data and

lured by the usefulness of NMF, we were determined to scale
up NMF. In this paper, we showed that by carefully parti-
tioning the data and arranging the computation, factorizing
million-by-million matrices with billions of nonzero values
becomes feasible on distributed MapReduce clusters.

There are many future work down the road. On the al-
gorithmic side, the first priority is to regularize the factor-
ization with additional constraints, such as sparsity [22] and
orthogonality [17]. While these additional constraints will
lead to different updating formulae as shown in [22, 17], the
multiplicative update structure is not altered, which renders
incorporating these constraints possible, albeit non-trivial.
On the application side, we will explore other applications
that are enabled by distributed NMF beyond website rec-
ommendations.

Acknowledgements

The authors would like to thank the following friends and
colleagues for their help on algorithm design, literature sur-
vey, implementation and proofreading: Chris J.C. Burges,
Chris Ding, Susan Domais, Paul Hsu, Emre Kıcıman, Tao
Li, Xiaolong Li, Ethan Tu, Lin Xiao and Xiaoxin Yin. The
authors also appreciate the anonymous reviewers who not
only offered us detailed review comments but also insightful
suggestions on future work.

7. REFERENCES
[1] D. Agarwal and S. Merugu. Predictive discrete latent

factor models for large scale dyadic data. In KDD,
2007.

[2] E. Agichtein, E. Brill, and S. Dumais. Improving web
search ranking by incorporating user behavior
information. In SIGIR, pages 19–26, 2006.

[3] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in search engines.
EDBT Workshops, pages 588–596, 2004.

[4] M. W. Berry, M. Browne, A. N. Langville, P. V.
Pauca, and R. J. Plemmons. Algorithms and



applications for approximate nonnegative matrix
factorization. Computational Statistics & Data
Analysis, 52(1):155–173, September 2007.

[5] E. Y. Chang, K. Zhu, and H. Bai. Parallel algorithms
for mining large-scale datasets. In CIKM, 2009.

[6] E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu,
and H. Cui. PSVM: Parallelizing support vector
machines on distributed computers. In NIPS, 2007.

[7] D. Chen. Efficient geometric algorithms on the EREW
PRAM. IEEE Trans. Parallel Distrib. Syst., 1995.

[8] W.-Y. Chen, J.-C. Chu, J. Luan, H. Bai, Y. Wang,
and E. Y. Chang. Collaborative filtering for orkut
communities: discovery of user latent behavior. In
WWW, 2009.

[9] Y. Chen, D. Pavlov, and J. F. Canny. Large-scale
behavioral targeting. In KDD, pages 209–218, 2009.

[10] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R.
Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for
machine learning on multicore. In NIPS, 2006.

[11] A. S. Das, M. Datar, A. Garg, and S. Rajaram.
Google news personalization: scalable online
collaborative filtering. In WWW, pages 271–280, 2007.

[12] W. L. C. David A. Kenny, Deborah A. Kashy. Query
clustering using user logs. ACM Trans. Inf. Syst.,
20(1):59–81, 2002.

[13] W. L. C. David A. Kenny, Deborah A. Kashy. Dyadic
Data Analysis. The Guilford Press, 2006.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[15] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society for
Information Science, 41:391–407, 1990.

[16] I. S. Dhillon. Co-clustering documents and words
using bipartite spectral graph partitioning. In KDD,
pages 269–274, 2001.

[17] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal
nonnegative matrix tri-factorizations for clustering. In
KDD, pages 126–135, 2006.

[18] Q. Dong, X. Wang, and L. Lin. Application of latent
semantic analysis to protein remote homology
detection. Bioinformatics, 22(3):285–290, 2005.

[19] S. Filippone and M. Colajanni. PSBLAS: a library for
parallel linear algebra computation on sparse matrices.
ACM Trans. Math. Softw., 26(4):527–550, 2000.

[20] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer.
Co-clustering of biological networks and gene
expression data. Bioinformatics, 18(1):145–154, 2002.

[21] T. Hofmann, J. Puzicha, and M. I. Jordan. Learning
from dyadic data. In NIPS, pages 466–472, 1999.

[22] P. O. Hoyer. Non-negative matrix factorization with
sparseness constraints. J. Mach. Learn. Res., 5, 2004.

[23] K. Kanjani. Parallel non negative matrix factorization
for document clustering. Technical report, Texas A &
M University, May 2007.

[24] D. Kim, S. Sra, and I. S. Dhillon. Fast newton-type
methods for the least squares nonnegative matrix
approximation problem. In SDM, 2007.

[25] D. Kim, S. Sra, and I. S. Dhillon. Fast projection
based methods for the least squares nonnegative
matrix approximation problem. Statistical Analysis

and Data Mining, 1(1), 2008.

[26] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[27] W. Kowalczyk and N. Vlassis. Newscast em. In In
NIPS 17, pages 713–720. MIT Press, 2005.

[28] D. D. Lee and H. S. Seung. Learning the parts of
objects by non-negative matrix factorization. Nature,
401(6755):788–791, 1999.

[29] D. D. Lee and H. S. Seung. Algorithms for
non-negative matrix factorization. In NIPS, 2000.

[30] S. Li, X. Hou, H. Zhang, and Q. Cheng. Learning
spatially localized, parts-based representation. CVPR,
1:207, 2001.

[31] X. Li, C. Snoek, and M. Worring. Learning tag
relevance by neighbor voting for social image retrieval.
In Proc. of the 1st ACM international conference on
Multimedia information retrieval (MIR ’08), pages
180–187, 2008.

[32] Y. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He,
and H. Li. BrowseRank: letting web users vote for
page importance. In SIGIR, pages 451–458, 2008.

[33] R. Nallapati, W. Cohen, and J. Lafferty. Parallelized
variational em for latent dirichlet allocation: An
experimental evaluation of speed and scalability. Proc.
of the 7th International Conference on Data Mining
Workshops (ICDMW’07), pages 349–354, 2007.

[34] P. Pacheco. Parallel Programming with MPI. Morgan
Kaufmann, 1997.

[35] J. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
ICML, pages 713–719, 2005.

[36] S. A. Robila and L. G. Maciak. A parallel unmixing
algorithm for hyperspectral images. In Intelligent
Robots and Computer Vision XXIV, 2006.

[37] M. N. Schmidt, O. Winther, and L. K. Hansen.
Bayesian non-negative matrix factorization. In
Independent Component Analysis and Signal
Separation, pages 540–547, 2009.

[38] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J.
Plemmons. Document clustering using nonnegative
matrix factorization. Inf. Process. Manage., 42(2),
2006.

[39] A. P. Singh and G. J. Gordon. A unified view of
matrix factorization models. In PKDD, pages 358–373,
2008.

[40] S. Sra and I. S. Dhillon. Nonnegative matrix
approximation: Algorithms and applications.
Technical report, CS Department, University of Texas,
June 2006.

[41] Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and E. Y.
Chang. Plda: Parallel latent dirichlet allocation for
large-scale applications. In ICAAIM, 2009.

[42] J. Wolfe, A. Haghighi, and D. Klein. Fully distributed
em for very large datasets. In ICML, 2008.

[43] W. Xu, X. Liu, and Y. Gong. Document clustering
based on non-negative matrix factorization. In SIGIR,
pages 267–273, 2003.

[44] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast
nonparametric matrix factorization for large-scale
collaborative filtering. In SIGIR, pages 211–218, 2009.


