
Random Sampling from a Search Engine’s Index

Ziv Bar-Yossef
∗

Department of Electrical Engineering
Technion, Haifa 32000, Israel

zivby@ee.technion.ac.il

Maxim Gurevich
Department of Electrical Engineering

Technion, Haifa 32000, Israel

gmax@tx.technion.ac.il

ABSTRACT
We revisit a problem introduced by Bharat and Broder al-
most a decade ago: how to sample random pages from a
search engine’s index using only the search engine’s public
interface? Such a primitive is particularly useful in creating
objective benchmarks for search engines.

The technique of Bharat and Broder suffers from two well
recorded biases: it favors long documents and highly ranked
documents. In this paper we introduce two novel sam-
pling techniques: a lexicon-based technique and a random
walk technique. Our methods produce biased sample docu-
ments, but each sample is accompanied by a corresponding
“weight”, which represents the probability of this document
to be selected in the sample. The samples, in conjunction
with the weights, are then used to simulate near-uniform
samples. To this end, we resort to three well known Monte
Carlo simulation methods: rejection sampling, importance
sampling and the Metropolis-Hastings algorithm.

We analyze our methods rigorously and prove that under
plausible assumptions, our techniques are guaranteed to pro-
duce near-uniform samples from the search engine’s index.
Experiments on a corpus of 2.4 million documents substanti-
ate our analytical findings and show that our algorithms do
not have significant bias towards long or highly ranked doc-
uments. We use our algorithms to collect fresh data about
the relative sizes of Google, MSN Search, and Yahoo!.

Categories and Subject Descriptors: H.3.3: Informa-
tion Search and Retrieval.

General Terms: Measurement, Algorithms.

Keywords: search engines, benchmarks, sampling, size es-
timation.

1. INTRODUCTION
The latest round in the search engine size wars (cf. [22])

erupted last August after Yahoo! claimed [20] to index more
than 20 billion documents. At the same time Google re-
ported only 8 billion pages in its index, but simultaneously
announced [3] that its index is three times larger than its
competition’s. This surreal debate underscores the lack of
widely acceptable benchmarks for search engines.

∗Supported by the European Commission Marie Curie In-
ternational Re-integration Grant.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

Current evaluation methods for search engines [11, 14,
6] are labor-intensive and are based on anecdotal sets of
queries or on fixed TREC data sets. Such methods do not
provide statistical guarantees about their results. Further-
more, when the query test set is known in advance, search
engines can manually adapt their results to guarantee suc-
cess in the benchmark.

In an attempt to come up with reliable automatic bench-
marks for search engines, Bharat and Broder [4] proposed
the following problem: can we sample random documents
from a search engine’s index using only the engine’s public
interface? Unlike the manual methods, random sampling
offers statistical guarantees about its test results. It is im-
portant that the sampling is done only via the public in-
terface, and not by asking the search engine itself to collect
the sample documents, because we would like the tests to be
objective and not to rely on the goodwill of search engines.
Furthermore, search engines seem reluctant to allow random
sampling from their index, because they do not want third
parties to dig into their data.

Random sampling can be used to test the quality of search
engines under a multitude of criteria: (1) Overlap and rel-
ative sizes: we can find out, e.g., what fraction of the doc-
uments indexed by Yahoo! are also indexed by Google and
vice versa. Such size comparisons can indicate which search
engines have better recall for narrow-topic queries. (2) Top-
ical bias: we can identify themes or topics that are over-
represented or underrepresented in the index. (3) Freshness
evaluation: we can evaluate the freshness of the index, by
estimating the fraction of “dead links” it contains. (4) Spam
evaluation: using a spam classifier, we can find the fraction
of spam pages in the index. (5) Security evaluation: using an
anti-virus software, we can estimate the fraction of indexed
documents that are contaminated by viruses.

The Bharat-Broder approach. Bharat and Broder pro-
posed the following simple algorithm for uniformly sampling
documents from a search engine’s index. The algorithm suc-
cessively formulates “random” queries, submits the queries
to the search engine, and picks uniformly chosen documents
from the result sets returned. In order to construct the ran-
dom queries, uses a lexicon of terms that appear in web
documents. Each term in the lexicon should be accompa-
nied by an estimate of its frequency on the web. Random
queries are then formulated as conjunctions or disjunctions
of terms that are randomly selected from the lexicon, based
on their estimated frequency. The lexicon is constructed at a
pre-processing step by crawling a large corpus of documents
(Bharat and Broder crawled the Yahoo! directory).

As Bharat and Broder noted in the original article [4] and
was later observed by subsequent studies [7], the method
suffers from severe biases. The first bias is towards long,
“content-rich”, documents, simply because these documents
match many more queries than short documents. An ex-
treme example is online dictionaries and word lists (such
as the ispell dictionaries), which will be returned as the re-
sult of almost any query. Worse than that, when queries
are formulated as conjunctions or disjunctions of unrelated
terms, typically only dictionaries and word lists match the
queries. Another major problem is that search engines do
not allow access to the full list of results, but rather only to
the top k ones (where k is usually 1,000). Since the Bharat-
Broder technique samples documents only from the top k,
it is biased towards documents that have high static rank.
Finally, the accuracy of the Bharat-Broder method is di-
rectly related to the quality of the term frequency estimates
it uses. In particular, if these estimates are biased, then the
same bias will be reflected in the samples. Collecting accu-
rate term statistics is a major problem by itself, and it is
not clear that using a web directory like Yahoo! is sufficient.

Our contributions. We propose two novel methods for
sampling pages from a search engine’s index. Our first tech-
nique uses a lexicon to formulate random queries, but unlike
the Bharat-Broder approach, does not need to know term
frequencies. Our second technique is based on a random
walk on a virtual graph defined over the documents in the
index. This technique does not need a lexicon at all.

Both our techniques, like the Bharat-Broder method, pro-
duce biased samples. That is, some documents are more
likely to be sampled than others. Yet, our algorithms have
one crucial advantage: they produce together with each sam-
ple document x a corresponding “weight” w(x), which rep-
resents the probability p(x) of the document to be sampled.
This seemingly minor difference turns out to be extremely
significant. The weights allow us to apply stochastic sim-
ulation methods on the samples and consequently obtain
uniform, unbiased, samples from the search engine’s index!

A simulation method accepts samples taken from a trial
distribution p and simulates sampling from a target distribu-
tion π. In order for the simulation to be feasible, the simu-
lator needs to be able to compute p(x) and π(x), at least up
to normalization, given any instance x. The simulation has
some overhead, which depends on how far p and π are from
each other. In our case π is the uniform distribution over
the search engine’s index, and p is the distribution of sam-
ples generated by our samplers. We employ three Monte
Carlo simulation methods: rejection sampling, importance
sampling, and the Metropolis-Hastings algorithm.

One technical difficulty in applying simulation methods in
our setting is that the weights produced by our samplers are
only approximate. To the best of our knowledge, stochastic
simulation with approximate weights has not been addressed
before. We are able to show that the rejection sampling
method still works even when provided with approximate
weights. The distribution of the samples it generates is no
longer identical to the target distribution π, but is rather
only close to π. Similar analysis for importance sampling
and for the Metropolis-Hastings algorithm is deferred to fu-
ture work, but our empirical results suggest that they too
are affected only marginally by the approximate weights.

Pool-based sampler. A query pool is a collection of
queries. Our pool-based sampler assumes knowledge of some
query pool P . The terms constituting queries in the pool
can be collected by crawling a large corpus, like the Yahoo!
or ODP [9] directories. We stress again that knowledge of
the frequencies of these terms is not needed.

The volume of a query q is the number of documents in-
dexed by the search engine and that match q. We first show
that if the sampler could somehow sample queries from the
pool proportionally to their volume, then we could attach
to each sample a weight. Then, by applying any of the sim-
ulation methods (say, rejection sampling), we would obtain
truly uniform samples from the search engine’s index. Sam-
pling queries according to their volume is tricky, though, be-
cause we do not know a priori the volume of queries. What
we do instead is sample queries from the pool according to
some other, arbitrary, distribution (e.g., the uniform one)
and then simulate sampling from the volume distribution.
To this end, we use stochastic simulation again. Hence,
stochastic simulation is used twice: first to generate the ran-
dom queries and then to generate the uniform documents.

We rigorously analyze the pool-based sampler and iden-
tify the properties of the query pool that make this technique
accurate and efficient. We find that using a pool of phrase
queries is much more preferable to using conjunctive or dis-
junctive queries, like the ones used by Bharat and Broder.

Random walk sampler. We propose a completely differ-
ent sampler, which does not use a term lexicon at all. This
sampler performs a random walk on a virtual graph defined
over the documents in the index. The limit equilibrium dis-
tribution of this random walk is the uniform distribution
over the documents, and thus if we run the random walk for
sufficiently many steps, we are guaranteed to obtain near-
uniform samples from the index.

The graph is defined as follows: two documents are con-
nected by an edge iff they share a term or a phrase. This
means that both documents are guaranteed to belong to the
result set of a query consisting of the shared term/phrase.
Running a random walk on this graph is simple: we start
from an arbitrary document, at each step choose a random
term/phrase from the current document, submit a corre-
sponding query to the search engine, and move to a ran-
domly chosen document from the query’s result set.

The random walk as defined does not converge to the uni-
form distribution. In order to make it uniform, we apply
the Metropolis-Hastings algorithm. We analyze the random
walk experimentally, and show that a relatively small num-
ber of steps is needed to approach the limit distribution.

Experimental results. To validate our techniques, we
crawled 2.4 million English pages from the ODP hierarchy
[9], and built a search engine over these pages. We used a
subset of these pages to create the query pool needed for our
pool-based sampler and for the Bharat-Broder sampler.

We ran our two samplers as well as the Bharat-Broder
sampler on this search engine, and calculated bias towards
long documents and towards highly ranked documents. As
expected, the Bharat-Broder sampler was found to have sig-
nificant bias. On the other hand, our pool-based sampler
had no bias at all, while the random walk sampler only had
a small negative bias towards short documents.

We then used our pool-based sampler to collect samples
from Google, MSN Search, and Yahoo!. As a query pool,

we used 5-term phrases extracted from English pages at the
ODP hierarchy. We used the samples from the search en-
gines to produce up-to-date estimates of their relative sizes.

For lack of space, all proofs are omitted. They can be
found in the full version of the paper.

2. RELATED WORK
Apart from Bharat and Broder, several other studies used

queries to search engines to collect random samples from
their indices. Queries were either manually crafted [5], col-
lected from user query logs [17], or selected randomly using
the technique of Bharat and Broder [12, 7]. Assuming search
engine indices are independent and uniformly chosen subsets
of the web, estimates of the sizes of search engines and the
indexable web have been derived. Due to the bias in the
samples, though, these estimates lack any statistical guar-
antees. Dobra and Fienberg [10] showed how to avoid the
unrealistic independence and uniformity assumptions, but
did not address the sampling bias. We believe that their
methods could be combined with ours to obtain accurate
size estimates.

Several studies [18, 15, 16, 2, 23] developed methods for
sampling pages from the indexable web. Such methods can
be used to also sample pages from a search engine’s index.
Yet, since these methods try to solve a harder problem, they
also suffer from various biases, which our method does not
have. It is interesting to note that the random walk ap-
proaches of Henzinger et al. [16] and Bar-Yossef et al. [2]
implicitly use importance sampling and rejection sampling
to make their samples near-uniform. Yet, the bias they suf-
fer towards pages with high in-degree is significant.

Last year, Anagnostopoulos, Broder, and Carmel [1] pro-
posed an enhancement to index architecture that could sup-
port random sampling from the result sets of broad queries.
This is very different from what we do in this paper: our
techniques do not propose any changes to current search en-
gine architecture and do not rely on internal data of the
search engine; moreover, our goal is to sample from the
whole index and not from the result set of a particular query.

3. FORMAL SETUP

Notation. All probability spaces in this paper are discrete
and finite. Given a distribution p on a domain U , the support
of p is defined as: supp(p) = {x ∈ U : p(x) > 0}. For an
event U ′ ⊆ U , we define p(U ′) to be the probability of this
event under p: p(U ′) =

∑

x∈U′ p(x).

Search engines. A search engine is a tuple 〈D,Q, eval, k〉.
D is the collection of documents indexed. Documents are as-
sumed to have been pre-processed (e.g., they may be trun-
cated to some maximum size limit). Q is the space of queries
supported by the search engine. eval(·) is an evaluation
function, which maps every query q ∈ Q to an ordered se-
quence of documents, called candidate results. The volume
of q is the number of candidate results: vol(q) = |eval(q)|.
k is the result limit. Only the top k candidate results are
actually returned. These top k results are called the result
set of q and are denoted res(q). A query q overflows, if
vol(q) > k, and it underflows, if vol(q) = 0. Note that if
q does not overflow, then eval(q) = res(q).

A document x matches a query q, if x ∈ eval(q). The set
of queries that a document x matches is denoted match(x).

Search engine samplers. Let π be a target distribution
over the document collection D. Typically, π is uniform,
i.e., π(x) = 1/|D|, for all x ∈ D. A search engine sampler
with target π is a randomized procedure, which generates a
random document X from the domain D. The distribution
of the sample X is called the sampling distribution and is de-
noted by η. Successive invocations of the sampler produce
independent samples from η. Ideally, η = π, in which case
the sampler is called perfect. Otherwise, the sampler is bi-
ased. The quality of a search engine sampler is measured by
two parameters: the sampling recall, measuring “coverage”,
and the sampling bias, measuring “accuracy”.

Search engine samplers have only “black box” access to
the search engine through its public interface. That is, the
sampler can produce queries, submit them to the search en-
gine, and get back their results. It cannot access internal
data of the search engine. In particular, if a query over-
flows, the sampler does not have access to results beyond
the top k.

Not all documents in D are practically reachable via the
public interface of the search engine. Some pages have no
text content and others have very low static rank, and thus
formulating a query that returns them as one of the top k re-
sults may be impossible. Thus, search engine samplers usu-
ally generate samples only from large subsets of D and not
from the whole collection D. The sampling recall of a sam-
pler with sampling distribution η is defined as π(supp(η)).
For instance, when π is the uniform distribution, the sam-
pling recall is |supp(η)|/|D|, i.e., the fraction of documents
which the sampler can actually return as samples. Ideally,
we would like the recall to be as close to 1 as possible. Note
that even if the recall is lower than 1, but supp(η) is suffi-
ciently representative of D, then estimators that use samples
from supp(η) can produce accurate estimates.

Since samplers sample only from large subsets of D and
not from D in its entirety, it is unfair to measure the bias of
a sampler directly w.r.t. the target distribution π. Rather,
we measure the bias w.r.t. the distribution π conditioned on
selecting a sample in supp(η). Formally, let πsupp(η) be the

following distribution on supp(η): πsupp(η)(x) = π(x)
π(supp(η))

for all x ∈ supp(η). The sampling bias of the sampler is
defined as the total variation distance between η and πsupp(η):

||η − πsupp(η)|| =
1

2

∑

x∈supp(η)

|η(x) −
π(x)

π(supp(η))
|.

For example, if a sampler generates truly uniform samples
from a subset D′ of D that constitutes 80% of D, then its
sampling recall is 0.8 and its sampling bias is 0.

Since the running time of samplers is dominated by the
number of search engine queries they make, we define the
query cost of a sampler to be the expected number of search
engine queries it performs per sample generated.

4. MONTE CARLO METHODS
We briefly review two of the three Monte Carlo simulation

methods we use in this paper: rejection sampling and the
Metropolis-Hastings algorithm. Importance sampling can-
not be used to construct search engine samplers, but rather
only to directly estimate aggregate statistical parameters of
the index. It is described in more detail in the full version
of this paper. For an elaborate treatment of Monte Carlo
methods, refer to the textbook of Liu [19].

The basic question addressed in stochastic simulation is
the following. There is a target distribution π on a space
U , which is hard to sample from directly. On the other
hand, we have an easy-to-sample trial distribution p avail-
able. Simulation methods enable using samples from p to
simulate sampling from π, or at least to estimate statisti-
cal parameters under the measure π. Simulators need to
know the distributions π and p in unnormalized form. That
is, given any instance x ∈ U , they should be able to com-
pute “weights” π̂(x) and p̂(x) that represent the probabili-
ties π(x) and p(x), respectively. By that we mean that there
should exist normalization constants Zπ̂ and Zp̂ s.t. for all
x ∈ U , π(x) = π̂(x)/Zπ̂ and p(x) = p̂(x)/Zp̂. The constants
Zπ̂ and Zp̂ themselves need not be known to the simulator.
For example, when π is a uniform distribution on U , a pos-
sible unnormalized form is π̂(x) = 1, ∀x ∈ U . In this case
the normalization constant is Zπ̂ = |U|.

Rejection sampling. Rejection sampling [24] assumes
supp(π) ⊆ supp(p) and assumes knowledge of an envelope
constant C, which is at least maxx∈U π̂(x)/p̂(x). The pro-
cedure, described in Figure 1, repeatedly calls a sampler
S that generates samples X from the trial distribution p,
until a sample is “accepted”. To decide whether X is ac-
cepted, the procedure tosses a coin whose heads probability
is π̂(X)/(Cp̂(X)) (note that this expression is always at most
1, due to the property of the envelope constant).

1:Function RejectionSampling(S, C)
2: while (true) do

3: X := sample from p generated using S

4: toss a coin whose heads probability is π̂(X)
Cp̂(X)

5: if (coin comes up heads)
6: return X

Figure 1: The rejection sampling procedure

A simple calculation shows that the distribution of the
accepted samples is exactly the target distribution π (hence
rejection sampling yields a perfect sampler). The expected
number of samples from p needed in order to generate each
sample of π is C · Zp̂/Zπ̂ ≥ maxx∈U π(x)/p(x). Hence, the
efficiency of the procedure depends on two factors: (1) the
similarity between the target distribution and the trial dis-
tribution: the more similar they are the smaller is the max-
imum maxx∈U π(x)/p(x); and (2) the gap between the en-
velope constant C and maxx∈U π̂(x)/p̂(x).

The Metropolis-Hastings algorithm. The Metropolis-
Hastings (MH) algorithm [21, 13] is a Markov Chain Monte
Carlo (MCMC) approach to simulation. Unlike rejection
sampling, there is no single trial distribution, but rather
different trial distributions are used at different steps of the
algorithm. The big advantage over rejection sampling is that
no knowledge of an “envelope constant” is needed.

The MH algorithm, described in Figure 2, runs a random
walk on U , starting from a state x0 ∈ U . After B steps
(called the “burn-in period”), the reached state is returned
as a sample. The transition probability from state to state is
determined by a “proposal function” T , which is a |U| × |U|
stochastic matrix (i.e., every row of T specifies a probabil-
ity distribution over U). When the random walk reaches a
state X, it uses the distribution specified by the X-th row
of T to choose a “proposed” next state Y. The algorithm

then applies an acceptance-rejection procedure to determine
whether to move to Y or to stay at X. The probability of
acceptance is:

r(X,Y) = min

{

1,
π̂(Y) T (Y,X)

π̂(X) T (X,Y)

}

.

1:Function MH(T , B, x0)
2: X := x0

3: for i = 1 to B do
4: Y := sample generated according to the X-th row of T

5: toss a coin whose heads probability is min
{

1,
π̂(Y) T (Y,X)
π̂(X) T (X,Y)

}

6: if (coin comes up heads)
7: X := Y

8: return X

Figure 2: The Metropolis-Hastings algorithm

It can be shown that for any proposal function satisfy-
ing some standard restrictions, the resulting random walk
converges to π. This means that if the burn-in period is
sufficiently long, the sampling distribution is guaranteed to
be close to π. The convergence rate, i.e., the length of the
burn-in period needed, however, does depend on the pro-
posal function. There are various algebraic and geometric
methods for figuring out how long should the burn-in period
be as a function of parameters of the proposal function. See
a survey by Diaconis and Saloff-Coste [8] for a detailed re-
view. If the parameters of the proposal function are easy to
analyze, one can use these methods to set the parameter B.
Otherwise, empirical methods are used to set B.

Monte Carlo methods with approximate weights. All
Monte Carlo methods assume that the trial distribution p
is known, up to normalization. This assumption turns out
to be very problematic in our setting, since the trial distri-
butions we construct depend on unknown internal data of
the search engine. The best we can do is come up with an
unnormalized weight distribution q̂, whose normalized form
q is statistically close to p. To the best of our knowledge,
no previous study addressed this scenario before.

The following theorem proves that as long as p and q are
close, the sampling distribution of rejection sampling is close
to the target distribution π:

Theorem 4.1. Let η be the sampling distribution of re-
jection sampling, when executed with: (1) samples gener-
ated from a trial distribution p; (2) target weights computed
using unnormalized target distribution π̂; (3) trial weights
computed using unnormalized distribution q̂, whose normal-
ized form q is not necessarily p; and (4) envelope constant
C ≥ maxx∈U π̂(x)/q̂(x). Then,

||η − π|| ≤ ||p − q||.

If Zπ̂

CZq̂

> ||p − q||, then the expected number of samples

from p needed to generate each sample from η is at most
1/(Zπ̂

CZq̂

− ||p − q||).

We believe that similar analysis is possible also for impor-
tance sampling and for the Metropolis-Hastings algorithm,
but leave it to future work. Nevertheless, our empirical re-
sults indicate that these two methods are not significantly
affected by the approximate weights.

5. POOL-BASED SAMPLER
In this section we describe our pool-based (PB) sampler.

A query pool is a fragment P of the query space Q (e.g., all
single term queries, all m-term conjunctions, or all m-term
exact phrases). A query pool can be constructed by crawling
a large corpus of web documents, such as the ODP directory,
and collecting terms or phrases that occur in its pages. We
can run the PB sampler with any query pool, yet the choice
of the pool may affect the sampling bias, the sampling recall,
and the query cost. We provide quantitative analysis of the
impact of various pool parameters on the PB sampler.

The PB sampler uses as its principal subroutine another
sampler, which generates random documents from D ac-
cording to the “match distribution”, which we define below.
The match distribution is non-uniform, yet its unnormal-
ized weights can be computed efficiently, without submitting
queries to the search engine. Thus, by applying any of the
Monte Carlo methods on the samples from the match dis-
tribution, the PB sampler obtains near-uniform samples. In
the analysis below we focus on application of rejection sam-
pling, due to its simplicity. We note that the unnormalized
weights produced by the PB sampler are only approximate,
hence Theorem 4.1 becomes essential for the analysis.

Preliminaries. π is the target distribution of the PB
sampler. For simplicity of exposition, we assume π is the
uniform distribution on D, although the sampler can be
adapted to work for more general distributions. The un-
normalized form of π we use is: π̂(x) = 1, for all x ∈ D.

P is any query pool. The set of queries q ∈ P that over-
flow (i.e., vol(q) > k) is denoted PO, while the set of queries
q ∈ P that underflow (i.e., vol(q) = 0) is denoted PU . A
query that neither overflows nor underflows is called valid.
The set of valid queries q ∈ P is denoted P+ and the set of
invalid queries is denoted P−.

Let φ be any distribution over P . The overflow probability
of φ, ovprob(φ), is Prφ(Q ∈ PO). Similarly, the underflow
probability of φ, unprob(φ), is Prφ(Q ∈ PU).

matchP(x) denotes the set of queries in P that a docu-
ment x matches. That is, matchP(x) = match(x)∩P . For
example, if P consists of all the 3-term exact phrases, then
matchP(x) consists of all the 3-term exact phrases that oc-
cur in the document x.

We say that P covers a document x, if matchP(x) 6= ∅.
Let DP be the collection of documents covered by P . Note
that a sampler that uses only queries from P can never reach
documents outside DP . We thus define πP to be the uniform
distribution on DP . The PB sampler will generate samples
from DP and hence in order to determine its sampling bias,
its sampling distribution will be compared to πP .

Let µ be any distribution over D. The recall of P w.r.t. µ,
denoted recall(P , µ), is the probability that a random doc-
ument selected from µ is covered by P . That is, recall(P , µ) =
Prµ(X ∈ DP). The recall of P w.r.t. the uniform distribu-
tion is the ratio |DP |/|D|. This recall will determine the
sampling recall of the PB sampler.

Match distribution. The match distribution induced by
a query pool P , denoted mP , is a distribution over the doc-

ument collection D defined as follows: mP(x) = |matchP (x)|
vol(P)

.

That is, the probability of choosing a document is propor-
tional to the number of queries from P it matches. Note
that the support of mP is exactly DP .

The unnormalized form of mP we use is the following:

m̂P(x) = |matchP(x)|. We next argue that for “natural”
query pools, matchP(x) can be computed based on the con-
tent of x alone and without submitting queries to the search
engine. To this end, we make the following plausible as-
sumption: for any given document x ∈ D and any given
query q ∈ P , we know, without querying the search engine,
whether x matches q or not. For example, if P is the set
of single-term queries, then checking whether x matches q
boils down to finding the term q in the text of x.

Some factors that may impact our ability to determine
whether the search engine matches x with q are: (1) How
the search engine pre-processes the document (e.g., whether
it truncates it, if the document is too long). (2) How the
search engine tokenizes the document (e.g., whether it ig-
nores HTML tags). (3) How the search engine indexes the
document (e.g., whether it filters out stopwords or whether
it indexes also by anchor text terms). (4) The semantics of
the query q. Some of the above are not publicly available.
Yet, most search engines follow standard IR methodologies
and reverse engineering work can be used to learn answers
to the above questions.

Since queries typically correspond to the occurrence of
terms or phrases in the document, we can find matchP(x),
by enumerating the terms/phrases in x and deducing the
queries in P that x matches. For example, if P is the set
of single-term queries, finding all the queries in P that x
matches simply requires finding all the distinct non-stopword
terms occurring in x.

Query volume distribution. A special distribution over
a query pool P is the query volume distribution, which we de-
note by vP . The volume of a query pool P , denoted vol(P),

is the sum
∑

q∈P vol(q). vP is defined as: vP(q) = vol(q)
vol(P)

.

The query volume distribution always has an underflow
probability of 0. Yet, the overflow probability may be high,
depending on the pool P . Typically, there is a tradeoff be-
tween this overflow probability and the the recall of P : the
higher the recall, the higher also is the overflow probability.

Note that sampling queries from P according vP seems
hard to do, since volumes of queries are not known a priori.

The PB sampler. Assume, for the moment, we have
a sampler MP that generates sample documents from the
match distribution mP . Figure 3 shows our PB sampler,
which uses MP as a subroutine.

1: Function PBSampler(SE)
2: while (true) do

3: X := random document sampled from mP using MP (SE)
4: W := |matchP (X)|
5: toss a coins whose heads probability is 1

W
6: if (coin comes up heads)
7: break
8: return X

Figure 3: The pool-based (PB) sampler

The PB sampler applies rejection sampling with trial dis-
tribution mP and target distribution πP . The unnormalized
weights used for document x are π̂P(x) = 1 and m̂P(x) =
|matchP(x)|. Since |matchP(x)| is a least 1 for any x ∈
supp(mP), then an envelope constant of C = 1 is sufficient.
As argued above, we assume the weight |matchP(x)| can be
computed exactly from the content of x alone. The follow-

ing shows that if MP indeed generates samples from mP ,
then the sampling distribution of the PB sampler is uniform
on DP . The proof follows directly from the analysis of the
rejection sampling procedure:

Proposition 5.1. Let η be the sampling distribution of
the PB sampler. If MP generates samples from mP , then
supp(η) = DP and η = πP .

Match distribution sampler. In Figure 4 we describe
the match distribution sampler. For the time being, we make
two unrealistic assumptions: (1) there is a sampler VP that
samples queries from the volume distribution vP ; and (2) the
overflow probability of vP is 0, although the pool’s recall is
high (as argued above, this situation is unlikely). We later
show how to remove these assumptions.

1: Function MatchDistributionSampler(SE)
2: Q := random query sampled from vP using VP (SE)
3: submit Q to the search engine SE
4: res(Q) := results returned from SE
5: X := document chosen uniformly at random from res(Q)
6: return X

Figure 4: The match distribution sampler

The sampler is very similar to the Bharat-Broder sam-
pler, except that it samples random queries proportionally
to their volume. Since no query overflows, all documents
that match a query are included in its result set. It fol-
lows that the probability of a document to be sampled is
proportional to the number of queries in P that it matches:

Proposition 5.2. Let p be the sampling distribution of
the match distribution sampler. If the sampler VP generates
samples from the volume distribution vP and if the overflow
probability of vP is 0, then p = mP .

We next address the unrealistic assumption that the over-
flow probability of vP is 0. Rather than using vP , which is
likely to have a non-zero overflow probability, we use a dif-
ferent but related distribution, which is guaranteed to have
an overflow probability of 0. Recall that P+ is the set of
valid (i.e., non-overflowing and non-underflowing) queries in
P . We can view P+ as a query pool itself (after all, it is just
a set of queries). The volume distribution vP+

of this pool
has, by definition, an overflow probability of 0.

Suppose we could somehow efficiently sample from vP+

and use these samples instead of samples from vP . In that
case, by Proposition 5.2, the sampling distribution p of the
match distribution sampler equals the match distribution
mP+

induced by the query pool P+.
Let us return now to the PB sampler. That sampler as-

sumed MP generates samples from mP . What happens if
instead it generates samples from mP+

? Note that now
there is a mismatch between the trial distribution used by
the PB sampler (i.e., mP+

) and the unnormalized weights
it uses (i.e., |matchP(x)|).

One solution could be to try to compute the unnormalized
weights of mP+

, i.e., m̂P+
(x) = |matchP+

(x)|. However,
this seems hard to do efficiently, because P+ is no longer
a “natural” query pool. In particular, given a document
x, how do we know which of the queries that it matches
are valid? To this end, we need to send all the queries in

matchP(x) to the search engine and filter out the over-
flowing queries. This solution incurs a prohibitively high
query cost. Instead, we opt for a different solution: we leave
the PB sampler as is; that is, the trial distribution will be
mP+

but the unnormalized weights will remain those of mP

(i.e., |matchP(x)|). This means that the samples generated
by the PB sampler are no longer truly uniform. The fol-
lowing theorem uses Theorem 4.1 to bound the distance of
these samples from uniformity. It turns out that this dis-
tance depends on two factors: (1) the overflow probability
ovprob(vP); and (2) recall(P+, mP), which is the proba-
bility that a random document chosen from mP matches at
least one valid query in P .

Theorem 5.3. Let η be the sampling distribution of the
PB sampler, let α = recall(P+, mP), and let β = ovprob(vP).
If MP generates samples from mP+

, then supp(η) = DP+

and

||η − πP+
|| ≤

β − (1 − α)

1 − β
.

Remark. As shown in the proof of the theorem, β ≥ 1 −
α always holds, and hence β − (1 − α) is a non-negative
quantity.

Volume distribution sampler. We are left to show
how to sample queries from the volume distribution vP+

efficiently. Our most crucial observation is the following:
vP+

can be easily computed, up to normalization. Given
any query q, we can submit q to the search engine and de-
termine whether q ∈ P+ or q ∈ P−. In the former case
we also obtain |res(q)| = vol(q). This gives the following
unnormalized form of vP+

: v̂P+
(q) = |res(q)| for q ∈ P+

and v̂P+
(q) = 0 for q ∈ P−. Since we know vP+

in unnor-
malized form, we can apply rejection sampling to queries
sampled from some other, arbitrary, distribution φ on P ,
and obtain samples from vP+

.

1: Function VolumeDistributionSampler(SE, C)
2: while (true) do

3: Q := random query sampled from φ using F
4: submit Q to the search engine SE
5: if (Q overflows or underflows)
6: W := 0
7: else

8: W := |res(Q)|
9: toss a coin whose heads probability is W

C·φ̂(Q)

10: if (coin comes up heads)
11: break
12: return Q

Figure 5: The volume distribution sampler

The volume distribution sampler is depicted in Figure 5.
The sampler uses another query sampler F that generates
samples from an easy-to-sample-from distribution φ on P .
φ must satisfy supp(φ) ⊇ P+. (We usually choose φ to be
the uniform distribution on P .) We assume φ is known in

some unnormalized form φ̂ and that a corresponding enve-
lope constant C is given. The target distribution of the re-
jection sampling procedure is vP+

. The unnormalized form
used is the one described above. Figuring out the unnor-
malized weight of a query requires only a single query to the
search engine. The following now follows directly from the
correctness of rejection sampling:

Proposition 5.4. If the volume distribution sampler is
executed with a sampler F sampling from a distribution φ on
P satisfying supp(φ) ⊇ P+, then the sampling distribution
of the sampler is exactly vP+

.

Analysis. The sampling recall and the sampling bias of
the PB sampler are analyzed in Theorem 5.3. The query
cost is bounded as follows:

Theorem 5.5. Suppose π and φ are uniform. Let α, β be
as in Theorem 5.3 and let γ = ovprob(φ) + unprob(φ) =

|P−|/|P|. If 1−β

α
· 1

avg
x∈DP+

|matchP+
(x)|

> β−(1−α)
1−β

, then the

query cost of the PB sampler is at most:

1
1−β

α
· 1

avg
x∈DP+

|matchP+
(x)|

− β−(1−α)
1−β

×

k

(1 − γ) · avgq∈P+
|res(q)|

.

Hence, the query cost is approximately proportional to the
average number of valid queries in P that a document matches
multiplied by the ratio between the maximum result size
(i.e., k) and the average result size of valid queries in P .

Choosing the query pool. We next review the parame-
ters of the query pool that impact the PB sampler.

(1) Pool’s recall. The sampler’s recall approximately equals
the pool’s recall, so we would like pools with high recall. In
order to guarantee high recall, a pool must consist of queries
that include at least one term/phrase from (almost) every
document in D. Since overflowing queries are not taken into
account, we need these terms not to be too popular. We
can obtain such a collection of terms/phrases by crawling a
large corpus of web documents, such as the ODP directory.

(2) Overflow probability. The bias of the PB sampler is
approximately proportional to the invalidity probability of
the query volume distribution. We thus need the pool and
the corresponding query volume distribution to have a low
overflow probability. Minimizing this probability usually in-
terferes with the desire to have high recall, so finding a pool
and a distribution that achieve a good tradeoff between the
two is tricky. m-term conjunctions or disjunctions are prob-
lematic because they suffer from a high overflow probability.
We thus opted for m-term exact phrases. Our experiments
hint that for m ≥ 5, the overflow probability is tiny. If
the phrases are collected from a real corpus, like ODP, then
the underflow probability is also small. The recall of ex-
act phrases is only a bit lower than that of conjunctions or
disjunctions.

(3) Average number of matches. The query cost of the PB
sampler is proportional to avgx∈DP+

|matchP+
(x)|. Hence,

we would like to find pools for which the number of matches
grows moderately with the document length. m-term exact
phrases are a good example, because the number of matches
w.r.t. them grows linearly with the document length. m-
term conjunctions or disjunctions are poor choices, because
there the growth is exponential in m.

6. RANDOM WALK BASED SAMPLER
The random walk (RW) sampler, described in Figure 6,

uses the Metropolis-Hastings algorithm to perform a random
walk on the documents indexed by the search engine. The

graph on these documents is defined by an implicit query
pool P . All we need to know about P is how to compute
the match set matchP(x), given a document x. We do not
need to know the constituent queries in P , and thus do not
have to crawl a corpus in order to construct P .

1: Function RWSampler(SE, B, x0)
2: X := x0

3: for i = 1 to B do

4: while (true) do

5: Q := query chosen uniformly from matchP (X)
6: submit Q to the search engine SE
7: if (Q neither overflows nor underflows)
8: break
9: res(Q) := results returned from SE
10: Y := document chosen uniformly at random from res(Q)

11: toss a coin whose heads probability is min
{

1,
|matchP (X)|
|matchP (Y)|

}

12: if (coin comes up heads)
13: X := Y

14: return X

Figure 6: Random walk based sampler

As in the previous section, P+ denotes the set of valid
queries among the queries in P . The graph on D induced by
P , which we denote by GP , is an undirected weighted graph.
The vertex set of GP is the whole document collection D.
Two documents x,y are connected by an edge if and only
if matchP+

(x) ∩ matchP+
(y) 6= ∅. That is, x and y are

connected iff there is at least one valid query in P , which
they both match. The weight of the edge (x,y) is set to be:

w(x,y) =
∑

q∈matchP+
(x)∩matchP+

(y)

1

|res(q)|
.

The degree of a document x is defined as:

deg(x) =
∑

y∈D

w(x,y).

The RW sampler runs a random walk on the graph GP ,
starting from some arbitrary document x0. At each step, if
the current document visited is x, the sampler chooses a pro-
posed neighboring document y with probability T (x,y) =
w(x,y)/deg(x). An acceptance-rejection procedure is now
invoked, in order to decide whether to move to y or stay at x.
Recall that the acceptance probability of the MH algorithm
is defined as:

r(x,y) = min

{

1,
π̂(y) T (y,x)

π̂(x) T (x,y)

}

.

In our case the target distribution is the uniform distribu-
tion, hence π̂(x) = 1 for all x. T (y,x) = w(y,x)/deg(y)
while T (x,y) = w(x,y)/deg(x). Since w(y,x) = w(x,y),

r(x,y) = min

{

1,
deg(x)

deg(y)

}

.

In order to implement this random walk we need to address
three issues: (1) given a document x, how do we sample a
neighbor document y with probability w(x,y)/deg(x)? (2)
for two given documents x,y, how do we calculate the ratio
deg(x)/deg(y)?; and (3) how do we set the length of the
burn-in period of the random walk?

Sampling neighbors. We start with the problem of sam-
pling neighbors according to the proposal function T (x,y).

To this end, we first come up with following characterization
of vertex degrees:

Proposition 6.1. ∀x ∈ D, deg(x) = |matchP+
(x)|.

The RW sampler then selects a neighbor Y of the cur-
rently visited document x as follows. First, it computes
matchP(x): the set of queries in P that x matches. Then,
it repeatedly chooses random queries from matchP(x) and
submit them to the search engine, until hitting a valid query
Q. Q is a uniformly chosen query from matchP+

(x). Next,
we pick a uniformly chosen document Y from the result
set of Q. The following proposition shows that for every
y ∈ D, the probability to choose y in this way is exactly
w(x,y)/deg(x):

Proposition 6.2. ∀y ∈ D, Pr(Y = y) = w(x,y)/deg(x).

Calculating acceptance probability. Next, we address
the issue of how to calculate the acceptance probability. By
Proposition 6.1, if the current document is x, and the pro-
posed neighbor is y, then the acceptance probability should
be r(x,y) = min{1, |matchP+

(x)|/|matchP+
(y)|}. Yet,

our sampler cannot know |matchP+
(x)| and |matchP+

(y)|
without submitting queries to the search engine. Instead, it
uses the following perturbed acceptance probability:

r′(x,y) = min

{

1,
|matchP(x)|

|matchP(y)|

}

.

r′(x,y) is easy to calculate, since we can compute |matchP (x)|
and |matchP(y)|. The problem is that now the acceptance
probability and the proposal function are mismatching, and
thus the limit distribution is no longer the uniform one. Yet,
we observe that the perturbation in the transition matrix
of the underlying Markov chain depends on the variability
among the validity densities of documents (see definition
below). If these validity densities are similar to each other,
then the perturbation is insignificant, and thus we do not
expect the limit distribution to change by much.

The validity density of a document x is defined as:

vdensity(x) =
|matchP+

(x)|

|matchP(x)|
.

That is, vdensity(x) is the fraction of valid queries among
the queries that x matches. Let Y be a uniformly chosen
document from D. If vdensity(Y) has low variance, then
for almost all documents, the fraction of valid queries they
match is about the same. In the extreme case that this vari-
ance is 0, we have: r′(x,y) = r(x,y), implying the limit
distribution is the uniform one! When the variance is > 0,
the limit distribution is not uniform any more. Yet, we
speculate that a small variance of the validity density would
result in a limit distribution which is not too far from uni-
form. Empirical evidence supports our speculation. Formal
analysis is postponed to future work.

Why should the variance of the validity density be small?
Typically, the validity density of a document is related to
the fraction of popular terms occurring in the document.
The fraction of popular terms in documents written in the
same language (or even in documents written in languages
with similar statistical profiles) should be about the same.

Burn-in period. The length of the burn-in period of
the random walk depends on the spectral gap of the Markov

Chain’s transition matrix. The difference between the largest
and second largest eigenvalues determines how quickly the
random walk approaches its limit distribution. The bigger
the gap, the faster the convergence. Quantitatively, if we
want the distribution of samples to be at most ǫ away from
the limit distribution π, then we need a burn-in period of
length O(1

α
(log |D|+ log(1/ǫ)), where α is the spectral gap.

When α is unknown, one can resort to empirical tests to
figure out a sufficient burn-in period length. One approach is
to run the MH algorithm several times, and empirically find
the minimum burn-in period length B needed to accurately
estimate statistical parameters of the data whose real value
we somehow know in advance.

The query cost of the sampler depends on two factors: (1)
the burn-in period B; and (2) the validity densities of the
documents encountered during the random walk. When vis-
iting a document x, the expected number of queries selected
until hitting a valid query is |matchP (x)|/|matchP+

(x)|,
i.e., the inverse validity density of x.

7. EXPERIMENTAL RESULTS
We conducted 3 sets of experiments: (1) pool measure-

ments: estimation of parameters of selected query pools; (2)
evaluation experiments: evaluation of the bias of our sam-
plers and the Bharat-Broder (BB) sampler; and (3) explo-
ration experiments: measurements of real search engines.

Experimental setup. For the pool measurements and the
evaluation experiments, we crawled the 3 million pages on
the ODP directory. Of these we kept 2.4 million pages that
we could successfully fetch and parse, that were in text,
HTML, or pdf format, and that were written in English.
Each page was given a serial id, stored locally, and indexed
by single terms and phrases. Only the first 10,000 terms in
each page were considered. Exact phrases were not allowed
to cross boundaries, such as paragraph boundaries.

In our exploration experiments, conducted in January-
February 2006, we submitted 220,000 queries to Google,
580,000 queries to MSN Search, and 380,000 queries to Ya-
hoo!. Due to legal limitations on automatic queries, we used
the Google, MSN, and Yahoo! web search APIs, which are,
reportedly, served from older and smaller indices than the
indices used to serve human users.

Our pool measurements and evaluation experiments were
performed on a dual Intel Xeon 2.8GHz processor worksta-
tion with 2GB RAM and two 160GB disks. Our exploration
experiments were conducted on five workstations.

Pool measurements. We selected four candidate query
pools, which we thought could be useful in our samplers:
single terms and exact phrases of lengths 3, 5, and 7. (We
measured only four pools, because each measurement re-
quired substantial disk space and running time.) In order
to construct the pools, we split the ODP data set into two
parts: a training set, consisting of every fifth page (when
ordered by id), and a test set, consisting of the rest of the
pages. The pools were built only from the training data,
but the measurements were done only on the test data. In
order to determine whether a query is overflowing, we set a
result limit of k = 20.

All our measurements were made w.r.t. the uniform dis-
tribution over the pool (including the overflow probability).
Analysis of the overflow probability of the volume distribu-
tion (which is an important factor in our analysis) will be

done in future work. The results of our measurements are
tabulated in Table 1. The normalized deviation of the valid-
ity density is the ratio σ(vdensity(Y))/E(vdensity(Y)),
where Y is a uniformly chosen document.

Parameter Single Phrases Phrases Phrases
terms (3) (5) (7)

Size 2.6M 97M 155M 151M
Overflow prob. 11.4% 3% 0.4% 0.1%
Underflow prob. 40.3% 56% 76.2% 82.1%
Recall 57.6% 96.5% 86.7% 63.9%
Avg # of matches 5.6 78.8 43.2 29
Avg validity density 2.4% 29.2% 55.7% 67.5%
Normalized deviation 1.72 0.493 0.416 0.486
of validity density

Table 1: Results of pool parameter measurements

The measurements show that overflow probability, aver-
age number of matches, and average validity density improve
as phrase length increases, while recall and underflow prob-
ability get worse. The results indicate that a phrase length
of 5 achieves the best tradeoff among the parameters. It
has a very small overflow probability (less than 0.5%), while
maintaining a recall of 86%. The overflow probability of 3-
term phrases is a bit too high (3%), while the recall of the
7-term phrases is way too low (about 64%).

Single terms have a relatively low overflow probability,
only because we measure the probability w.r.t. the uniform
distribution over the terms, and many of the terms are mis-
spellings, technical terms, or digit strings. Note, on the
other hand, the minuscule average validity density.

Since the ODP data set is presumably representative of
the web, we expect most of these measurements to represent
the situation on real search engines. The only exceptions are
the overflow and underflow probabilities, which are distorted
due to the small size of the ODP data set. We thus measured
these parameters on Yahoo!. The results are given in Table
2. It is encouraging to see that for 5-term phrases, the over-
flow probability remains relatively low, while the underflow
probability goes down dramatically. The elevated overflow
probability of 3-term phrases is more evident here.

Parameter Single Phrases Phrases Phrases
terms (3) (5) (7)

Overflow prob. 40.2% 15.7% 2.1% 0.4%
Underflow prob. 4.5% 3.4% 7.2% 12.9%

Table 2: Pool parameter measurements on Yahoo!

Evaluation experiments. To evaluate our samplers and
the BB sampler, we ran them on a home-made search engine
built over the ODP data set. In this controlled environment
we could compare the sampling results against the real data.

The index of our ODP search engine consisted of the test
set only. It used static ranking by document id to rank query
results. A result limit of k = 5 was used in order to have an
overflow probability comparable to the one on Yahoo!.

We ran four samplers: (1) the PB sampler with rejection
sampling; (2) the PB sampler with importance sampling;
(3) the RW sampler; and (4) the BB sampler. All the sam-
plers used a query pool of 5-term phrases extracted from the
ODP training set. The random walk sampler used a burn-in
period of 1,000 steps. Each sampler was allowed to submit
exactly 5 million queries to the search engine.

In Figure 7, we show the distribution of samples by doc-
ument size. We ordered the documents in the index by size,
from largest to smallest, and split them into 10 equally sized
deciles. Truly uniform samples should distribute evenly among
the deciles. The results show the overwhelming difference
between our samplers and the BB sampler. The BB sam-
pler generated a huge number of samples at the top decile
(more than 50%!). Our samplers had no or little bias.

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10

Deciles of documents ordered by size

P
er

ce
nt

 o
f d

oc
um

en
ts

 fr
om

 s
am

pl
e

PB + Rejection Sampling

PB + Importance Sampling

RW-MH

BB phrases

Figure 7: Distribution of samples by document size.

Figure 8 addresses bias towards highly ranked documents.
We ordered the documents in the index by their static rank,
from highest to lowest, and split into 10 equally sized deciles.
The first decile corresponds to the most highly ranked doc-
uments. The results indicate that none of our samplers had
any significant bias under the ranking criterion. Surpris-
ingly, the BB sampler had bias towards the 4th, 5th, and
6th deciles. When digging into the data, we found that doc-
uments whose rank (i.e., id) belonged to these deciles had
a higher average size than documents with lower or higher
rank. Thus, the bias we see here is in fact an artifact of the
bias towards long documents. A good explanation is that
our 5-term exact phrases pool had a low overflow probability
in the first place, so very few queries overflowed.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

1 2 3 4 5 6 7 8 9 10

Deciles of documents ordered by rank

P
er

ce
nt

 o
f d

oc
um

en
ts

 fr
om

 s
am

pl
e

PB + Rejection Sampling

PB + Importance Sampling

RW-MH

BB phrases

Figure 8: Distribution of samples by document rank.

We have several conclusions from the above experiments:
(1) the 5-term phrases pool, which has small overflow prob-
ability, made an across-the-board improvement to all the
samplers (including BB). This was evidenced by the lack of
bias towards highly ranked documents. (2) The BB sampler
suffers from a severe bias towards long documents, regard-
less of the query pool used. (3) Our pool-based samplers
seem to give the best results, showing no bias in any of the

experiments. (4) The random walk has a small negative bias
towards short documents. Possibly by running the random
walk more steps, this negative bias could be alleviated.

Exploration experiments. We used our most successful
sampler, the PB sampler, to generate uniform samples from
Google, MSN Search, and Yahoo!. For complete details of
the experimental setup, see the full version of the paper.

Table 3 tabulates the measured relative sizes of the Google,
MSN Search, and Yahoo! indices. Since our query pool con-
sisted mostly of English language phrases, our results refer
mainly to the English portion of these indices. We also re-
mind the reader that the indices we experimented with are
somewhat outdated. In order to test whether a URL belongs
to the index, we used a standard procedure [4, 12].

Pages from ↓
indexed by → Google MSN Yahoo!
Google 46% 45%
MSN 55% 51%
Yahoo! 44% 22%

Table 3: Relative sizes of major search engines.

Figure 9 shows the domain name distributions in the three
indices. Note that there are some minor differences among
the search engines. For example the .info domain is covered
much better by MSN Search than by Google and Yahoo!.

0%

10%

20%

30%

40%

50%

60%

co
m or

g uk ne
t

ed
u de ca go

v au es us sg info dk il

Top level domain name

P
er

ce
nt

 o
f d

oc
u

m
e

nt
s

fro
m

 s
am

pl
e

Google

MSN Search

Yahoo!

Figure 9: Top-level domain name distribution.

8. CONCLUSIONS
We presented two novel search engine samplers. The first,

the pool-based sampler, provides weights together with the
samples, and can thus be used in conjunction with stochas-
tic simulation techniques to produce near-uniform samples.
We showed how to apply these simulations even when the
weights are approximate. We fully analyzed this sampler
and identified the query pool parameters that impact its
bias and performance. We then estimated these parame-
ters on real data, consisting of the English pages from the
ODP hierarchy, and showed that a pool of 5-term phrases
induces nearly unbiased samples. Our second sampler runs
a random walk on a graph defined over the index documents.
Its primary advantage is that it does not need a query pool.
Empirical evidence suggests that the random walk converges

quickly to its limit equilibrium distribution. It is left to fu-
ture work to analyze the spectral gap of this random walk
in order to estimate the convergence rate mathematically.

We note that the bias towards English language docu-
ments is a limitation of our experimental setup and not of
the techniques themselves. The bias could be eliminated by
using a more comprehensive dictionary or by starting ran-
dom walks from pages in different languages.

Finally, we speculate that our methods may be applicable
in a more general setting. For example, for sampling from
databases, deep web sites, library records, etc.

9. REFERENCES
[1] A. Anagnostopoulos, A. Broder, and D. Carmel. Sampling

search-engine results. In Proc. 14th WWW, pages 245–256,
2005.

[2] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and
D. Weitz. Approximating aggregate queries about Web pages
via random walks. In Proc. 26th VLDB, pages 535–544, 2000.

[3] J. Battelle. John Battelle’s searchblog.
battellemedia.com/archives/001889.php, 2005.

[4] K. Bharat and A. Broder. A technique for measuring the
relative size and overlap of public Web search engines. In Proc.
7th WWW, pages 379–388, 1998.

[5] E. Bradlow and D. Schmittlein. The little engines that could:
Modelling the performance of World Wide Web search engines.
Marketing Science, 19:43–62, 2000.

[6] F. Can, R. Nuray, and A. B. Sevdik. Automatic performance
evaluation of Web search engines. Infor. Processing and
Management, 40:495–514, 2004.

[7] M. Cheney and M. Perry. A comparison of the size of the
Yahoo! and Google indices.
vburton.ncsa.uiuc.edu/indexsize.html, 2005.

[8] P. Diaconis and L. Saloff-Coste. What do we know about the
Metropolis algorithm? J. of Computer and System Sciences,
57:20–36, 1998.

[9] dmoz. The open directory project. dmoz.org.

[10] A. Dobra and S. Fienberg. How large is the World Wide Web?
Web Dynamics, pages 23–44, 2004.

[11] M. Gordon and P. Pathak. Finding information on the World
Wide Web: the retrieval effectiveness of search engines.
Information Processing and Management, 35(2):141–180,
1999.

[12] A. Gulli and A. Signorini. The indexable Web is more than
11.5 billion pages. In Proc. 14th WWW (Posters), pages
902–903, 2005.

[13] W. Hastings. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57(1):97–109, 1970.

[14] D. Hawking, N. Craswel, P. Bailey, and K. Griffiths. Measuring
search engine quality. Information Retrieval, 4(1):33–59, 2001.

[15] M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork.
Measuring index quality using random walks on the Web. In
Proc. 8th WWW, pages 213–225, 1999.

[16] M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork.
On near-uniform URL sampling. In Proc. 9th WWW, pages
295–308, 2000.

[17] S. Lawrence and C. Giles. Searching the World Wide Web.
Science, 5360(280):98, 1998.

[18] S. Lawrence and C. Giles. Accessibility of information on the
Web. Nature, 400:107–109, 1999.

[19] J. S. Liu. Monte Carlo Strategies in Scientific Computing.
Springer, 2001.

[20] T. Mayer. Our blog is growing up and so has our index.
www.ysearchblog.com/archives/000172.html.

[21] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. Equations of state calculations by fast computing
machines. J. of Chemical Physics, 21:1087–1091, 1953.

[22] G. Price. More on the total database size battle and
Googlewhacking with Yahoo.
blog.searchenginewatch.com/blog/050811-231448, 2005.

[23] P. Rusmevichientong, D. Pennock, S. Lawrence, and C. Lee
Giles. Methods for sampling pages uniformly from the World
Wide Web. In AAAI Fall Symp., 2001.

[24] J. von Neumann. Various techniques used in connection with
random digits. In John von Neumann, Collected Works,
volume V. Oxford, 1963.

