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ABSTRACT
Extracting semantic relations among entities is an important first
step in various tasks in Web mining and natural language process-
ing such as information extraction, relation detection, and social
network mining. A relation can be expressed extensionally by stat-
ing all the instances of that relation or intensionally by defining all
the paraphrases of that relation. For example, consider the AC-
QUISITION relation between two companies. An extensional def-
inition of ACQUISITION contains all pairs of companies in which
one company is acquired by another (e.g. (YouTube, Google) or
(Powerset, Microsoft)). On the other hand we can intensionally
define ACQUISITION as the relation described by lexical patterns
such as X is acquired by Y, or Y purchased X, where X and Y denote
two companies. We use this dual representation of semantic rela-
tions to propose a novel sequential co-clustering algorithm that can
extract numerous relations efficiently from unlabeled data. We pro-
vide an efficient heuristic to find the parameters of the proposed co-
clustering algorithm. Using the clusters produced by the algorithm,
we train an L1 regularized logistic regression model to identify the
representative patterns that describe the relation expressed by each
cluster. We evaluate the proposed method in three different tasks:
measuring relational similarity between entity pairs, open informa-
tion extraction (Open IE), and classifying relations in a social net-
work system. Experiments conducted using a benchmark dataset
show that the proposed method improves existing relational simi-
larity measures. Moreover, the proposed method significantly out-
performs the current state-of-the-art Open IE systems in terms of
both precision and recall. The proposed method correctly classifies
53 relation types in an online social network containing 470, 671
nodes and 35, 652, 475 edges, thereby demonstrating its efficacy in
real-world relation detection tasks.
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1. INTRODUCTION
The World Wide Web contains numerous real-world entities con-

nected by numerous semantic relations. Identifying the relations
between entities is of paramount importance for numerous tasks
on the Web such as information retrieval [29], information extrac-
tion [4], and social network extraction [23]. A semantic relation
that exists between two given objects (e.g., concepts, words, or
named-entities) can be defined in two ways [12]: extensionally or
intensionally. An extensional definition of a concept formulates
its meaning by specifying every object that falls under the defini-
tion of the concept. On the other hand, an intensional definition
of a concept formulates its meaning by specifying all the proper-
ties that are necessary to reach that definition. For example, con-
sider the ACQUISITION relation between two companies. An ex-
tensional definition of the ACQUISITION relation enumerates all
pairs of entities between which an ACQUISITION relation holds
(e.g. (You Tube,Google), (Powerset, Microsoft), etc.) Alternatively,
we can express the ACQUISITION relation intensionally by stat-
ing the different ways that we can express an acquisition between
two companies X and Y such as X is acquired by Y, X is purchased
by Y, or X is bought by Y. As described in this paper, we refer to
this dyadic representations of semantic relations as relational du-
ality, and use it in an unsupervised co-clustering algorithm to ex-
tract numerous semantic relations from a given corpus. In contrast
to previously proposed supervised or semi-supervised approaches,
which require some form of human intervention such as annotated
training data, seeds of entity-pairs, or extraction patterns, the pro-
posed method is fully unsupervised.

Extracting relations between entities has received much atten-
tion lately. In object-level search engines such as Renlifang1 [38],
it is particularly important to mine entity relations from the Web
to build automatically, an entity relation graph to link all the ex-
tracted information together. In contrast to document-level search
engines, for which a user enters a keyword and retrieves a set of
documents, in an object-level search engine, users search for a par-
ticular entity or a relation between entities. In open information
extraction (Open IE) systems such as TextRunner [4], the goal is
to extract a large set of relational tuples without the need for any
human input. The extracted relations can then be used to answer
natural language questions. In the bio-medical domain, identifying
the relations between proteins and diseases is helpful to discover
potential side effects of various medicines.

Despite its numerous applications, extracting semantic relations
among entities at Web scale is challenging for several reasons. First,
a single semantic relation can be expressed using multiple lexical
patterns. For example, aside from the pattern X acquired Y, an ac-

1http://renlifang.msra.cn
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quisition between two companies X and Y can be expressed using
patterns such as X purchased Y, X completed its acquisition of Y,
etc. Second, there might exist more than one semantic relation be-
tween a pair of entities. For example, before an ACQUISITION
relation is established between two companies, those companies
can have a COMPETITOR relation. A relation extraction system
must discover the different relations that hold between a pair of
entities. Third, the entities themselves might have variants. For
example, Microsoft Corp. is often designated as the Redmond soft-
ware giant. Manually specifying all different name variants of an
entity is not feasible. Moreover, the scale and the heterogeneity
of Web text prohibit the use of time-consuming, domain-specific
approaches that require deep language processing techniques. Su-
pervised approaches to relation extraction that require manual an-
notation of all relations to be extracted are costly and impossible
to execute on a Web scale because we do not know in advance
the number or the types of relations that we must extract from the
Web. Semi-supervised approaches to relation extraction require
some seed instances (i.e., a few pairs of entities between which
the desired relation exist) or extraction patterns (either domain spe-
cific or independent) to be provided by a human. Unfortunately,
the quality of the extracted relations depends heavily on the initial
seeds given to the system. Moreover, it is not clear how many seeds
are necessary to extract a particular relation correctly beforehand.

We propose an unsupervised approach that solves all the above-
described problems in a principled manner. Given a text corpus, the
proposed method first extracts all mentions of entities and lexical-
syntactic patterns that connect those entities. We then represent
pairs of entities and lexical-syntactic patterns in a matrix whose
rows represent pairs of entities and columns represent lexical-syntactic
patterns. An efficient sequential co-clustering algorithm is pro-
posed to simultaneously identify different patterns that describe the
same semantic relation, and entity-pairs between which the same
semantic relation holds. Moreover, we introduce a computationally
efficient heuristic to determine the row (entity-pair) and column
(lexical-syntactic pattern) clustering thresholds in the algorithm.
To identify the relations represented by each pattern cluster, we
use the resultant clusters to train a self-supervised multi-class lo-
gistic regression model with L1 regularization [24]. This approach
produces a sparse representation of relations over lexical-syntactic
patterns, thereby enabling us to identify the representative patterns
in a cluster.

The contributions of this paper can be summarized as follows.

• We propose a dyadic representation of semantic relations that
exist between a pair of entities using extensional and inten-
sional representations. Specifically, a semantic relation R is
expressed extensionally by extracting the set of entity pairs
E(R), between which relation R holds. Alternatively, the
same relation R can be expressed intensionally by specifying
the set of lexical-syntactic patterns P (R) used to express R.
To identify the potential entities in a corpus, we use a part-
of-speech tagger and a noun-phrase chunker. We employ
a subsequence pattern-mining algorithm to extract lexical-
syntactic patterns that express numerous semantic relations
between a pair of entities.

• We propose a sequential co-clustering algorithm to simul-
taneously cluster different lexical-syntactic patterns that de-
scribe a particular semantic relation, and different entity pairs
between which the same semantic relation holds. The pro-
posed sequential co-clustering algorithm avoids combinato-
rial pairwise comparisons of data points and scales linearly
with the number of data points to be clustered. This desirable

property of the proposed co-clustering algorithm enables us
to use it with large real-world datasets containing numerous
semantic relations. Moreover, we propose an efficient heuris-
tic to determine the optimum values of clustering thresholds.

• To identify representative patterns that describe the semantic
relation expressed by a cluster, we train a multi-class logistic
regression model with L1 regularization. The training is con-
ducted in a self-supervised manner that requires no manually
annotated training data, which is particularly important be-
cause we do not know the number or the type of relations that
exist in a given corpus beforehand. Moreover, L1 regulariza-
tion yields sparse representations, consequently enabling us
to find the most representative patterns that describe a partic-
ular semantic relation.

• We evaluate the proposed relation extraction algorithm in
three tasks: measuring relational similarity between entity-
pairs, open information extraction, and classification of rela-
tions in a social network system. The proposed method out-
performs previously proposed Open IE systems on a bench-
mark dataset. Furthermore, the produced pattern clusters im-
prove existing relational similarity measures. Moreover, the
proposed method is used to classify 53 different relations in
a social network of 470, 671 nodes and 35, 652, 475 edges,
thereby demonstrating its efficacy in real-world large-scale
applications.

The remainder of the paper is organized as follows. In Sec-
tion 2.1, we introduce the concept of relational duality. We present
a single-pass extraction algorithm in Section 2.2 to identify both
entity pairs and lexical-syntactic patterns simultaneously in a given
corpus. A sequential co-clustering algorithm is proposed in Sec-
tion 2.3 to identify the numerous semantic relations described by
extensional and intensional representations of relations extracted in
Section 2.2. A self-supervised classifier is presented in Section 2.4
to identify the representative patterns that describe the relation cap-
tured by each cluster. We evaluate the proposed relation extraction
method using three tasks in Section 3. We discuss related research
efforts in Section 4 and conclude this paper.

2. RELATIONAL DUALITY

2.1 Outline
We propose relational duality: a dyadic representation of the se-

mantic relations that exist between two entities. A semantic relation
R is definable by stating all entity pairs between which relation R
holds. We use the notation E(R) to denote the set of entity pairs
in which the relation R holds between the two entities in each el-
ement (i.e. entity pair). Defining a concept by enumerating all its
instances is called an extensional definition of the concept. Alterna-
tively, we can define R by stating the different properties that must
be satisfied by two entities to realize a relation R between them.
We denote the set of properties of R as P (R). Defining a con-
cept by stating all the properties that are required to come to that
definition is called an intensional definition of the concept. Both
E(R) and P (R) define the same semantic relation R. Therefore, a
duality exists between the two definitions for R.

For example, we can extensionally define the ACQUISITION
relation by specifying all pairs of companies between which an ac-
quisition has taken place, such as (Google,YouTube), (Microsoft,
Powerset), (Yahoo, Inktomi), etc. An intensional definition of AC-
QUISITION specifies the different expressions that indicate an ac-
quisition has taken place between two companies X and Y, such as
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X acquires Y, Y is bought by X, X purchases Y, etc. It is not possible
for a human to enumerate all the different expressions that describe
a particular semantic relation. Consequently, in Section 2.2, we
propose a single-pass extraction method that extracts both entity
pairs and numerous lexical-syntactic patterns that describe differ-
ent relations that exist in a given corpus.

The dual representation of semantic relations can be captured ef-
ficiently within a co-clustering framework. We represent relational
data in a matrix in which the rows correspond to entity pairs, and
columns correspond to lexical-syntactic patterns. The row vectors
can be considered as defining the distribution of a particular en-
tity pair over the space spanned by lexical-syntactic patterns. Sim-
ilarly, each column vector represents the distribution of patterns
over the space spanned by the entity pairs. Distributional similar-
ity [19, 21] is useful to identify the different patterns that describe
the same semantic relation R (i.e.P (R)), and different entity pairs
between which the same semantic relation R exists (i.e.E(R)). In
Section 2.3, we propose a sequential co-clustering algorithm to
cluster a large data matrix efficiently. By framing relational du-
ality as a co-clustering problem, we can identify the variants of
a particular entity. For example, if Redmond software giant is a
variant of Microsoft, then we would expect both entity pairs (Mi-
crosoft,Powerset) and (Redmond software giant,Powerset) to ap-
pear within the same cluster. By merging the variants of an entity,
we can reduce the sparsity in pattern vectors, thereby improving the
accuracy of clustering.

Each cluster produced by the co-clustering algorithm expresses
a particular semantic relation. However, in this paper, we do not
assume any prior knowledge related to the number or the type of re-
lations that exist in a given corpus. Therefore, it is extremely useful
to identify the relation expressed by each cluster both for evalua-
tion purposes, and for presentation purposes. In Section 2.4, we
propose a self-supervised relation detection algorithm that labels
each entity pair (row) cluster with representative lexical patterns.

2.2 Single-Pass Extraction
To extract entity pairs and lexical-syntactic patterns from a given

text corpus, we propose a single-pass extraction method. Because
the proposed extraction method requires only a single traversal over
the corpus, visiting each sentence once, it is scalable to large datasets.
We resort to shallow linguistic processing techniques such as sen-
tence boundary detection, part-of-speech (POS) tagging, and noun
phrase chunking, for which efficient and accurate tools are avail-
able for many languages.

First, we split the given text corpus into sentences using a sen-
tence boundary detection tool2. We then run a part-of-speech (POS)
tagger3 and annotate each sentence with POS tags. To detect po-
tential entities in sentences, we use a noun phrase chunking tool4

and extract noun phrase chunks containing at least one proper noun
(NP). It is noteworthy that we require no deep linguistic analysis, as
do Open IE systems, which require dependency parsing [4] or co-
reference resolution [31]. Moreover, we do not assume the avail-
ability of named entity recognition (NER) tools that can tag entities
of different types in a text. Instead, we use a name phrase chunk-
ing tool that can group multi-word entities such as Adobe Systems
or Microsoft Corporation. No additional information, such as the
type of the entity (i.e., person, company, or location) is required in
the subsequent processing.

2http://stp.ling.uu.se/~gustav/java/classes/
MXTERMINATOR.html
3http://nlp.stanford.edu/software/tagger.
shtml
4http://chasen.org/~taku/software/yamcha/

An example is presented in Table 1, from which we extract the
entity pair (Adobe Systems,Macromedia). Next, we replace the two
entities respectively with two variables X and Y in a sentence. The
entity that occurs first in the sentence is replaced by X, whereas
the entity that occurs second is replaced by Y. The corresponding
POS tags in the POS tag sequence is also replaced by X and Y, as
presented in Table 1.

Lexical-syntactic patterns have been used successfully in vari-
ous natural language processing tasks such as extracting hyper-
nyms [20, 32], or meronyms [6], question answering [27], and para-
phrase extraction [7]. Following those previous works, we present
a shallow lexical pattern extraction algorithm to represent the se-
mantic relations between two entities.

We generate subsequence patterns from both surface forms of the
sentences and POS tag sequences that satisfy the following condi-
tions.

(i). A subsequence must contain exactly one occurrence of each
X and Y (i.e., exactly one X and one Y must exist in a sub-
sequence).

(ii). The maximum length of a subsequence is L tokens.
(iii). A subsequence is allowed to have gaps. However, we do not

allow gaps of more than g number of tokens. Moreover, the
total length of all gaps in a subsequence should not exceed G
tokens.

(iv). We expand all negation contractions in a sentence. For ex-
ample, didn’t is expanded to did not. We do not skip the
word not when generating subsequences. For example, this
condition ensures that from X is not a Y, we do not produce
the subsequence X is a Y.

We designate the subsequences of surface forms produced by the
procedure described above as lexical patterns. The corresponding
POS tags of a lexical pattern is called a syntactic pattern. The val-
ues of parameters L, G, and g are set experimentally, as explained
later in Section 3.

The proposed lexical-syntactic pattern extraction algorithm con-
siders all the words in a sentence, and is not limited to extracting
patterns only from the mid-fix (i.e., the portion of text in a sentence
that appears between a pair of entities). Moreover, the consider-
ation of gaps enables us to capture relations between entities lo-
cated at a distance in a sentence. We use prefixspan algorithm [26]
to generate subsequences. The constraints listed above are used
to prune the search space, thereby reducing the number of subse-
quences generated by prefixspan. Some lexical-syntactic patterns
extracted using the proposed method are shown in Table 1 (not all
patterns are shown because of the limited availability of space).

We consider all entity pairs in a sentence, and extract lexical-
syntactic patterns using the procedure described above. We then
aggregate entity pairs and lexical-syntactic patterns we extract from
each sentence. It is noteworthy that the proposed extraction method
visits each sentence only once. Once we have completed process-
ing the entire corpus, we select the most frequently occurring entity
pairs and lexical-syntactic patterns for the co-clustering algorithm
described in Section 2.3.

2.3 Sequential Co-clustering
Assuming that the set of all extracted entity pairs is E, and that

the set of all extracted lexical-syntactic patterns is P , then we pro-
pose a sequential co-clustering algorithm to simultaneously iden-
tify the subset of lexical-syntactic patterns P (R) that describes a
particular semantic relation R, and the subset of entity pairs, E(R),
between which R holds. First, we represent the dyadic relation be-
tween entity pairs and lexical-syntactic patterns as matrix A. Each
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Table 1: Extracting entity pairs and lexical-syntactic patterns from text.
sentence another example of a statutory merger is software maker Adobe Systems acquisition of Macromedia .
POS tagged DT NN IN DT JJ NN VBZ NN NN NNP NN NN IN NP .
Entity chunked another example of a statutory merger is software maker [Adobe Systems] acquisition of [Macromedia].
Substitution Adobe Systems = X, Macromedia = Y
surface form another example of a statutory merger is software maker X acquisition of Y .
POS sequence DT NN IN DT JJ NN VBZ NN NN X NN IN Y .
lexical patterns X acquisition of Y, software maker X acquisition of Y, X of Y, software X acqusition Y
syntactic patterns X NN IN Y, NN NN X NN IN Y, X IN Y, NN X NN Y

Algorithm 1 Sequential co-clustering algorithm.
Input: sets E, P , matrix A, thresholds θ, φ
Output: row clusters CE , column clusters CP

1: SORT(E)
2: SORT(P )
3: CE ← {}, CP ← {}
4: while E 6= {} AND P 6= {} do
5: p ← POP(P )
6: ASSIGN(p, Cp, θ)
7: e ← POP(E)
8: ASSIGN(e, CE , φ)
9: end while

10: return CE , CP

11: function ASSIGN(x, C, λ)
12: max ← −∞
13: c∗ ← null
14: for cluster cj ∈ C do
15: sim ← cosine(x, cj)
16: if sim > max then
17: max ← sim
18: c∗ ← cj

19: end if
20: end for
21: if max > λ then
22: c∗ ← c∗ ⊕ x
23: else
24: C ← C ∪ {x}
25: end if

extracted entity pair in Section 2.2 is represented as a row in this
matrix, whereas each lexical-syntactic pattern is represented as a
column. The Aij element of the data matrix denotes the number
of times the lexical-syntactic pattern pj was extracted for the en-
tity pair ei. Each normalized row vector ei in matrix A denotes
the distribution of an entity pair ei over lexical-syntactic patterns.
Similarly, each normalized column vector pj in matrix A denotes
the distribution of a lexical-syntactic pattern pj over entity pairs.
From distributional hypothesis [19], it follows that if two entity
pairs are distributed similarly over a set of lexical-syntactic pat-
terns, then those entity pairs must be relationally similar. We use
distributional similarity to cluster entity pairs and lexical-syntactic
patterns simultaneously.

The pseudo-code of the proposed sequential co-clustering algo-
rithm is presented in Algorithm 1. The algorithm takes as its input
E, P , A, and two clustering thresholds: row (entity pair) cluster-
ing threshold, φ, and column (lexical-syntactic pattern) clustering
threshold, θ. The output of the clustering algorithm is the set of row
clusters, CE , and column clusters, CP . First, in Line 1, we sort the
set of entity pairs E in the descending order of total frequency,∑

j Aij , of each entity pair ei with all lexical-syntactic patterns in
P . Similarly, in Line 2, we sort the set of lexical-syntactic pat-
terns P in the descending order of total frequency,

∑
i Aij , of each

pattern with all entity pairs in E. After sorting, the most common
entity pairs and patterns in the corpus appear respectively at the

beginning of E and P , whereas rare instances are shifted to the
end. In Line 3, we initialize both row and column cluster sets to
the empty set. The function, POP(P ) in Line 5, returns the first
pattern p ∈ P and removes p from P , thereby reducing the size
of P by one. Next, the function, ASSIGN, measures the similarity
between the vector p that corresponds to pattern p and each col-
umn cluster cj in CP . Here, cj denotes the centroid vector of the
j-th column cluster. Similarity between p and cj is measured using
cosine similarity. If the similarity between p and the most similar
cluster c∗ is greater than the column clustering threshold θ, then
we merge p to c∗. Here, the operator ⊕ denotes vector addition.
Otherwise, we form a new column cluster that contains p and ap-
pend it to CP . This procedure is repeated for entity pairs in Lines
7 and 8. The while-loop in Algorithm 1 is repeated until both E
and P are empty. It is noteworthy that the operation of merging
rows or columns in Line 22 changes the distributions of patterns
and entity pairs, thereby directly influencing the subsequent simi-
larity computations. For example, if a pattern p is merged into a
column cluster cj , then, in the next iteration, when we compute co-
sine similarity between entity pairs, all patterns in cluster cj will be
considered as forming a single dimension.

Algorithm 1 can be considered as a co-clustering extension of
the one-sided sequential clustering proposed by Bollegala et al. [8].
However, as we demonstrate experimentally in Section 3.1, the co-
clustering version produces better results than its one-sided coun-
terpart that does not cluster entity pairs. The sorting operations in
Algorithm 1 require respectively, O(|E|log|E|) and O(|P |log|P |)
complexities for entity pairs and lexical-syntactic patterns, where
|S|, denotes the cardinality of a set S. This sorting operation is re-
quired only once at the start. The while-loop starting from Line 4 in
Algorithm 1 terminates after max(|E|, |P |) iterations. The greedy
nature of the algorithm avoids combinatorial pairwise comparisons
among all entity pairs or all lexical-syntactic patterns.

Most co-clustering algorithms [14, 17] require the number of
row and column clusters to be given as inputs. However, we do
not know the exact number of relations in the given corpus from
which we must extract relations. Alternatively, Algorithm 1 has
two parameters, θ and φ, which indirectly specify the number of
clusters. A popular approach to setting the number of clusters,
cross-validation, tries different combinations of parameter values
and evaluates some goodness criteria on a set of held out data.
However, an exhaustive search in parameter space is infeasible for
large datasets. Consequently, we propose an efficient heuristic to
determine the optimal values of the clustering thresholds.

First, we consider the distribution of similarity scores in a dataset
of T points, portrayed in Figure 1. There are T (T − 1)/2 pairs in
a dataset of T points, between which we compute the similarity
scores. Figure 1 plots the normalized frequency (i.e., dividing the
frequency counts by T (T − 1)/2) such that the total area of the
blue bars equals one). The solid green line connects the midpoints
of the bars in the histogram and represents the distribution of simi-
larity scores. Figure 1 shows results obtained using the ENT dataset
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Figure 1: Approximating the distribution of similarity scores
between data points. Bars show the actual histogram and the
solid green line connects the mid-points of the bars. Approxi-
mation g(x) is shown as a dotted red line.

(described later in Section 3.1), thereby showing the distribution of
similarity in real data. The similarity among most data points tends
to be very small in Open IE because, generally, there exist numer-
ous semantic relations in a corpus and only a few between a given
pair of entities. We approximate the actual distribution of similarity
scores as a power-law curve and use this approximation to estimate
the optimum values for clustering thresholds. This is analogous to
Zipf’s law [22], which is observed with word counts in large text
corpora.

We define the power-law approximation g(x) of the actual dis-
tribution of similarity scores x as

g(x) = ax−k. (1)

Here, a and k (1 < k < 2) are real-valued constants. Assuming
the bin size in the histogram in Figure 1 to be δ(< 1). Then, by
fixing g(x) at x = δ, we have

g(δ) = aδ−k. (2)

By considering the area under the curve for g, we have
∫ 1

δ

g(x) dx = 1, (3)

From Formulas 2 and 3, we obtain

a = g(δ)δk, (4)
k = δg(δ) + 1. (5)

Algorithm 1 adds a new entity pair (or a pattern) to an existing
cluster only if the similarity between the cluster and the entity pair
(or the pattern) exceeds the corresponding row or column cluster-
ing threshold. Therefore, with numerous data points (e.g., entity
pairs or patterns), the average similarity between data points inside
a cluster converges to the clustering threshold (proof omitted). In
the case of optimum clustering, the similarity between data points
in different clusters will be zero. Therefore, the average similar-
ity among all data points (i.e., the mean Eg(x) of the distribution
g(x)) will be equal to the average similarity between data points
inside clusters (i.e., the clustering threshold). For column clusters,
the optimal threshold θ̂ is given as

θ̂ = Eg(x) =

∫ 1

δ

xg(x) dx =
a(1− δ2−k)

2− k
. (6)

A similar expression can be derived for the optimum row cluster-
ing threshold φ̂ by considering the similarity distribution for entity
pairs. It is noteworthy that the optimum value of the threshold given
as Formula 6 depends only on δ and g(δ) (dependence on a and k
can be eliminated using Formulas 4 and 5) . In practice, we set a
small bin size (e.g. δ = 0.05) and compute g(δ) as the fraction
of data points that have similarity less than δ. Efficient algorithms
have been proposed [30] that do not require pairwise comparisons
of all data points to find the number of data points that have a sim-
ilarity score that is less than a given threshold.

2.4 Self-supervised Relation Detection
In unsupervised relation extraction, the relation types to be ex-

tracted are an unknown prior. Co-clusters generated by Algorithm 1
capture numerous semantic relations that exist in a given corpus.
For evaluation and presentation purposes, it is useful to label clus-
ters with representative lexical patterns in them, which is particu-
larly challenging for two reasons. First, we have no labeled data
to train a supervised classifier to discriminate one cluster from an-
other. Second, from among numerous lexical patterns, we must
select the representative ones. We describe a self-supervised clas-
sification approach that overcomes both challenges.

The objective of Algorithm 1 is to produce a set of clusters where
each cluster represents a different semantic relation between entity
pairs. We assign a unique cluster i.d., yk, to all entity-pairs ei in a
cluster Ck. We represent an entity pair ei as a feature vector ei, in
which the j-th feature is set to Aij . We then model the problem of
identifying representative lexical patterns in a cluster as one of dis-
criminative feature selection in multi-class classification. Specifi-
cally, we use L1 regularized multi-class logistic regression, where
the posterior probability of an entity pair ei is given as

p(yk|ei) =
exp(wT

k ei)∑
y∈Y exp(wT

k ei)
. (7)

Here, Y denotes the set of cluster i.d.s; wk is the weight vector
associated with cluster Ck. We maximize the following w.r.t. wk,
as

∑

(ei,yi)

log p(yi|ei)− σ
∑

k

||wk||1. (8)

The first term in expression 8 is the log-likelihood of entity pairs;
the second (regularization) term is the sum of L1 norms of weight
vectors wk. We use the notation, ||x||1 to denote the L1 norm
of a vector x. The effect of regularization towards overall train-
ing process is adjusted using the regularization coefficient σ(> 0).
We use Orthant–Wise Limited-memory Quasi-Newton (OWL-QN)
method to solve the optimization problem defined in the expression
shown in 8. Actually, L1 regularization is known to produce sparse
weight vectors, where most of the weights are set to zero [24]. This
feature is particularly useful for the current task because it enables
us to identify the lexical patterns that discriminate one cluster from
another. After training, we select the highest non-zero weighted
lexical patterns from a cluster as the representatives of the seman-
tic relation described by that cluster.

3. EXPERIMENTS
We evaluate the proposed method in three tasks. First, in Sec-

tion 3.1, we use the pattern clusters produced using the proposed
method to measure the relational similarity between entity pairs in
the ENT benchmark dataset [8], and compare it to the previously
proposed relational similarity measures. We empirically study the
behavior of Algorithm 1 over the complete parameter space. More-
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over, we subjectively evaluate the patterns selected by the self-
supervised relation detection method.

Second, in Section 3.2, we compare the proposed method against
three previously proposed Open IE systems on SENT500 bench-
mark dataset. This dataset contains 500 manually annotated sen-
tences that describe four semantic relations between named-entity
pairs. It has been used extensively in previous work on Open IE.
This experiment is intended to demonstrate the effectiveness of the
proposed method in Open IE. Previous work using the ENT dataset
has not used syntactic patterns. Consequently, to compare the pro-
posed method against results of previous works that used the ENT
dataset, we limit ourselves to lexical patterns. We evaluate the ben-
efit of using syntactic patterns with the SENT500 dataset.

Third, in Section 3.3, we employ the proposed method to iden-
tify 53 different relations in a social network system containing 35
million nodes, thereby demonstrating the accuracy and scalability
of the proposed method in real-world relation extraction tasks. In
all experiments, we fix the values for the one-pass extraction to
L = 5, g = 2, and G = 4.

3.1 Relational Similarity
Relational similarity between two pairs of words is defined as

the correspondence between semantic relations that exist between
the two words in each word pair. For example, the two pairs, (os-
trich,bird) and (lion,cat) are considered relationally similar because
the relation X is a large Y holds between the two words X and Y, in
each of those word pairs. Bollegala et al. [8] proposed a supervised
method (RELSIM) to measure the relational similarity between two
word pairs using a set of automatically extracted lexical pattern
clusters. We employ the lexical-syntactic pattern clusters extracted
using the proposed unsupervised method to measure the relational
similarity between two word pairs. If the pattern clusters produced
by the proposed method are useful to predict the relational simi-
larity between given two word pairs, then it not only justifies the
proposed method; it also demonstrates a useful application of it.

Following [8], we represent a word pair (a, b) as an n-dimensional
vector f(a,b), in which the k-th element, fk

(a,b), is set to the total fre-
quency of all lexical-syntactic patterns in a pattern cluster Ck with
word pair (a, b). Under this representation, each pattern cluster Ck

contributes a single feature to the feature vector for a word pair.
Considering the fact that each pattern cluster is expected to repre-
sent a unique semantic relation, this feature representation can be
regarded as a projection of a word pair over the space defined by
semantic relations. We then measure the relational similarity (al-
ternatively the relational distance) between two word pairs (a, b)
and (c, d) using Mahalanobis distance between the corresponding
feature vectors f(a,b) and f(c,d), which is given as

(f(a,b) − f(c,d))
TΓ−1(f(a,b) − f(c,d)). (9)

Here, Γ−1 denotes the inverse of the inter-cluster correlation matrix
computed for pattern clusters. The (i, j) element of Γ is computed
as the inner product between the centroid vectors of pattern clusters
i and j. In contrast to the Euclidean distance, the Mahalanobis dis-
tance has shown to be more appropriate for the task of measuring
relational similarity [8] because semantic relations are not indepen-
dent.

We use the ENT dataset [8] as a gold standard of relational sim-
ilarity. The ENT dataset contains 100 entity pairs describing the
five semantic relations: ACQUISITION (between two companies,
where one company is acquired by the other, e.g. (Google,YouTube)),
HEADQUARTERS (between a company and the location of its
headquarters, e.g. (Microsoft,Redmond)), FIELD (between a per-
son and his field of expertise, e.g. (Albert Einstein,Physics)), CEO

Table 2: Performance of the proposed method and previous
work on relational similarity measures.

Relation VSM LRA EUC RELSIM PROP
ACQUISITION 0.92 0.92 0.91 0.94 0.89
HEADQUARTERS 0.84 0.82 0.79 0.86 0.97
FIELD 0.44 0.43 0.51 0.57 0.42
CEO 0.95 0.96 0.90 0.95 0.99
BIRTHPLACE 0.27 0.27 0.33 0.36 0.53

Overall Average Precision 0.68 0.68 0.69 0.74 0.76

(between a company and its current CEO, e.g. (Steve Jobs,Apple)),
and BIRTHPLACE (between a person and his place of birth, e.g.
(Charlie Chaplin,London)). For each entity pair (a, b) of relation
R in the ENT dataset, we measure the relational similarity between
(a, b) and the remaining 99 entity pairs. A good relational simi-
larity measure must assign higher similarity scores to entity pairs
with similar semantic relations. Consequently, we evaluate the top
k similar pairs to each entity pair in the dataset using average pre-
cision given as

Average Precision =

∑k
r=1 Pre(r)× Rel(r)

no. of relevant entity pairs
. (10)

Here, Rel(r) is a binary valued function that returns 1 if the entity
pair at rank r has the same relation (i.e. R) as in (a, b). Further-
more, Pre(r) is the precision at rank r, which is given as

Pre(r) =
no. of entity pairs with relation R in top r pairs

r
. (11)

In fact, the ENT dataset contains 20 entity pairs for each relation.
Following previous work, we evaluate using the top 10 ranked re-
sults (i.e. k = 10).

The pattern extraction algorithm described in Section 2.2 ex-
tracts 142, 655 lexical patterns from the text snippets provided in
the ENT dataset. We then use Algorithm 1 to co-cluster both en-
tity pairs and the extracted patterns. Clustering thresholds θ and
φ are estimated respectively as 0.67 and 0.83 using Formula 6.
This process produces 9 row (entity pair) clusters and 139 col-
umn (pattern) clusters. Table 2 presents a comparison of the rela-
tional similarity measured using the pattern clusters produced using
the proposed method (PROP) against four others: VSM (Vector
Space Model-based approach [33]), LRA (Latent Relational Anal-
ysis [33]), EUC (Euclidean distance between feature vectors [8]),
and RELSIM (Mahalanobis distance between feature vectors [8]).
Except for the proposed method, all other figures in Table 2 are
obtained from previously published results obtained using the ENT
dataset. Overall, PROP shows the highest average precision score
(0.76) in Table 2. Moreover, for three out of the five relations in
the ENT dataset, PROP outperforms all existing relational similar-
ity measures. It is noteworthy that although RELSIM has a similar
average precision score (0.74) to that of PROP, unlike PROP, which
is unsupervised, RELSIM is a supervised method that requires la-
beled data for training. Moreover, both EUC and RELSIM use one-
sided sequential clustering in which only patterns are clustered. In
contrast, PROP clusters both patterns and entity pairs simultane-
ously using Algorithm 1, which exploits the dyadic structure in the
data more effectively.

To study the behavior of the proposed sequential co-clustering
algorithm empirically, we vary θ and φ in range [0, 1], and mea-
sure the average precision over entity pairs in the ENT dataset us-
ing five-fold cross-validation. Average precision scores for various
combinations of θ and φ values are shown in Figure 2. From Fig-
ure 2 it is readily apparent that for fixed low values of θ, average
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Figure 2: Average precision as a function of theta and phi.

Table 4: Subjective evaluation of patterns.
Relation A B C D
ACQUISITION 16.7% 40% 40% 3.3%
HEADQUARTERS 20% 40% 23.3% 16.7%
CEO 6.7% 53.3% 20% 20%
FIELD 13.3% 56.7% 23.3% 6.7%
BIRTHPLACE 13.3% 36.7% 10% 40%
overall 14% 45.3% 23.3% 17.3%

precision is insensitive w.r.t. φ because low θ values produce large
and noisy pattern clusters that contain patterns for more than one
semantic relation. However, when θ increases, the average preci-
sion also increases and the highest average precision score (0.78)
is obtained for θ = 0.70 and φ = 0.85. When θ is increased fur-
ther, we obtain numerous pattern clusters with very few patterns
in them, thereby yielding sparse feature vectors. Consequently, the
average precision drops for high θ values. The predicted values of θ
(0.67) and φ (0.83) closely approximate the optimal parameter val-
ues obtained using cross-validation. However, conducting cross-
validation over the full parameter space to determine threshold val-
ues is time consuming and is not scalable to large datasets. For
example, on a computer with a Quad-Core processor (Intel Corp.)
with 8GB of RAM, it takes more than 10 days to perform cross-
validation over the parameter space as shown in Figure 2 for the
ENT dataset. In stark contrast, the estimation method described
in Section 2.3 requires less than 30 min to estimate the threshold
values using the same computer.

To select the representative lexical patterns that describe the se-
mantic relations in ENT dataset, we run the self-supervised relation
detection method described in Section 2.4 as follows. First, the
142, 655 patterns extracted by the single-pass extraction method
described in Section 2.2, are clustered into 139 pattern clusters and
9 entity pair clusters using Algorithm 1. Next, each entity pair is as-
signed with a pseudo-class label that indicates its entity pair (row)
cluster. Next, multi-class logistic regression with L1 regulariza-
tion is run on pseudo-labeled training instances. The regularization
coefficient σ is set to its default value of 1. The self-supervised re-
lation detection method assigns non-zero weights to 263 patterns,
thereby producing a small subset of representative patterns. Table 3
shows the top 10 patterns with the highest weights in five clusters
describing the relations in ENT dataset. For explanatory purposes,
on the first row of Table 3 we have indicated the relation that is as-
signed in the ENT dataset for most entity pairs in a row cluster. The
total number of patterns in a cluster is shown within brackets fol-
lowing the name of the relation. Two entities are indicated as X and

Y, and N denotes a single numeric digit. From Table 3 it is readily
apparent that lexical patterns that describe the target relations are
identified correctly using the proposed method.

We subjectively compare the patterns presented in Table 3 against
a baseline pattern selection method, which simply selects the most
frequent pattern in each cluster. We asked three judges (exclud-
ing the authors of the paper) to grade the top 10 patterns extracted
using the proposed method against the top 10 frequent patterns in
each cluster using four grades: A (the pattern selected using the
baseline method is better), B (the pattern selected using the pro-
posed method is better), C (patterns selected using both methods
are equally good), and D (patterns selected using both methods are
bad). We elicit human judgments for 50 pairs of patterns (top 10
patterns for each of the 5 relations in the ENT dataset). Judges are
not informed of the underlying nature of the baseline or the pro-
posed method. Moreover, the ordering between the two patterns in
each example is set randomly to avoid any bias in judgment towards
a particular system. The inter-judge agreement measured using
Fleiss’s kappa is 0.4497 and is statistically significant (p < 0.05).
Results of the subjective evaluation are presented in Table 4. Over-
all, patterns selected using the proposed method are preferred three
times more than those selected using the baseline method. Partic-
ularly for CEO and FIELD relations, the patterns selected using
the proposed method are preferred more than four times more than
those obtained using the baseline method. Selecting frequent pat-
terns from clusters usually produces ambiguous common patterns
such as X and Y, X or Y, X is a Y, etc. In contrast, the proposed
method identifies discriminative patterns that uniquely identify a
particular semantic relation.

3.2 Open Information Extraction
We evaluate the proposed relation extraction method on Open IE

using the SENT500 [5] published benchmark corpus. This corpus
contains 500 sentences; each sentence has one pair of entities. In
fact, the SENT500 dataset includes 26 unique entity pairs. Some
entities are represented by more than one name variant (e.g. Adobe
Systems Inc. vs. Adobe Systems), thereby producing 65 unique
name variant pairs in the corpus. Each entity pair in SENT500
dataset describes one of the four relation types: ACQUISITION
(an acquisition relation between two companies), BIRTHPLACE
(a person and that person’s place of birth), INVENTOR (a person
and that person’s invention), and WONAWARD (a person and an
award that person won). Previous works on Open IE have mea-
sured micro-averaged precision, recall, and the F -score of relation
extraction using the SENT500 dataset. Therefore, by evaluating
using the SENT500 dataset, we can directly compare the proposed
method to previous work on Open IE.

We run the one-pass extraction method (Section 2.2) on SENT500
dataset, and extract both lexical and syntactic patterns. The ex-
tracted lexical and syntactic patterns are respectively, 947 and 384.
The estimated values of the clustering thresholds θ and φ are re-
spectively, 0.0005 and 0.01153. For those threshold values, Algo-
rithm 1 produces 4 row clusters (corresponding to entity pairs) and
14 column clusters (corresponding to lexical-syntactic patterns).
For evaluation purposes, we label each row cluster with the relation
that exists between most entity pairs in the cluster. The proposed
method (PROP) is compared against previous works on Open IE
using the micro-average precision, recall and F -scores, as shown
in Table 5. In Table 5, O-NB is the naive Bayes relation classi-
fier described in [4], O-CRF is the conditional random field-based
Open IE system described in [5], and MLN is the Markov logic
network-based Open IE system described in [38]. To study the
contribution of lexical and syntactic information for Open IE, we
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Table 3: Lexical patterns selected using the self-supervised classifier
ACQUISITION (41) HEADQUARTERS (30) CEO (27) FIELD (29) BIRTHPLACE (26)

X acquires Y X headquarters in Y Y chairman and ceo X Y legend X X was born in Y
X to purchase Y X head-office in Y X , ceo of Y X revolutionized Y Y born X

X has purchased the Y X laboratories Y Y founder X Y great X X composer Y
X bids $ N.Nb for Y Y -based X Y -chef X Y champion X X’s birthplace in Y

X (formerly Y) X in Y Y ceo X, at X retires from Y Y native X
Y (now X X building in Y ceo X has Y on Y star X X left Y to

when X bought Y Y office of X Y chairman X X and modern Y X’s childhood in Y
X to acquire Y past X offices in Y Y ceo X X referred to Y X walk, Y

X buys Y Y calif.-based X Y . X Y player X X of Y
X buys ad firm Y X .com Y X has Y on the X pga tour Y X wird in Y city

Table 5: Evaluation of open IE on SENT500 dataset.
Method Precision Recall F
O-NB [4] 0.866 0.232 0.366
O-CRF [5] 0.883 0.452 0.598
MLN [38] 0.798 0.733 0.764
PROP (lexical patterns) 0.943 0.647 0.767
PROP (syntactic patterns) 0.752 0.860 0.802
PROP (lexical+syntactic patterns) 0.751 0.857 0.801

implement the proposed method in three flavors: using only lexi-
cal patterns (PROP (lexical patterns)), using only syntactic pat-
terns (PROP (syntactic patterns)), and using both (PROP (lexi-
cal+syntactic patterns)). All figures presented in Table 5, except
for the proposed method, are obtained from original publications.
The highest precision among the different methods compared in
Table 5 is reported using the proposed method using only lexical
patterns. However, the use of syntactic information improves recall
and consequently the best F -score is reported using the proposed
method using only syntactic patterns. Lexical patterns are useful
to detect specific relations between entities. On the other hand,
syntactic patterns can generalize the relations that exist between
entities, thereby improving the recall. Combining both lexical and
syntactic patterns does not improve the performance beyond the
mere use of syntactic patterns.

3.3 Relation Classification
To evaluate the scalability and performance of the proposed method

in large real-world systems, we use the proposed method to clas-
sify relations between entities in an online social network mining
system, SPYSEE5. This network contains 470, 671 nodes (peo-
ple) and 35, 652, 475 edges describing numerous relations between
nodes. In fact, SPYSEE uses the automatic social network extrac-
tion method described by Matsuo et al.[23]; it is the largest of such
systems in Japan. To mine the social network of a person P , first,
SPYSEE uses the name of that person as the query to a Web search
engine and downloads the top ranked search results. Subsequently,
for each person name Q that appears in the downloaded search re-
sults, SPYSEE determines whether a relation exists between P and
Q using various co-occurrence statistics such as the Jaccard coeffi-
cient and the overlap coefficient.

To apply the proposed method to identify relations between peo-
ple in SPYSEE, we first run the single-pass extraction method de-
scribed in Section 2.2 on the web pages that had been downloaded
by SPYSEE for all personal names in the system. We then perform
sequential co-clustering (Algorithm 1) to identify the entity pairs
between which the same relation holds. Self-supervised relation
detection method (Section 2.4) is used to label each entity pair clus-
ter with representative lexical patterns that describe the relation be-
tween entities in the cluster. Manually evaluating the extracted rela-

5http://spysee.jp/

Table 6: Classifying relations in a social network.
Relation P R F Relation P R F
colleagues 0.76 0.87 0.81 friends 0.58 0.77 0.66
alumni 0.83 0.68 0.75 co-actors 0.75 0.74 0.74
fan 0.91 0.50 0.64 teacher 0.83 0.73 0.78
husband 0.89 0.57 0.74 wife 0.67 0.34 0.45
brother 0.79 0.60 0.68 sister 0.90 0.52 0.66
Micro 0.72 0.68 0.70 Macro 0.78 0.52 0.63

tions among all the entity pairs in SPYSEE is impossible because of
the extremely large number of entity pairs. Consequently, we ran-
domly selected 50, 000 entity pairs (edges) from SPYSEE and eval-
uate on this subset. The proposed pattern extraction algorithm (Sec-
tion 2.2) extracts 38, 076 unique lexical-syntactic patterns, out of
which 11, 193 appear for more than two entity pairs. To avoid using
noisy and rare patterns, which frequently contain misspellings and
other irregularities, we consider only those 11, 193 patterns in the
subsequent processing. Clustering thresholds θ and φ are estimated
respectively, as 0.007 and 0.0131 using Formula 6. For those val-
ues of thresholds, Algorithm 1 produces 383 pattern clusters and
664 entity pair clusters.

We manually classified the entity pairs into 53 different rela-
tions (designated as the gold-standard), and evaluate the perfor-
mance of the proposed method using micro- and macro-averaged
precision (P), recall (R) and F -scores (F). Because of the lim-
ited availability of space, we show the clustering performance for
randomly selected 10 relation types in Table 6. Two entities can
share more than one relation. For example, colleagues can also
be friends. Consequently, the gold standard assigns multiple re-
lation types for such entity pairs. Table 6 shows that the proposed
method correctly identifies numerous relations existing among peo-
ple in a social network. In Figure 3, we present a comparison
of the proposed co-clustering algorithm (Algorithm 1) against two
other co-clustering algorithms: MinSQD (minimum sum-squared
residue co-clustering) [11], and ITCC (information theoretic co-
clustering) [14], using Co-cluster6, a publicly available co-clustering
tool. As shown in Figure 3, the proposed method is several orders
of magnitude faster than MinSQD and ITCC over widely various
dataset sizes. The end-to-end processing time taken by the pro-
posed method to extract relations, cluster, and classify for the SPY-
SEE dataset is ca. 2 hr using a Quad-Core processor (Intel Corp.)
with 8 GB of RAM.

4. RELATED WORK AND DISCUSSION
The approach proposed in this paper is motivated by work in

three fields: relation extraction, relational similarity measurement,
and co-clustering. Next, we discuss the previous work in those
fields and compare it to the proposed method.
6http://www.cs.utexas.edu/users/dml/
Software/cocluster.html
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Figure 3: Comparison of processing times.

Traditionally, relation extraction is framed as a binary classifica-
tion problem: Given a sentence S and a relation R, does S assert
R between two entities in S? Supervised classification methods
such as support vector machines (SVMs) with language-oriented
kernels have been used to learn binary classifiers [10, 16, 18, 36,
37]. Roth and Yih [28] present a classification-based framework
in which they jointly learn to identify named entities and relations.
Culotta et al. [13] model the problem of relation extraction as a one
of sequence labeling and used conditional random fields to iden-
tify the relations in a given document. Specifically, they perform
relation extraction on biographical text in which the topic of each
document is known in advance. Then, for each entity found in a
document, their goal is to predict the relation between that entity
and the topic of the document from a finite set of pre-defined re-
lations. In our setting however, we do not know the relations that
must be extracted beforehand. Moreover, the need for manually
annotated training data by these supervised relation extraction sys-
tems makes it difficult to apply them to large-scale heterogeneous
relation extraction tasks such as relation extraction from the web.

Bootstrapping methods [1, 9, 15, 25, 38] to relation extraction
are attractive because they require markedly fewer training instances
than supervised approaches do. Bootstrapping methods are initial-
ized with a few instances (often referred to as seeds) of the target
relation [1, 25, 38] or general extraction templates [15]. During
subsequent iterations of the bootstrapping process, new extraction
patterns are discovered and used to extract new instances. The qual-
ity of the extracted relations depends heavily upon the initial seeds
provided to the bootstrapping system. If the extracted relations are
of low quality, then we must restart with a different set of seeds
and re-run the bootstrapping process. It might not be readily appar-
ent to a non-expert user to devise good seeds of the target relation.
Moreover, in a setting such as ours, in which we attempt to process
a heterogeneous corpus such as Web text, it is not possible to know
the target relations in advance, let alone provide seeds or extraction
patterns for each relation.

Open Information Extraction (Open IE) [4, 5, 31] is a domain
independent information extraction paradigm and has been studied
in both the natural language document corpus [31], and the Web
environment [4, 5] to extract relation tuples. Open IE systems are
initialized with a few manually provided domain independent ex-
traction patterns. To produce training data for the algorithm, depen-
dency parsing is conducted on a text corpus; domain independent
extraction patterns are used to identify correct extractions. Using
the created training data, a classifier is trained to identify the correct

instances of target relations. Although Open IE is closely related to
the proposed method in the sense that they both extract unknown
relations from heterogeneous corpora, the proposed method differs
from the Open IE methods in several respects. First, unlike the
proposed method, Open IE systems require human-selected fea-
tures to learn a good extractor. Second, Open IE systems use deep
linguistic parsing techniques to label training examples. In con-
trast, the proposed method uses cheaper and more robust linguistic
processing and depends on an efficient co-clustering algorithm to
produce training data for relation classification. Although the pro-
posed method extracts unknown relations in a given text as done
by Open IE systems, we go one step ahead and attempt to label the
extracted relations. This step of identifying the extracted relations
with informative lexical patterns is particularly important in any re-
lation extraction system that attempts to extract unknown relations.
It not only enables us to evaluate the accuracy of the extraction; it
also provides a useful insight into which relations exist in a given
corpus.

Relational similarity [8, 33, 34, 35] measures the correspon-
dence between semantic relations existing between two pairs of
words. For example, the relation X is a large Y exists between the
two words in each word pair (lion, cat) and (ostrich,bird). Conse-
quently, the two word pairs are considered to be relationally similar.
The row clusters produced by the proposed co-clustering algorithm
group entity pairs with the same semantic relation. Relational sim-
ilarity measures first represent a pair of words as a vector of lexical
patterns and then measure the distance between those vectors. A
fundamental difference between relational similarity measures and
the proposed method is that in relational similarity measures the
two word pairs between which relational similarity must be com-
puted are given in advance; the proposed method has the additional
challenge of finding related word pairs. As Section 3.1 shows, the
pattern clusters produced by the proposed method are useful to im-
prove existing relational similarity measures.

The goal in co-clustering [3] is to cluster the rows and the columns
of a given matrix simultaneously, such that the difference between
the original matrix and the clustered matrix is optimal with re-
spect to some objective function. Co-clustering algorithms [11,
14] that optimize different objective functions have been devel-
oped and used in a wide array of applications such as simultane-
ously clustering words and documents in information retrieval [14],
and clustering genes and expression data for biological data anal-
ysis [11]. Co-clustering is an NP-hard problem [2] for which ap-
proximate algorithms have been proposed. However, most exist-
ing co-clustering algorithms require the number of row and col-
umn clusters as inputs, which is unknown in an open relation ex-
traction setting. Moreover, the high computational complexities of
these algorithms prohibit their application in large-scale relation
extraction tasks. The sequential co-clustering algorithm presented
in Section 2.3 does not require the number of clusters as input. It
can efficiently cluster numerous data points, as described in Sec-
tion 3.3.

5. CONCLUSION
We proposed a relation extraction method that exploits the dyadic

nature in semantic relations within a co-clustering framework. Se-
mantic relations that exist between numerous entities were repre-
sented using lexical-syntactic patterns. A one-pass extraction al-
gorithm that can efficiently extract numerous expressive patterns
was introduced. To cluster the extracted entity pairs and lexical-
syntactic patterns simultaneously, we proposed an efficient sequen-
tial co-clustering algorithm. To identify the representative patterns
that describe a particular semantic relation, we proposed a self-
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supervised classification method. We evaluated the proposed method
for three tasks: measuring relational similarity between entity pairs,
Open IE, and classifying relations in an online social network. The
pattern clusters extracted using the proposed method improved pre-
viously proposed relational similarity measures on the ENT bench-
mark dataset. Moreover, a subjective evaluation showed that the
proposed self-supervised relation detection method can identify rep-
resentative lexical patterns of a semantic relation. Experiments in-
vestigating the ability of the proposed method to conduct Open IE
revealed that the proposed method outperforms all existing Open
IE systems on a benchmark dataset of 500 sentences. The pro-
posed method correctly classified 53 relation types in an online so-
cial network system with over 35 million edges, thereby proving its
applicability in large real-world datasets.
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