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ABSTRACT
Many web applications such as ad matching systems, verti-
cal search engines, and page categorization systems require
the identification of a particular type or class of pages on
the Web. The sheer number and diversity of the pages on
the Web, however, makes the problem of obtaining a good
sample of the class of interest hard. In this paper, we de-
scribe a successfully deployed end-to-end system that starts
from a biased training sample and makes use of several state-
of-the-art machine learning algorithms working in tandem,
including a powerful active learning component, in order to
achieve a good classification system. The system is evalu-
ated on traffic from a real-world ad-matching platform and
is shown to achieve high categorization effectiveness with a
significant reduction in editorial effort and labeling time.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology

General Terms
Design

Keywords
Classification with Imbalanced datasets, SVMs, Active Learn-
ing, Web Scale Performance Evaluation

1. INTRODUCTION
In recent years, the problem of categorizing web pages

has become particularly relevant. The wide-spread preva-
lence of ad matching systems, the rise of vertical specific
search engines and information extraction systems require
the automated detection of pages of a particular class or
with specific semantics. For instance, ad matching systems
require that ads not be shown on specific classes of pages
such as adult pages or pages with mature content. Vertical
search engines, such as a blog search engines, operate only
on a particular type of pages such as blog, or review, or
forum pages. Similarly, information extraction systems use
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different extraction mechanisms based on the type of a page.
Thus, a restaurant home page will have extraction rules that
are different from that of a University’s home page. It is im-
portant to note that for any topic or semantic concept, such
as the ones mentioned above, the number of Web documents
that belong to this concept is usually very small if compared
to all available documents in a population1.

The rarity of pages from a particular topical class on the
Web poses a number of challenges in each stage of learning
a classifier for that topic: starting from training data gen-
eration, through model training, to evaluating the expected
performance on the population. For example, the standard
technique of generating training data by obtaining a random
sample of the population does not work in this case as the
data thus generated will have very few or no examples at all
from the class of interest. Training a model, on the other
hand, usually requires that both the positive and the neg-
ative class be well represented. Compiling a representative
negative set of examples, however, is infeasible as a negative
example can be any page on the Web on any topic different
from the topic of interest.

The problem of learning from imbalanced datasets has
applicability in many domains, such as fraud detection [6],
spam detection [26], or object recognition in images [28, 29]
(cf. Section 2). Most of the solutions proposed in these ar-
eas involve the stratification of data based on some domain-
specific criterion, resampling the rare class data in each
stratification, followed by training a classifier on each strat-
ification. While the above mentioned approach has been
shown to work with varying degrees of success in an offline
setting, the technique is not easily adaptable to the Web
because of its scale. Firstly, it is not clear what the strat-
ification should be and secondly, even if some stratification
was obtained the chances of finding pages from the class of
interest in each stratification continues to be small.

In this paper, we describe an end-to-end topical catego-
rization system that has been successfully deployed in a real
time ad matching platform on the Web. The system is de-
signed to detect pages on a number of“sensitive”topics, such
as pages with adult, gambling, hard news (i.e. news about
death and suffering), or drug related content (cf. Section 5).

1By“population”we refer, for example, to all pages on which
online ads might be displayed; or to all pages that a search
engine indexes.
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Reputable advertisers do not want their ads to be associated
with pages of such nature. To avoid lawsuits and protect the
reputation of the advertisers we have designed a methodol-
ogy to automatically detect sensitive pages among the ad-
vertising traffic. The primary requirement of our system is
for it to have very high recall, i.e. retrieve as many of the
sensitive pages as possible, with reasonable precision. While
we do not quantize what reasonable means, we point out
that having too many false positives, i.e. normal pages be-
ing labeled as sensitive, decreases the advertising inventory
and has a direct impact on the profits. These two competing
objectives are especially hard to achieve because some cate-
gories may have very subtle nuances in their definition. As
an anecdotal example, certain advertisers allow their ads to
be shown on a page discussing over-the-counter drugs, but
not on a page discussing illegal drugs.

Our proposed system, consists of a number of binary cate-
gorizers, one for each category of interest. Through the rest
of the text, we describe the methodology devised for building
these categorizers. We first elaborate on the problem of im-
balanced class learning and some solutions discussed in the
related literature (Section 2). We then propose a scalable
procedure for obtaining concept rich training data for topi-
cal categorization on the Web (Section 4.1). We describe our
model training with an emphasis on active learning mecha-
nisms that quickly overcome the bias introduced during the
training data generation phase (Section 4.2 and 4.3). We
finish by presenting the steps followed in evaluating the per-
formance of our binary categorizers on the entire population
and the subsequent setting of a classification threshold for
deployment (Section 4.5).

2. RELATED WORK
The importance of robust classification in the case of im-

balanced datasets has been stressed by researchers across
diverse fields [6, 7, 17, 23, 26, 28, 29]. For example, Yan
et al. [29] demonstrate that in scene classification, discrim-
inative classes of objects are usually very rare. Chan et al.
[6] and Tang et al. [26] point out respectively that fraudu-
lent credit card transactions and non-spam mail sending IPs
constitute a very small number of the entire set of transac-
tions or mail populations. Chawla et al. and Woods et
al. [7, 28] show that the very few cancer indicating pixels
on mammograms can be easily overlooked when classifying
medical pathologies. Rare class detection has also been stud-
ied in the context of document categorization-the focus of
our work. Joshi et al. [15], for instance, analyze the ef-
fect of different base learners while using boosting for the
topical categorization of documents from a medical corpus,
while Mladenic et al. [21] discuss how feature selection and
different scoring methods might impact Web document cat-
egorization in the imbalanced setting.

Provost [23] summarizes two fundamental questions that
should be addressed when dealing with highly imbalanced
classes: 1) What is the ultimate cost function to be opti-
mized? 2) How can differences in training and testing dis-
tributions be accommodated? The first question stresses
an essential artifact emerging in the context of imbalanced
class learning. Optimizing the usual 0-1 classification loss
and computing the accuracy of the classifier may be rather
misleading in such settings. Indeed, the trivial classifier that
assigns the majority label will often have near perfect accu-
racy yet its precision for most problems like cancer detection

will be unacceptable. A majority of the literature on unbal-
anced class learning focuses on aspects and solutions of this
problem. The general approaches suggested by researchers
in the area are either to re-define the cost function to be more
sensitive to errors in misclassifying the rare class [6, 10, 16],
or to artificially change the distribution of the data by up-
sampling the minority or downsampling the majority class
and thus simulate a learning problem with a more balanced
class distribution [7, 17]. Both directions focus ultimately
around the same idea, which is how to force the learner to
recognize that the rare class has higher importance than
what is suggested by the training distribution.

As noted by Provost [23], cost-sensitive corrections and
sampling based methods have been demonstrated to achieve
promising results when applied in certain domains but fail
to perform consistently when applied across a variety of im-
balanced problems. Furthermore, they fail to address the
second question stated above, namely, how shall we pro-
ceed when the true distribution is not only skewed but also
infeasible to sample from, i.e. when our train and test dis-
tributions differ? This turned out to be especially critical
in our system for Web document categorization because of
the following reasons. On one hand, the number of pages
from different topics is dynamic - a devastating phenomena
or a death of a celebrity may increase the number of “hard
news” pages dramatically over a day and change the “hard
news” distribution significantly. On the other hand, even for
a particular snapshot in time there is no clear understanding
of the actual distribution of topics on the Web - how many
drug related pages are there on the Web? A very negligible
fraction probably compared to all pages. To answer such
questions through standard sampling techniques, we may
need to obtain over a million documents and have them la-
beled by experts which is apparently infeasible. Later on
(Section 4.1) we introduce our approach for generating a
rich and representative initial “training seed”. The method
is close in spirit to importance sampling and uses search
queries as a proxy to capture the distribution of the positive
class. While this allows the generation of a training set that
reflects the importance of the rare class, the procedure also
introduces a lot of bias in the trained classifiers, which again
brings us to the the second question raised above.

There are very few guarantees that can be given about the
performance of a classifier if nothing is known about the true
test distribution in advance. Covariate shift [25], for exam-
ple, shows a method for correcting training bias given that
there is information about the conditional distribution of the
test set labels y given data x. In particular, the method re-
quires that p(y|x) remains unchanged on the train and test
sets. Model selection under covariate shift has been demon-
strated on imbalanced learning problems too, such as spam
filtering [2], where spam patterns may change over time, or
cancer detection in gene expressions [3] where test and train
data might come from different study groups. Considering
covariate shift, however, we found that the assumption for
p(y|x) to remain constant is too strong for document cate-
gorization on the Web. For certain x, e.g. pages discussing
a drug like “propofol”, we may not even have a training esti-
mate of p(y|x) because at the time of training set collection
there were no high ranked documents in the population dis-
cussing the drug. Even if we have a training estimate for
p(y|x), its value may change significantly in test time. To
illustrate this, consider a situation where the training data
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contains several slightly different pages x discussing hurri-
canes, some of them related to a hurricane fiction movie and
others from a weather forecasting service. If, however, a
deadly hurricane phenomena occurs at some point in time,
then p(y = “hard news′′|x) in our test environment will
increase with pages from all popular news sites suddenly
discussing the devastating effects of the phenomena.

Instead of trying to infer the covariate shift in the test
data, in our system we decided to adopt a more data driven
approach, one in which we try to make our classifier less sus-
ceptible to sudden changes in distribution. We achieve this
by tuning the classifiers to the entire population. For this
purpose, we resolve to a hitherto unprecedented large scale
active learning procedure. In active learning the classifiers
iteratively augment their training set with a limited number
of examples from the entire population. The method has
been studied broadly in the academic literature, including
in the context of document categorization and imbalanced
datasets [11, 20, 27], but has remained unpopular in the
data mining industry mostly due to its heavy requirement
for expert editorial resources. We defer our discussion on
active learning to Section 4.3 where we outline a number
of previously overlooked aspects that emerge when trying
to scale the method to a production system with inherently
noisy and hardly separable data.

3. AD MATCHING PLATFORM
Contextual advertising is a form of advertising on the In-

ternet, wherein an ad matching system acts as an interme-
diary between an advertiser and the publisher of Web pages.
Whenever a user views a page that is being served by the
ad matching platform, the system at real-time selects ads
from a corpus to display on a publisher’s page. Typically,
an ad is matched to a page either based on the content of
the page, or the profile of the user viewing the page. There
has been a lot of recent work in making this ad matching
process effective and efficient [1].

As mentioned in Section 1, advertisers have a very strong
notion about the type of pages they would not want their ads
to appear on. For instance, most advertisers would not like
their ads placed on pages that contain mature adult content,
or on pages that deal with death and suffering, as they do
not want to be associated with content that is distasteful to
their customer profile. The problem of identifying the set of
pages that are of a certain nature has very strong precision
and recall considerations. The precision metric ensures that
pages that are being identified as being of a certain type
should truly be so, otherwise the ad matching system loses
out on an advertising opportunity and this directly impacts
profits. The recall metric, on the other hand, guarantees
that pages that belong to a black-listed category never go
undetected thereby making sure that the advertiser guide-
lines are consistently met.

A large-scale ad matching platform processes a few tens
of millions of pages at any point of time thereby making
manual filtering of pages in black-listed categories impossi-
ble. An obvious approach is to use a dictionary based string
matching method, wherein a human editor generates a list
of indicative terms, the presence of which on a page signals
the possibility of the page being in the undesirable category.
Such methods while having a high precision suffer from low
recall. Hence, there is a need to categorize the pages that
are served by the ad matching platform automatically with

a more intelligent method than string matching. Given the
nature of the ad serving platform, a candidate categorization
system should be scalable, be able to classify a page within a
hundred milliseconds and be relatively stable across changes
in the training and test distributions. In the following sec-
tion, we address the design of such a categorization system.

4. DESIGN OF THE CATEGORIZATION
SYSTEM

As with any active learned categorizer, our categorization
system implements the following steps:

- Generation of training data.

- Initial model training.

- Validation of trained model.

- Model adjustment based on the results from the vali-
dation step. Iteration with previous step until conver-
gence.

- Performance evaluation on real traffic.

In the following sections, we describe the design method-
ology and the intuition behind the choices for each of the
above steps. While model adjustment typically implies pa-
rameter selection, we also include the active learning phase
in it as the learned model has to adjust to the differences
between the training and test distributions.

4.1 Generating Training Data
Once a category of interest is identified, the first step in

training a classifier is to generate labeled training data for
it. Obtaining a uniform sample of pages from the Web and
having it labeled by human editors is not feasible as such a
sample, even with a few 100K examples, might not contain
any pages from a rare class of interest. Thus, a very large
sized sample has to be collected in order to have a reasonable
number of examples from the rare class for classifier training.
Such a naive approach is a waste of valuable human editorial
time. Optionally, one can rely on an editor’s knowledge of
the Web to obtain good positive and negative training exam-
ples for the classifier. This approach introduces some bias in
the training data as there will be a number of less popular
domains the editors maybe unaware of which are important
to learn from for the sake of generalization. In order to ob-
tain a snapshot of the pages in the category of interest on
the Web, we used the search engine as a front-end processor.
Human editors first draw up a list of search terms that can
potentially retrieve the pages of interest. For instance, given
a reasonably sized index of the Web, searching for the term
online gambling casinos will surface a variety of pages that
offer online gambling; a category that is offensive to some
advertisers. Once the list of query terms has been prepared,
the search engine is queried with the same. A smaller sam-
ple of the URLs retrieved by the search engine is obtained
and added to the editorial queue. The editors then judge the
actual pages associated with the set of URLs and mark them
up as positive or negative, where positive indicates that the
page is about the rare class of interest and negative indicates
that the page retrieved by the search engine did not qualify
for the category as per pre-defined guidelines. This method-
ology provides us with a biased training data in which the
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negative examples are borderline positive, given that they
were retrieved by the search engine along with the positive
examples, and are potentially harder to learn from.

In order to obtain better representation of the space of
negative examples, human editors also made use of web di-
rectories that are manually maintained. Examples of such
directories are the Yahoo! Directory 2 and the DMOZ Open
Directory Project 3. Both these directories contain a large
number of nodes that are arranged as a taxonomy. Each
node represents a set of curated topical pages with the cor-
responding URLs. For example, the Arts/Photography node
in the Yahoo! directory contains URLs of pages that are
related to the art of photography. For our purposes, nodes
in the Yahoo! directory whose semantic names are widely
different from the semantics of the category of interest are
first identified. URLs in such negative nodes are then sam-
pled and added to the negative set obtained by search en-
gine querying. Note that this wholesale addition of negative
examples typically works when the category of interest is
topical, such as the Adult or Gambling categories. If the
class of interest cuts across topical pages, as with a generic
Blog classifier, the identification of representative negative
data is less straight-forward. In the latter case, a classifier
is first trained on the initial editorial set. The classifier is
then used to score about 1M pages sampled at random from
the search index. Pages that are labeled as strongly nega-
tive by the classifier are then added as negative examples to
the training set. In either case, approximately 100K such
background negative pages are added to the training set.

4.2 Training an Initial Model
The training data collected via the process detailed in

Section 4.1 was processed to obtain a bag-of-words repre-
sentation over the unigrams extracted from the page [14].
Since our training data contains only Web pages with HTML
markup, information about the HTML tags was also pre-
served in the feature construction process. For example,
adult t (the word adult appearing in the title) is treated as
a feature different from the feature adult b (the word adult
appearing in the body of the document). Preserving HTML
tag information proved to be a useful signal in our initial
experimentation. For example, in the case of the adult clas-
sifier a page that contains strongly adult words in the title
is more likely to be a page with adult content than a page
that contains such terms only in the body. Experimenta-
tion with bigram features resulted in almost no gains for
the large increase in the size of the feature space. We also
made use of a stopwords list (with words like ‘and’, ‘for’,
etc.) to remove the high frequency non-descriptive words.
A ‘global’ dictionary was constructed as explained later in
Section 4.3 and only those features of the document that
appear in the dictionary were retained. The resulting bag-
of-words was further processed such that each page was rep-
resented as xi = ( xi0

‖xi‖ , xi1
‖xi‖ , . . . , xin

‖xi‖ ), where xij are the

frequencies with which the j-th word in the dictionary ap-
pears in the i-th example. Experimental evidence showed
that the above representation of examples as directions on
the unit sphere yielded significantly better performance as
opposed to no normalization and a similar performance to
feature-wise standardization. Feature-wise standardization

2http://dir.yahoo.com
3www.dmoz.org
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Figure 1: Comparison of linear SVM, MaxEnt and
stochastic gradient descent on a five fold split of the
Sensitivity Class 2 training set (cf. Section 5).

techniques, however, produce a non-sparse representation
which is a significant concern as the feature space that we
work with contains hundreds of thousands of dimensions.
Standardization is also prone to instability due to a possible
bias in the estimate of the two modes (mean and deviation)
only on the training set.

A number of learning methods, including linear and RBF
kernel SVMs [5], MaxEnt models [22], decision trees (C5.0)
[24], Naive Bayes [19], and stochastic gradient descent [18]
were evaluated on a five fold cross-validation split of the
training data. The decision trees and the RBF kernel SVMs
could not handle the large training data and feature space.
The Naive Bayes classifier was significantly outperformed by
the linear SVMs as is generally observed [14]. While recent
linear SVM implementations allow the optimization method
to scale easily to millions of documents represented over mil-
lions of features [12, 13], this classifier also performed better
than MaxEnt and stochastic gradient descent as can be seen
for one of the categories in Figure 1.

The optimization problem that SVM solves has the form
minw

1
2
‖w‖+C(c1

∑p
i=1 ξ1

i +c0

∑l
i=p+1 ξ0

i ), where w
‖w‖ is the

normal of the separation hyperplane defining the classifica-
tion function; ξ1

i and ξ0
i is the L2 loss incurred in misclassi-

fying a positive or negative example respectively; 0 ≤ c1 ≤ 1
is the weight associated with the penalty paid by the pos-
itive examples; c0 = 1 − c1 is the weight associated with
the penalty paid by the negative examples; and C is the
trade off between the complexity of the classifier and its
performance on the training set. The best parameters for
a SVM classifier were obtained by subjecting the training
data to a five fold cross-validation search on the grid of val-
ues C = {2−5, 2−4, . . . , 28} and c1 = {0.2, 0.3, . . . , 0.8}, to
identify the parameters (C∗, c∗1) that optimize the precision
at recall level 90%. This best set of parameters, as identified
by the grid search, was then used with the entire training
data to build a classifier.

4.3 Active Learning
An initial evaluation of the classifier, built as detailed in
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Section 4.2, using the results of the 5-fold cross-validation
showed a good precision/recall curve. However, when the
classifier was evaluated on a hold-out test set that was drawn
from the traffic, the classifiers did not generalize well as can
be seen in Figures 3(a) and 3(c). Despite the use of a search-
engine as a proxy to the Web and the addition of a large
number of negative examples, the training data continued
to have some bias that caused it to not generalize well to
the test distribution. One source of bias came from the Web
domain bias, that is, editors while labeling became attuned
to the fact that pages from a particular domain typically
contained adult content and would consistently label pages
from the domain in question to the positive dataset. What
was missing in this picture was that the adult content was
just one of the sub-domains and there were other parts of
the site which had non-adult content. Unless and until we
had negative data from such non-adult sub-domains in our
training set the classifier would invariably assign a very high
weight to the domain name itself. At the time of ad match-
ing, given a non-adult page from this site, even though the
page contains non-adult terms it could barely offset the very
high positive weight given to other features such as the name
of the domain or other site-specific features. This is just one
example of the bias that can be introduced in the training
data. To compensate for the change in the feature distribu-
tions between the training set and the real traffic, we relied
on active learning [27]. The idea behind active learning is
to iteratively select a small set of unlabeled examples that
can maximally improve the classifier’s performance had it
been labeled and added to the training set. The trick is to
identify this set prior to it being labeled.

Since SVMs with linear kernels were used as the under-
lying classifier, we employed with modifications the active
learning procedure from [27] which was introduced specifi-
cally for fast convergence for a large margin classifier. The
objective of the procedure is to select examples that would
maximally shrink the space of admissible hypothesis which
also contains the true hypothesis that would be learned if
all data was labeled in advance. It has been shown that the
examples which truncate the space most are those which are
closest to the separation hyperplane. We refer the reader to
[27] for details and discuss instead certain practical issues
encountered while training the sensitivity models and which
have not received much attention in the literature.

There were three practical problems that we were con-
fronted with:

- Should we allow the feature space to change from one
iteration to the next?

- Should the expensive process of parameter selection be
performed after each iteration?

- How do we improve the diversity of the active learned
set?

Feature Space: As new pages are being labeled and
added to the training set, it is quite possible that new fea-
tures that were hitherto unseen are also being made avail-
able to the classifier. For example, consider a classifier for
Alcohol related pages and suppose that the training data
did not contain the feature “Budweiser” and we restrict our-
selves to the original feature space. Now even if we select
“Budweiser” related pages from the traffic for labeling we
risk missing a very important feature for this classifier by

the feature space restriction. On the other hand, allowing
the feature space to change between active learning itera-
tions essentially changes the hypothesis space itself and all
guarantees of the active learning algorithm converging to a
good solution are off as each classifier essentially undergoes
only one round of active learning. Whether this method
of changing hypothesis spaces gives us a similar performing
classifier as that obtained with a fixed feature space is a
question worth exploring. In our training process, we tried
to minimize the effect of losing out on important features
by computing a global dictionary using all pages from the
traffic prior to the process of training data generation. Con-
structing a global dictionary requires no manual effort and
is easily parallelizable. Thus all the pages from the traffic to
the ad-matching platform over a period of a month, in the
order of a few tens of millions, were used to compute the fea-
ture dictionary. While this approach still has a problem of
being unable to exploit a new feature introduced sometime
in the future, it is better than restricting ourselves to the
feature space of the training data. Note also, that the only
feature pruning method that was performed was based on
the document frequency of the feature in question. Words
that appeared in less than 10 pages from all traffic were
removed from the dictionary.

Parameter Space: As mentioned in Section 4.2 each
SVM has the following tunable parameters (C, c1). As with
the feature space, the question here is does one allow the pa-
rameters to change between active learning iterations? Al-
lowing parameters to change at each iteration causes the
hypothesis space to change thereby affecting convergence
possibilities. Experimental results showed that while this
method ultimately lead to better classifiers, it has very high
variance in its performance in the initial iterations. This
makes it necessary to have better methods at detecting the
convergence of the active learned classifier and performing
additional active learning iterations until convergence is de-
tected. The effect of the global (one setting used across
all iterations) versus local (different settings for each itera-
tion) parameter selection can be seen in Figure 2 which is a
simulation of the active learning environment. Given the er-
ratic convergence of the local parameter selection technique,
and the limited editorial support which restricted the num-
ber of active learning iterations that can be performed, we
resorted to performing active learning with a single global
setting. The best set of parameters (C∗, c∗1) was picked on
the initial training data using 5-fold cross validation and
subsequent SVMs learned on the different active learning
iterations used the same set of parameters. Thus, at any
given active learning iterations, we are guaranteed to have
a classifier that performs better than the previous one.

Diversity of the Active Learning Set: Most active
learning approaches advocate the idea of adding one newly
labeled data point during each iteration to the initial train-
ing set [4]. This setting makes sense if the turnaround time
between obtaining a newly labeled data point from the ed-
itor to generating the next data point is small enough such
that the editorial bandwidth is fully occupied at all times.
However, the turnaround time in our system was approxi-
mately 15 minutes and this when data was distributed across
multiple nodes and a parallel process used to score the pre-
processed few tens of millions of pages. Thus, the maximum
number of newly labeled samples that can be added to the
training data in a day is ≈ 40. Instead, to maximize editorial
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Figure 2: Effects of Global versus Local parameter
selection in active learning.

bandwidth we resorted to batch active learning techniques
in which 50 data points were presented to the editor for each
active learning iteration. The active learning sets were se-
lected from the traffic to the ad matching platform over a few
months and the traffic contains multiple copies of the same
page. Rather than waste editorial resources by presenting
copies of a page for labeling we attempted to improve the di-
versity of the active learning sample by using the technique
proposed in [4]. The approach proposed in [4] was modi-
fied to be a two step-process. In the first step, the top 200
data-points that were closest to the SVM decision boundary
were first chosen. Within this set, we then maximized the
angle diversity as proposed in [4]. The resulting set thereby
not only contained no duplicates but we also improved the
convergence time of the active learning algorithm. As we
were interested not only in the accuracy of the classifier but
in its performance across the entire score interval, at each
iteration we also drew a small set of examples randomly se-
lected from different scores. Section 4.5 demonstrates the
effect of the active set generation methods discussed here on
the final classifier.

4.4 Calibration of SVM output
SVMs output a raw score between −∞ to ∞, the distance

of the data point to the margin. A requirement for our sys-
tem, however, is to have a score with a certain probabilis-
tic meaning, so that subsequently an appropriate threshold
could be computed. We therefore, calibrate the raw scores
of the classifiers. By definition [9], a classifier is well cali-
brated if p(x = 1) = s(x),∀x, where s(x) is the score of the
example. E.g., if there are 100 examples in the population
to which the classifier assigns score 0.2, we should expect
20 of them to be positive and the rest negative. Suppose
that the business requirement for the system is to have pre-
cision better than say 70%. We can then set the threshold
on the calibrated scores to 0.7, i.e. treat examples with score
≥ 0.7 as positive and the rest as negative. If the classifier
is well calibrated, among all examples with score 0.7 70%
will be positive, among the ones with score 0.8 80% will be
positive etc. Therefore, the precision for all examples with
score ≥ 0.7 will be not less than 0.7. A provably optimal,

in a maximum likelihood sense, and very efficient algorithm
to compute calibrated from raw scores is the Pairwise Ad-
jacent Violators [30]. We also use the method to calibrate
the scores of the categorization system. As suggested in [30]
the calibration function is estimated using the final training
dataset that was obtained after the active learning itera-
tions. One should keep in mind though that calibration is
merely a way to give probabilistic meaning to the raw scores.
Just running a calibration method, such as PAV, does not
produce a“well” calibrated, as per the above definition, clas-
sifier. For that the initial classifier should already be accu-
rate and its raw scores should rank correctly all examples in
the population.

4.5 Performance Evaluation on the Traffic
We now explain how the classifier performance is evalu-

ated on real-world traffic.

4.5.1 Performance Metrics:
Let X represent the set of data points that is to be classi-

fied and let x be a specific data instance. Let Y be a random
variable that can be assigned one of a finite set of labels.
Thus, in the case of binary classifiers, Y ∈ {0, 1}. Now,
(x, y) represents a specific labeled instance. Let S ∈ R be a
random variable that represents the score assigned to X by
the classifier. Thus, for each data point we have a (s, y) pair
that we use to define the evaluation metrics. The score S
being real-valued, we expect to set a threshold (θ) such that
the predicted label pr, is 1 when the corresponding score
s ≥ θ else pr = 0. Thus, PR ∈ {0, 1} is another random
variable that represents the predicted label. Let P (.) repre-
sent the probability of the random variable in question.

We use Precision and Recall for evaluation. As shown in
[8], Precision-Recall curves are better suited for estimating
the performance of classifiers on imbalanced data sets than
ROC curves.

Precision is defined as the ratio of the cardinality of the
true positive set to that of the positive set.

Precision = P (Y = 1|PR = 1)

=
P (Y = 1, PR = 1)

P (PR = 1)
(1)

Recall (or the True Positive Rate) is defined as the ratio
of the cardinality of the true positive set to that of the true
set.

Recall = P (PR = 1|Y = 1)

=
P (Y = 1, PR = 1)

P (Y = 1)
(2)

We see from the above equations that we need to estimate
only P (Y, PR) to obtain the evaluation metrics we are in-
terested in. The remaining probabilities P (Y = 1) can be
estimated by summing P (Y, PR) over PR, while P (PR = 1)
can be obtained directly by counting.

As explained earlier, obtaining a simple random sample
from the traffic (or the population we are interested in) to
evaluate the classifier trained on imbalanced datasets is not
a feasible approach especially when the cardinality of the
population is in the millions. An evaluation set constructed
by simple random sampling would have to include few thou-
sands of negative examples before obtaining even a single
positive example. In such cases a stratified sampling ap-
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proach is more feasible as the size of evaluation set with
such a sampling scheme can be restricted to be manageable.

4.5.2 Stratified Sampling Scheme
The random variable S representing the score is first con-

verted into a discrete variable B using a simple binning
scheme. The PAV calibration function produces a step func-
tion (cf. [30]) that maps a range of raw SVM scores to a set
of discrete scores. We make use of the discrete PAV scores as
our binning boundaries. Thus, a data point x with a score s
is directly assigned a binned score b when calibrated. With
this mapping function in place, we then select a stratified
random sample from the traffic for our evaluation set.

We first obtain the scores b for each x in the target popu-
lation set X. Let Xb represent the set of data points whose
binned score is b and |Xb| be the cardinality of this set. Then
for each b we pick a simple random sample from the corre-
sponding Xb set and add it to our evaluation set. Typically,
the number of binned scores are in the order of a few 10s
and we typically sample approximately 100 data points from
each bin. The evaluation set thus obtained is then labeled
by the editors.

4.5.3 Scaling up to the Traffic
Ideally, the performance of a classifier should be studied

on the traffic or at least a simple random sample of it. How-
ever, using the stratified sampling scheme violates this re-
quirement. Hence, we propose a methodology for weighting
up or down the samples in the evaluation set dependent on
the score bin that they belong to. The final set of weighted
data points in the evaluation set is equivalent to a simple
random sample from the population.

Given that we want to estimate precision and recall, the
predicted label is obtained by setting a threshold, say θ, as
before. All the data points with a binned score b greater
than or equal to the threshold will have the correspond-
ing predicted label pr = 1. As mentioned in 4.5.1, all we
need to estimate is P (Y, PR) on the population. We use
the subscripts Po or Ev to indicate whether the probability
estimates are obtained on the sample or on the population.

PPo(Y, PR = 1) = PPo(Y |PR = 1)PPo(PR = 1)

=
∑

b≥θ

PPo(Y |B = b)PPo(B = b)

≈
∑

b≥θ

PEv(Y |B = b)PPo(B = b)

=
∑

b≥θ

PEvP (Y, B = b)
PPo(B = b)

PEv(B = b)
(3)

Similarly, we define PPo(Y, PR = 0) as follows:

PPo(Y, PR = 0) ≈
∑

b<θ

PEvP (Y, B = b)
PPo(B = b)

PEv(B = b)
(4)

While the PPo(B = b) and PEv(B = b) are directly esti-
mated from the population and the evaluation set, we make
use of the editorial labels on the evaluation set to estimate
PEvP (Y,B = b).

As can be seen in Eqns 3 and 4, the effect of the reweight-
ing primarily comes from PPo(B = b)/PEv(B = b). The
distribution of the binned scores in the population is ex-
pected to be very different from that of the evaluation set.

In particular, the evaluation set might have oversampled or
undersampled data in certain bins when comparing it to the
population distribution. We respectively weight down or
weight up such effects thereby making sure that the final
distribution of binned scores in the evaluation set is similar
to that on the real-world traffic. Once the precision-recall
curve is estimated on the traffic, the appropriate operating
threshold can be picked depending on the levels of recall and
precision that are needed.

5. EVALUATION OF THE SYSTEM
In this section, we provide specific details about the binary

classification problems that we evaluated our system on. We
also show the performance improvements in the precision-
recall of the system after the use of active learning.

5.1 Categorization Problems
We evaluate the system on a number of sensitive categories

which the ad matching platform needs to handle differently
from the rest of the traffic. In particular, we build models
for detecting adult content pages; pages promoting alcohol,
drugs, tobacco or gambling ; hard news describing death and
suffering; news on controversial topics, such as abortion is-
sues or news about scandals, e.g. celebrities misbehavior;
and lastly, pages discussing or promoting firearms or other
type of weapons used in martial arts, hunting, fishing etc.
We focus once again the attention of the reader to the sub-
tleties in the nuances in some of the required categories -
pages about over-the-counter medicines are treated differ-
ently from pages for illegal drugs, and so are pages with
scientific discussions on the process of distilling alcohol or
growing tobacco from pages promoting these products.

Two of the most important categories are adult and hard
news, and we build several models for these categories for
several high traffic markets. The reason for the importance
of the adult category lies in the fact that adult websites are
constantly generated through automated means and there-
fore the number of unique adult pages is significant in the
population. Breaking hard news, on the other hand, e.g
a death of a celebrity or a burst of an armed conflict, at-
tract vast numbers of unique users. This effect has escalated
during the last years with users on social networks quickly
propagating certain news links across the networks.

Category Training Data % Positives
Sensitivity Class 1 13196 78%
Sensitivity Class 2 24721 5%
Sensitivity Class 3 30574 51%
Sensitivity Class 4 35738 51%
Sensitivity Class 5 36198 38%
Sensitivity Class 6 23172 10%
Sensitivity Class 7 10285 58%
Sensitivity Class 8 12776 6%
Sensitivity Class 9 18954 37%
Sensitivity Class 10 16098 30%
Sensitivity Class 11 8132 55%
Sensitivity Class 12 5707 43%

Table 1: Characteristics of the Categorization Prob-
lems.
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Table 1 provides details on the size of initial training data
and the proportion of positive examples in it for each of the
categorizers that were trained as a part of the active learn-
ing system. For confidentiality reasons, we henceforth refer
to the specific categorizers only as ‘Sensitivity Class [1-12]’.
The size of the training dataset varies from a few thousands
to tens of thousands. The percentage of positive data in
the training set also varies from 5% to 78%. Note that these
percentages are hardly reflective of the actual percentages of
such pages in real-world traffic. For example, the percent-
age of pages about Alcohol in the traffic to the ad matching
platform is believed to be orders of magnitude smaller than
the 51% seen in the initial training data. As mentioned in
Section 4.1, a sizable number of negative pages is also added
as negative examples to each of the training sets. This typ-
ically results in an addition of approximately 100K to 200K
negative data points to each categorization problem. Due
to this modification the problems at hand become severely
imbalanced with less than 1% sensitive examples for some of
the models. The hope, however, is that the negative class is
rich enough to capture many non-sensitive aspects and thus
reduce the false positive rates significantly.

5.2 Performance Results
Features were extracted from the training data using the

bag-of-words approach appended with HTML tag informa-
tion. Liblinear SVMs were used as the base classifier and the
parameters (C∗, c∗1) described in Section 4.1 were set using
5-fold cross-validation on the training data. Pages from the
ad platform traffic spanning over more than two months were
used for active learning iterations. The output scores on the
training data of the model from the final active learning it-
eration were calibrated as detailed in Section 4. Note that
editorial resources varied over the course of the deployment
and thus we have different numbers of active learning itera-
tions for different classifiers. As mentioned in Section 4.5.1,
the measure of interest is precision at a pre-specified level of
recall. Since it is impossible to evaluate the classifier on all
traffic and the rareness of the categories of interest makes
random sampling useless, we instead resort to the stratified
sampling technique as detailed in Section 4.5.3 and obtain
an evaluation set with approximately 1500 test examples for
each model. This is done for both the initial model and the
model after active learning. This set of 1500 is then labeled
by experts and the precision recall estimates from it are then
extrapolated to the traffic as detailed earlier. Table 2 shows
the number of active learning iterations and the percent-
age lift in the precision estimates at a specified recall level
and in the area under the precision-recall curve of the active
learned classifier over the initial classifier.

We also show the entire precision recall graphs before and
after active learning (Figure 3) for two of the sensitivity
categories. Similar trends were observed across the rest of
the models too. The curves from the plots reveal the insights
behind the striking improvements summarized in Table 2.
We can see that if we treat all 1500 test examples equally
(the solid red curves on the plots) then, although not perfect,
the initial models perform relatively well (Figures a) and c)).
This performance, however, is not well correlated with the
expected performance on the traffic (the dashed blue curves
on the same plots). We now explain this behavior.

In general, due to the rareness of the listed categories, we
intuitively expect that for any of them the positive examples

in the population will not exceed 5%. Let us assume that
our population contains 10.5M examples, which means that
not more than 500K examples (≈5%) are positive. Suppose,
that we have a score bucket [0,0.01]. We would expect (see
explanation below), that if the classifier is well calibrated,
most of the population, say 10M examples, would fall into
this score bucket. We now sample 100 examples from the
bucket. If the editors label 5 of these examples as positive,
then extrapolating the examples to the population results
in 500K expected positives among the 10M examples falling
into this score bucket. But this is what we expect to be
the maximum number of all positive (rare class) examples
in the entire population. What this implies is that if we
want to recall even only 20-30% of all positive examples we
need to set our threshold to the lower bound of the interval
[0,0.01], i.e. 0. Naturally, the precision for such threshold
is extremely low. To avoid scenarios like the one described,
a good model should be almost perfect on the high volume
low score buckets, i.e. for the 100 examples sampled from
the above score bucket the editors should return on aver-
age no more than 1 positive label. Failing to achieve that
suggests a model that will have unacceptably low precision
when deployed in production. This is exactly the behavior
of the initial models as depicted by the extrapolated dashed
graphs on Figure 3(a) and 3(c).

We stated above that if the classifier is well calibrated we
should expect the majority of the 10.5M examples to fall in a
very low score bucket, such as [0,0.01]. To see this, suppose
that we have a score bucket [0.1,0.2] and that 10M exam-
ples are assigned a score within this bucket by a classifier.
According to the definition of a well calibrated classifier [9]
we should expect 10-20% of the examples, i.e. 1-2M exam-
ples, in the bucket to be positive. But this is far more than
the expected number of all positive examples, which simply
implies that the classifier is not well calibrated and assigns
scores incorrectly. Therefore, especially when our under-
standing is that the category is very rare, say less than 0.1%
of the population, a well calibrated classifier will assign a
very low score (close to 0) to the majority of the examples.

Figure 3(b) and 3(d) shows improvement in both the un-
weighted and the extrapolated to population curves after ac-
tive learning. It is interesting to note, however, that the un-
weighted curves (solid graphs) are very close to the weighted
ones (dashed graphs). It means that the classifiers are now
well calibrated and whatever results we see on the test set
they remain valid after extrapolation to the population too.
To the best of our knowledge, application of active learn-
ing to produce classifiers that are not only accurate at a
pre-specified threshold but also better calibrated across all
score ranges, has not been discussed previously in the litera-
ture. We believe we observe the effect due to the diversified
active set heuristics described earlier.

We finish this section, by pointing out that when the cat-
egory of interest is not very rich in concepts and the initial
training set captures most of its nuances, the improvement
introduced by active learning is not that substantial, see e.g.
the results for Sensitivity Class 12.

6. CONCLUSION
In this paper, we described the challenges and practical

issues related to the deployment of a large scale active learn-
ing system for the categorization of rare classes on the Web.
The proposed solution employing active learning provided
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(b) Sensitivity Class 1. After AL.
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(c) Sensitivity Class 7. Before AL.
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Figure 3: Precision Recall Curves before and after Active Learning with and without extrapolation to the
Traffic for a couple of Sensitivity Categories.

us with a very efficient and effective way to quickly design a
classifier and evaluate its performance on real-world traffic.
Our active learning system, not only provides us valuable
savings in editorial time but enables us to maximize the
use of the labeling process, converging to classifiers that sig-
nificantly outperform the initial models. In the future, we
plan to expand this technique to work with multi-label and
multi-class categorization problems, and attempt to perform
knowledge transfer wherein a model learned for one market
can be brought up to speed via active learning.
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