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ABSTRACT

Middleware for Web service compositions, such as BPEL
engines, provides the execution environment for services as
well as additional functionalities, such as monitoring and
self-tuning. Given its role in service provisioning, it is very
important to assess the performance of middleware in the
context of a Service-oriented Architecture (SOA). This pa-
per presents SOABench, a framework for the automatic gen-
eration and execution of testbeds for benchmarking middle-
ware for composite Web services and for assessing the perfor-
mance of existing SOA infrastructures. SOABench defines
a testbed model characterized by the composite services to
execute, the workload to generate, the deployment configu-
ration to use, the performance metrics to gather, the data
analyses to perform on them, and the reports to produce.
We have validated SOABench by benchmarking the perfor-
mance of different BPEL engines.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
testing tools; D.2.8 [Software Engineering]: Metrics—
performance measures

General Terms

Experimentation, Measurements, Performance

Keywords

Middleware, performance assessment, web service composi-
tions, testbed generation, experiment automation

1. INTRODUCTION
Service-oriented Computing has received lot of attention

both by industry, since more and more existing enterprise
IT infrastructures have been migrated to SOAs [5], and by
academia, which carries on several research projects in the
area [17]. The implementation [7] of an SOA requires to
put together several components — each one offering a spe-
cific functionality — that are aggregated under the name
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service-oriented middleware. Examples of functionality pro-
vided by a service-oriented middleware are service registra-
tion and discovery, assembly and execution of composite ser-
vices, service monitoring, and service management. For ex-
ample, in the context of Web services-based SOAs, some of
these functionalities are provided by UDDI [15] registries
and BPEL [16] engines.

It is then clear that the correct and efficient realization of
an SOA heavily depends on the characteristics of the mid-
dleware infrastructure, since the latter represents the envi-
ronment where services are deployed and executed. All ma-
jor SOA vendors propose product suites that are actually a
bundle of middleware components. Moreover, academic re-
search has targeted specific facets of a service-oriented mid-
dleware, like “smart” service discovery, automated service
composition, dynamic service rebinding, computation of ser-
vice reputation, monitoring of functional properties and Ser-
vice Level Agreements (SLAs), self-tuning, and self-healing.

This scenario reveals a huge amount of engineering activ-
ities, both industrial and academic, for the development of
service-oriented middleware components. From an engineer-
ing point of view, one of the key activities in the develop-
ment process is the validation of the product; in the case
of service-oriented middleware, one validation task consists
in assessing the performance delivered by the system. Mid-
dleware performance is a critical factor for service-oriented
systems, since it affects the global Quality of Service (QoS)
perceived by the end-users of the system. Moreover, besides
being executed on the developers’ site, this kind of test can
also be executed on the stakeholders’ site, for example by
SOA analysts, when they have to choose a specific middle-
ware component from several alternatives.

Performance assessment of a software component, at a
minimum, consists in executing a series of tests, each one
with a specific workload for the component, and collecting
and aggregating some performance metrics that character-
ize the system. In the case of distributed systems, and thus
also for service-oriented systems, the components can be de-
ployed on different machines over different networks, and
may need to be stimulated by different remote clients. This
task, when performed manually or with a limited amount
of automation, can be cumbersome and error-prone. Fur-
thermore, in the case of distributed systems, the hetero-
geneity of the platforms and of the communication channels
increase the complexity of this task. In this paper we ad-
dress this problem by presenting SOABench, a framework
to help SOA engineers and researchers evaluate the perfor-
mance (in terms of some metrics, such as response time)
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of the middleware components that handle the execution of
service compositions. In particular, we focus on Web ser-
vice compositions described as BPEL processes, running on
execution environments that consist of a BPEL engine and
additional components such as service registry or enterprise
service buses.

The main goal of this work is to enable further research
in the service-oriented computing area, by providing a pow-
erful, ready-to-use framework for automating experimenta-
tion with middleware components. Indeed, we foresee the
application of SOABench for the evaluation and compari-
son of the performance of different BPEL engines, sporting
different optimizations or featuring specific extensions, such
as monitoring, reputation reporting, rebinding, self-tuning,
or self-healing. Example research questions that SOABench
helps answering are:

• Which BPEL engine handles best the workload for given
experiments on a given platform?

• What is the scalability of a certain BPEL engine, in
terms of the maximum number of users and requests it
can handle without showing failures?

These questions can also seek an answer outside academia,
for example in enterprise ICT environments, in the context
of business decisions making regarding the implementation
of SOAs in the enterprise. Additionally, SOABench could
also be used by developers of service-oriented middleware
components, such as BPEL engines, to evaluate the perfor-
mance and the scalability of their products under various
workloads.

The original, scientific contributions of the paper are
twofold.

1) We present a flexible framework for automating per-
formance assessment for service-oriented middleware, which
automatically generates and executes testbeds for bench-
marking middleware components. SOABench has been im-
plemented using state-of-the-art technologies and is publicly
available1.

2) We leverage SOABench to evaluate performance and
scalability of three popular BPEL engines and discuss how
the engines react to certain kinds of workload. We show that
one of the engines fails even under low workload, making it
not suitable for use in production environments.

The rest of the paper is structured as follows. Section 2
gives an overview of SOABench and its components. Sec-
tion 3 illustrates the testbed meta-model we use to charac-
terize the experiments to be run on top of SOABench. Sec-
tion 4 details how the internals of SOABench work. We re-
port and comment about our experience in using SOABench
in Section 5. Section 6 discusses the related work and Sec-
tion 7 concludes the paper, outlining possible research di-
rections.

2. OVERVIEW OF SOABENCH
The SOABench framework is composed by two building

blocks: a testbed modeling environment and a tool chain.
Figure 1 shows the architecture of the framework, as well as
how the components interact with each other.

The modeling environment comprises a meta-model,
which establishes the concepts necessary to define the tests

1http://code.google.com/p/soabench/.
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Figure 1: SOABench at a glance

to run and the testbed to use. The performance engineer can
then use it to design a testbed model for an SOA. Such a
model is characterized by the composite services to execute,
the workload to generate, the deployment configuration to
use, the performance metrics to gather, the data analyses to
perform on them, and the reports to produce.

After its definition, the model can be passed as input to
the tool chain underlying SOABench, which includes four
main components (see Figure 1). The first component is
a set of generators for creating executable versions of pro-
cesses, the mock-ups of the external services they inter-
act with, and the testing clients that create (concurrent)
workload by invoking processes. A compiler translates the
testbed definition into a format understandable by the un-
derlying platform we use for executing experiments. The
testbed driver steers the experiment execution, and the ana-
lyzer gathers and processes measurement data, producing as
output reports including statistics computed from the mea-
surements.

2.1 Design Goals
Our framework has been designed to meet the following

goals:
Technology independence. SOABench treats the BPEL
engine and the infrastructure it interacts with as a black-
box characterized by a generic, common interface, which
acts as a wrapper for any BPEL-compliant infrastructure.
Since platform dependencies — such as code specific to a
certain BPEL engine for deploying test processes — consti-
tute a major barrier to testability [18] for SOAs, we decided
to keep them at a minimum degree, and introduced a plug-
in mechanism to deal with them. Performance metrics are
measured at the testbed infrastructure level, without the
need for instrumenting the single components of the infras-
tructure (e.g., BPEL engines) by inserting profiling code.
Technology independence ensures that the testbeds gener-
ated by SOABench are reusable in as many settings as pos-
sible. One direct consequence of this feature is the possibility
to use SOABench for benchmarking any standard-compliant
BPEL engine.
Model-driven approach. By using a model-driven ap-
proach we allow engineers to focus on the rationale of ex-
periments and on the specification of the testbeds, since
SOABench automatically takes care of low-level issues such
as the deployment and the execution of test cases.
Repeatability. Repeatability is a key factor during ex-
perimentation. In the context of this work, repeatability is
required to guarantee a fair comparison of different refer-
ence settings and to mitigate uncontrollable factors in the
measurement environment. For example, benchmarking dif-
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ferent BPEL engines requires to use the same workload, with
the external services showing similar QoS behavior at each
execution. However, due to complexity of the infrastruc-
ture, measurements are not exactly reproducible [8]. To
compensate for measurements variances, simulations can be
repeated several times and data can be reported by including
statistical quantities over several runs, such as the median,
the average and standard deviation, or confidence intervals.
Run-time evolution of testbeds. Some experiments re-
quire the testbed to evolve at run time, for example to sup-
port the addition of new services and process types in the
system during experimentation. SOABench supports this
feature by providing appropriate constructs to define run-
time changes for services and processes.
Ability to process data and produce reports. Dur-
ing the execution of experiments, SOABench collects logs of
run-time data related to the performance metrics specified
in the testbed model. The model contains also the descrip-
tion of how to gather and process these data, as well as how
to generate reports from them. The automatically produced
documentation can be of great help supporting analysts and
engineers in taking their decisions. To support extensibil-
ity, new metrics and report definitions may be added with a
plug-in mechanism.

3. TESTBED MODEL
The definition of the SOABench testbed meta-model has

been inspired by similar work [19] in the area of (generic)
distributed systems, and has been tailored to the service-
oriented computing domain by relying on the personal expe-
rience of our research groups. The meta-model is depicted
in Figure 2; solid lines represent composition associations
while dotted boxes correspond to packages of the model.

In the model, the System Under Test (SUT) comprises
atomic services, represented by the Service concept, and
composite services, modeled by the Process concept; the
instances of these two classes can interact with each other.
Moreover, the SUT comprises also Servers, i.e., generic mid-
dleware components, on top of which Services and Processes
are executed. A Server component is deployed on a Host,
i.e., a network-addressable physical machine. The SUT is
stimulated with a TestSuite, which contains one or more
TestCases. For each TestCase, one or more TestingClients
are defined; a TestingClient is a lightweight remote applica-
tion that executes a Workload on the SUT. A TestCase also
includes a DeployPlan that allocates Clients and Servers on
the Hosts. Moreover, each TestCase specifies the perfor-
mance Metrics of interest for engineers and which Statistics
to compute for them.

In the rest of this section, we illustrate the main concepts
of the meta-model.

3.1 Service
Atomic services constitute the basis of any SOA. They can

be either invoked directly or accessed through a composite
service, for which they play the role of external partners.
We support the definition of different service types, i.e., dif-
ferent service interfaces represented by WSDL documents.
For each service type, there may be a configurable number
of instances.

Each instance of a service can be configured in terms of its
non-functional attributes, such as throughput, response time,
and reliability. These attributes can be described probabilis-
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Figure 2: Extract of the meta-model for automated

experimentation of SOAs

tically, by specifying the associated probabilistic distribution
(e.g., normal or uniform distribution) and its parameters.

SOAs are an instantiation of open-world software [1]. In-
deed, they are characterized by a high level of dynamism;
for example, new (instances of) services may become avail-
able while previously available (instances of) services may
disappear or become unavailable. To support these charac-
teristics, SOABench allows for specifying the occurrence of
certain events related to a service life time:

• Service unavailability. It models the permanent unavail-
ability of a service instance. In contrast to the reliability
parameter — which models a temporary failure character-
ized by an exceptional response to a single request — a ser-
vice unavailability event makes a service instance disappear
permanently. This type of event has one parameter, rep-
resenting the reference to the service instance to which it
applies.

• Availability of a new service. It models the appearance
of a new service instance in a registry. Its parameters are
the type (interface) of the new service becoming available
and a reference to a UDDI server, to be used for publishing
the service.

Our previous work [4, 14] shows that these two kinds of
events can be sufficient for experimenting with middleware
extensions that deal with services rebinding/tuning or rep-
utation reporting. However, new event types may be de-
fined by extending the meta-model and defining a plug-in
for SOABench.

3.2 Process
Atomic services can be composed together to realize more

complex, added-value composite services, which we call pro-
cesses, a synonym for business processes and service work-
flows. A process describes the control and the data flow
realized among several atomic services. In SOABench we
support two different definitions of composite services:

• Black-box. This kind of process hides the workflow it
implements and makes only available the service interface
by which it can be invoked. In a model, it is represented
with a reference to the WSDL document describing its in-
terface and with the endpoint reference at which it can be
reached. Black-box processes are extremely useful to model
legacy processes, which are often already deployed in an
SOA infrastructure, and thus cannot be directly controlled
by SOABench.

• White-box. For these processes, engineers get access
both to their interfaces and to their implementations. The
latter are modeled using a standard language (e.g., BPEL),
without using any extensions specific to a certain orches-
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tration engine. This requirement guarantees technology in-
dependence and relieves engineers of dealing with low-level
details, such as deployment descriptors or other middleware-
specific artifacts; hence, engineers can concentrate on the
process business logic. In a model, a white-box process is
represented with a reference to the BPEL file that defines
its workflow and with WSDL files defining its own interface
and the ones of its partner links; initial bindings for partner
links are specified by references to service instances (defined
elsewhere in the testbed model). White-box processes are
often used to model test processes from scratch, for example
to define a benchmarking suite for BPEL engines, like the
one used in the experimentation reported in Section 5.

3.3 Client
Services and processes are invoked by service clients, also

called testing agents, which execute, for each test case, the
workload indicated in the model description. Specifying a
workload extensionally, i.e., by specifying each single action
to execute for realizing the workflow itself, can be tedious
and error prone. To overcome this issue, we decided to adopt
intensional definitions for workloads. In this way, workloads
can be automatically generated by specifying a set of client
classes and the number of clients to be generated for each
class. Classes are characterized by the following parameters:

• Process reference. It is a reference to the process or to
the service that should be invoked by the clients of the class.

• Instance pool : It is a set of data chunk instances, to be
used as parameters when invoking processes. They are par-
ticularly useful for invoking black-box processes, since this
class of processes may respond in an exceptional way if in-
voked with empty data [13]. The instances contained in the
pool, besides specifying data chunks, are also characterized
by the frequency with which they should be selected.

• Type. It represents the type of behavior to generate
for a client. Using the terminology of Queuing Networks
(QNs) [11], clients may execute either open workloads or
closed workloads. In the former case, clients are character-
ized by an arrival rate, which indicates the interval between
two subsequent requests. These clients do not wait for the
completion of the requests already issued, before issuing new
invocations. The number of requests circulating in the sys-
tem is not bound a priori. Open workloads are appropriate
to model service-based applications publicly available on the
Internet. In the latter case (closed workloads), clients are in-
stead characterized by a think time parameter. Clients wait
for the completion of the requests already issued, before gen-
erating new invocations; between each completion and the
subsequent invocation, a client waits for an additional pe-
riod of time, equal to the think time.
In both cases, the characterizing parameter (arrival rate for
open workloads, think time for closed workloads) can be de-
fined in a probabilistic way.

3.4 Deployment
The Deployment package of the meta-model defines the

concepts for dealing with the intrinsic distributed nature of
service-oriented systems. The distribution is both physical,
i.e., at the level of the network infrastructure underlying
an SOA, and logical, in terms of the deployment of clients,
services and processes on the available physical resources.
For this reason, the model is equipped with two distinct
concepts, Hosts and Servers.

Hosts represent physical resources and are characterized
by the network address at which they can be reached and
by the credentials and protocol (e.g., SSH) to access it.

Servers represent middleware components running on re-
sources, such as a BPEL engine. Several Servers may reside
on a single Host. To support extensibility, we provide the
ability to define new Server Types with a plug-in mechanism.
Each Server Type plug-in comes with the declaration of the
model and a collection of scripts to start/stop the server and
to compile/deploy services and processes on it. The actual
deployment of services and processes onto Servers and of
Clients onto Hosts is defined in a Deploy(ment) Plan.

3.5 Analysis
The Analysis package of the meta-model defines the con-

cepts to indicate the performance metrics of interest for the
engineers using SOABench, as well as the statistical func-
tion to apply on the metrics for producing specific kinds of
reports.

The current implementation of SOABench provides sup-
port for gathering and computing three metrics: a) the re-
sponse time of processes and services, as measured by test-
ing agents; b) the network traffic generated by a server and
c) the number of threads created by a server. Additional
metrics may be defined with a plug-in mechanism, by pro-
viding the scripts to gather and process monitoring logs.

For each performance metrics, it is possible to indicate
the artifact for which it should be computed, e.g., a spe-
cific server or process. Furthermore, each metric specifies
also which statistical functions to apply to it. Currently,
SOABench supports basic aggregating functions, such as
maximum, minimum and average, plus the possibility to plot
and output a chart of the metric values measured during the
experiment.

4. SOABENCH AT WORK
When the SOABench tool chain receives a testbed model,

it first processes (parses) it and then: 1) generates the mock-
ups of the services, the actual service compositions in the
form of BPEL processes, and the testing clients; 2) cre-
ates the deployment descriptors for the artifacts generated
in the previous step and additional, supporting scripts for
starting/stopping them; 3) compiles the model of the exper-
iments in order to target the underlying execution platform,
and executes the experiments defined in the testbed model;
4) gathers and processes the run-time data and produces a
series of reports. This section discusses in detail all these
steps.

4.1 Generation of Service Mock-ups
The Service Mock-ups generator parses the definitions of

external services from the testbed model and subsequently
generates the code that implements them. As mentioned
in the previous section, services are described in terms of
their interfaces, as described in WSDL documents. This
means that the only information available for generating a
service mock-up is represented by the syntactical interface it
should have; no details are provided about its behavior. Al-
though generating service mock-ups from descriptions with
limited behavior information has been already dealt with in
the literature [10], we decided to not include this function-
ality. Given the ultimate goal of our work, i.e., evaluating
the performance of service-oriented middleware and SOA
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infrastructures, we are only interested in mocking the QoS
characteristics of services.

Therefore, the generator creates the so-called QoS-aware
Service Mock-ups: they are service mock-ups compliant with
the syntactic interface, which ignore input data, produce
default output data and manifest a deterministic QoS. Fig-
ure 3 outlines the steps for generating this kind of mock-ups.

We start with the WSDL description of the service, ex-
tracted from the testbed model (step 1), which is trans-
formed into a code skeleton with tools such as Wsdl2Java2

(step 2). Since the mock-up will not simulate the real be-
havior of the service, we can safely ignore to create the input
data of the service. On the contrary, output data must com-
ply with the data model specified in the WSDL document
accompanying the service. To generate these data, we adopt
an approach similar to the one described in [2]. For atomic
types we use standard default values, such as the empty
string for string types or false for boolean types. Structured
types are instead represented as decision trees and a possible
path from the root to one leaf is selected as the candidate in-
stance of the chunk of data to return. Regarding QoS prop-
erties, they are extracted from the testbed model (step 3)
and are then used for decorating (step 4) the skeleton mock-
up with some code snippets that simulate non-functional
properties, such as response time or reliability.

An important aspect in the design of the Service Mock-
ups generator is to meet the requirements of SOABench in
terms of repeatability of the experiments. At the level of
service mock-ups, this requirement is met by using deter-
ministic QoS to model their performance. By deterministic
QoS, we mean that the same invocation during two runs of
the same experiment should exhibit the same performance
attributes. To achieve this, we first pre-simulate the behav-
ior of a service; this simulation can be performed by extract-
ing values from the probabilistic distribution specified in the
model. The resulting traces are then stored and labeled with
Unique Invocation IDentifiers (UIIDs), which represent sin-
gle invocations of the service for which a behavior (trace)
is available. The UIID is used in the mock-up implemen-
tation to look up for the pre-computed behavior to exhibit,
so that two subsequent invocations with the same identifier
will show the same non-functional behavior.

4.2 Generation of Processes
The Process generator transforms the technology-

independent representation of processes into a format that
is specific for the workflow execution engine indicated in the
model. Moreover, it also prepares the deployment descriptor

2Included in the Apache Axis2 framework, http://ws.
apache.org/axis2/.

specific for the chosen engine, since it is very common that
each SOA vendor adopts a non-standard format for defining
how the deployment should be done.

This generator considers both the description of the pro-
cess available in the testbed model and the derived BPEL
workflow definition. These descriptions are then used to
assemble a deployable artifact (e.g., a Java archive file for
Active Endpoints ActiveVOS or a directory tree for Apache
ODE) that contains the BPEL workflow, the WSDL docu-
ments for the external services and an automatically gener-
ated deployment descriptor.

These assemblies are created by build scripts defined for
each specific target engine; new process engines may be
added with a plug-in mechanism.

4.3 Generation of Testing Clients
The Client generator translates the testing client defini-

tions found in the testbed model into a form suitable for
execution and deployment. In particular, the output of this
component is represented by an executable program imple-
menting a testing client and by a workload file containing
the actions that should be executed by the client.

We provide a default implementation of the executable
client program that can a) invoke a service or a process,
both synchronously and asynchronously; b) wait for a cer-
tain amount of time between subsequent invocations; c) log
the result of the invocations into a common format suitable
for interpretation at run time.

Regarding the generation of the workload file, we include
an additional program to simulate the run-time behavior of a
testing client compliant with the agent class specified in the
testbed model. This program simulates the invocation of a
specific external service by randomly selecting data from in-
stance pools and by waiting, between two subsequent calls,
for the amount of time specified in the agent class defini-
tion. The output of the simulation is a time-stamped log
that records the actions to perform over time, when the ex-
periment takes place. At a higher level of abstraction, a
workload definition is an ordered list of actions, each one
to be performed at a certain time instant. At run time,
testing clients read the log and execute, step by step, each
action recorded in it, and thus they reproduce the simulated
behavior during an actual experimentation.

4.4 Compilation and Execution
Instead of implementing our own platform for executing

the experiments, we decided to use an existing solution,
Weevil [19]. As will be described in Section 6, Weevil is
a toolkit that can be used to generate distributed testbeds
and execute experiments over them. It provides automated
script construction, workload generation, experiment de-
ployment, and experiment execution. These tasks are all
required in SOABench and thus Weevil proved to be one of
the best off-the-shelf solutions.

Even though Weevil also allows for generating testbeds,
we only used its functionality for executing distributed ex-
periments. The meta-model it defines for describing testbeds
is general enough to be used for a wide range of distributed
applications, and thus, at the same time, not very accurate
for describing specific domains, such as the one of SOAs.
This is also the reason for which we designed our meta-
model and SOABench, at a higher, SOA-aware, level of ab-
straction.
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However, Weevil has its own concepts and representation
of software artifacts, which are slightly different from the
ones used in SOABench. Therefore, an extra conversion step
is required before using it; this step is carried out by the Test
Compiler component of SOABench. Many concepts in our
meta-model have a direct counterpart in the Weevil meta-
model, so their translation is straightforward. This is the
case, for example, with the Host and the Testing Actor con-
cepts. Other concepts, such as Components, require extra
effort to be translated. For example, each Server in our
models is translated into a specific Weevil Component, for
which we also provide the scripts to start up, shutdown and
deploy services and processes. A similar transformation is
undergone by our Process and Service concepts.

From a logical point of view, a Weevil experiment is a
collection of software artifacts — either Testing Actors or
Components — that should be deployed and run on Hosts.
In practice, after translating our model into a Weevil one,
we generate the Weevil repository containing all the arti-
facts that need to be deployed for each Host and Server.
This phase merely assembles all the artifacts created during
the testbed generation phase with the appropriate scripts for
starting and stopping them. At this point, Weevil takes care
of running the experiments and gathering data; this last as-
pect is discussed in more detail in the next subsection.

4.5 Analysis and Reporting
Weevil provides a very limited support for manipulating

experimental data, since it only gathers all the output gen-
erated by servers and the testing clients, without providing
any data processing facility. To overcome this limitation,
we included in SOABench a dedicated analysis and report-
ing component.

For each metric defined in our meta-model, we provide
scripts to parse the experiment logs and load them into a
relational database. After that, logs are processed and the
statistics defined in the testbed model are computed.

To facilitate the interpretation of the results, we use the
Eclipse Birt reporting system3 to generate reports show-
ing the outcomes of the analyses. We currently provide
outcomes with different granularity. Coarse grained reports
summarize the results of each test case contained in a test
suite. Fine grained reports show instead detailed informa-
tion about each test case. Moreover, for each metric defined
in the testbed model, a summary report and a detailed re-
port are generated for each test case.

5. EXPERIENCE
In order to validate SOABench, we used it for bench-

marking several BPEL engines, thus answering the research
questions posed in Section 1. The BPEL engines we have
considered in this benchmark are: a) Active Endpoints Ac-
tiveVOS v.5.0.2 Server Edition; b) Apache ODE v.1.3.3 and
v.2.0-beta2; c) Red Hat JBoss jBPM-Bpel. In the rest of
this section we detail the testbed model we used as well as
the adopted testing infrastructure, and we present and dis-
cuss the results of our experimentation. For space reasons,
the results presented here do not include data about thread
usage and network resources consumption. The complete
reports about the analyzed metrics are available on line on
the web site of SOABench.

3The Eclipse Birt Project, http://eclipse.org/birt/.

5.1 Description of the Testbed Model
We have defined four processes, each one characterized by

the use of a specific structured activity of the BPEL lan-
guage. In this way, we can analyze the performance of the
BPEL engines with respect to the structural diversity and
complexity of the processes they execute. Two processes
have been defined in terms of the flow activity, while the
other two use, respectively, the sequence and the while ac-
tivity. The other structured activities defined in the BPEL
standard have not been considered since they are subsumed
by the ones that we have chosen: the if activity is a particu-
lar case of a flow activity with proper transitionConditions;
the repeatUntil activity can be simulated with a while activ-
ity; the forEach activity can be simulated with the proper
combination of flow and sequence activities.

Each process interacts with one partner service, which is
modeled using a QoS Aware Service Mock-up. To minimize
the impact of this kind of external services on the evaluation,
we set their response time to zero.

Each of the processes invokes the operation made available
by its partner service five times. How the five invocations
are executed depends on the structure of the process. The
process that uses a sequence activity (hereafter called “Se-
quential”) executes five different invoke activities in a row.
The process that uses the while activity (hereafter called
“While”) contains one while activity, whose body contains
an invoke activity; the loop condition makes sure the loop is
executed exactly for five times. The first process that uses
a flow activity is called “FlowNoDep” since it does not de-
fine any synchronization dependency (expressed with a link
construct) among the activities defined inside the flow. The
other process is called just “Flow”, since it does define de-
pendencies among the activities that it encloses. We have
modeled the dependencies in order to define an execution or-
der that is equivalent to the one realized in the “Sequential”
process. In both cases, the flow contains five invoke activ-
ities, all targeting the process partner service. Using two
different kinds of flow structures in the two flow processes
allows us to check how well the engines support parallel exe-
cutions of activities (with the “FlowNoDep”process), and to
test the overhead introduced by using a flow activity (with
the “Flow” process).

Several test cases are defined using the processes described
above, and are then assembled in two test suites that model
closed type workloads; one suite has a “low”workload, while
the other has a “high” workload. The “low” workload is
characterized by a number of clients, ranging from 10 to 25,
and by a think time that follows a normal distribution, with
mean varying from 0.5 to 2 and variance always set to 0.5.
The “high” workload adopts the same range for the think
time, but varies the number of clients from 50 to 200. A
summary of the workloads used in our experiments is shown
in Table 1.

5.2 Testing Infrastructure
The middleware components required to execute the work-

flow processes and the external services have been deployed
on two virtual machines, each one sporting three CPU cores
at 2.40GHz in exclusive use (i.e., not shared with other
VMs), 4GiB of memory and running Ubuntu Server 9.04
32 bit as operating system. The hosting environment of the
virtual machines is a high-end server with four Dual Core In-
tel Xeon processors at 2.40GHz, 32GiB of memory, RAID-
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Table 1: Workload summary

Load
Type

Wkl
ID

# Clients Think Time
∼ N (µ, σ2)

µ σ
2

Low

L1 10 1 0.5
L2 25 2 0.5
L3 25 1 0.5
L4 25 0.5 0.5

High

H1 50 1 0.5
H2 50 0.5 0.5
H3 100 1 0.5
H4 200 2 0.5

5 hard disks and VMware ESX as operating system. Ac-
tiveVOS and ODE (both versions) run under Apache Tom-
cat 5.5.25, which runs also Apache Axis2, required to ex-
ecute the external services; jBPM-Bpel runs under JBoss
4.2.2-GA. The Java Virtual Machine installed on each server
is the Sun-JVM-1.5.0.19 Server Edition. Application servers
have been configured with the connection timeout set to
30 s and with the maximum size of the threads pool set to
700 threads4; these settings should minimize possible sat-
uration issues. Since all the BPEL engines require access
to a database, Oracle/Sun MySQL 5.0.75 has been installed
on the servers hosting the BPEL engines. Finally, the de-
ployment and the execution of the testing clients have been
carried out on five machines, each one equipped with two
Intel Xeon processors at 2.40GHz, 4GiB of memory, and
running Ubuntu Server 9.04 32bit as operating system.

5.3 Active Endpoints ActiveVOS
The benchmarking results of ActiveVOS related to re-

sponse time are shown in Table 2. The engine passed suc-
cessfully all the “low” load test cases and exhibited some
scalability issues only while executing the H3 test case, char-
acterized by 100 concurrent clients. Further analysis indi-
cates that this value represents its scalability limit. When
the number of concurrent clients becomes greater than this
threshold, the number of requests that fail increases rapidly;
for example, during the H4 test case, the server saturated
immediately and experiments were stopped manually. It
needs to be said that the failures manifested were only re-
lated to time-outs in replying to clients, indicating that the
server did not respond within the 30 s threshold; neither ex-
ceptions nor application error messages were logged during
the experiments.

Figure 4 includes two plots that outline the trend of the
response time during the “FlowNoDep” and the “Flow” ex-
periments. For readability reasons, the plots show the trend
for a limited time window over the entire execution of the
test cases. The most interesting points — enclosed in a dot-
ted circle — correspond to invocations that failed because
the response time of the process exceeded the 30 s thresh-
old. The data contained in Figure 4 and Table 2 allow us
also to comment about how the engine deals with processes
containing flow activities, with and without dependencies.
As expected, in “low” load situations we can confidently say
that flow activities with no dependencies (i.e., with all in-
ner activities executed in parallel) have a better performance

4This limit has been reached only while executing the heav-
iest test cases.

Table 2: ActiveVOS Response Time Results

Test Wkl Max Min Avg Failure
ID [s] [s] [s] rate (%)

Sequential

L1 3.967 0.549 0.622 0
L2 5.733 0.546 0.641 0
L3 4.682 0.542 0.709 0
L4 5.633 0.542 0.832 0

H1 10.199 0.540 1.116 0
H2 6.838 0.540 1.564 0
H3 30.000 0.542 4.356 12.8

FlowNoDep

L1 3.997 0.129 0.215 0
L2 6.969 0.126 0.268 0
L3 5.246 0.126 0.418 0
L4 5.280 0.125 0.753 0

H1 10.443 0.124 1.526 0
H2 10.126 0.340 2.070 0
H3 30.000 0.127 3.522 11.6

Flow

L1 2.882 0.549 0.611 0
L2 5.004 0.545 0.656 0
L3 5.595 0.542 0.759 0
L4 5.542 0.542 0.914 0

H1 8.040 0.560 1.404 0
H2 7.417 0.543 1.872 0
H3 30.000 0.552 4.673 7.0

While

L1 3.510 0.550 0.613 0
L2 5.027 0.546 0.634 0
L3 5.428 0.541 0.706 0
L4 5.380 0.542 0.820 0

H1 6.448 0.542 1.102 0
H2 8.115 0.563 1.524 0
H3 30.000 0.542 4.020 13.4

(almost twice faster) than the ones with dependencies (i.e.,
with a serialization of some of the inner activities).

This is not the case for “high” load test cases, where the
performance gain becomes negligible: “FlowNoDep” is out-
performed during the execution of H1 and H2, while the con-
trary has been measured during the H3 experiment. More-
over, the failure rate of “FlowNoDep” is greater than the rate
of “Flow”. We feel confident that the motivation for such
results resides in the high number of concurrent requests
handled by the Axis2 server, which hosts the external ser-
vices. This is supported by the measured number of threads
for this component: during the execution of “FlowNoDep”
test cases, it is twice than the value measured during the
execution of “Flow” test cases.

Finally, when comparing the response time of the“Sequen-
tial” test case with the one of the “Flow” test case, one may
notice that the former is 5% faster [9] than the latter. Such
performance gain is ascribable to the overhead due to the
creation of the additional threads required to execute a flow
activity, and to check for the synchronization conditions.

5.4 Red Hat JBoss jBPM
Table 3 reports the statistics of the response time for the

jBPM engine. With respect to ActiveVOS, it exhibits worse
response times. Moreover, the engine exhibits scalability
problems even during the execution of test cases charac-
terized by a “low” workload; failures where registered with
only 25 concurrent clients. In the case of “high” workload
test cases, the engine reached saturation after only 200 in-
vocations, therefore it was not possible to continue the ex-
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Figure 4: ActiveVOS High Load Experimentation Results

periments; this is the reason why Table 3 contains only data
related to “low” workload test cases.

We have investigated the possible causes of these failures
and we observed that, when the server starts to saturate, the
(numerous) exceptions that are thrown are about deadlock
conditions and rollback operations in the database. These
exceptions are ascribable to the Java Message Service (JMS)
infrastructure of JBoss, which is used by jBPM to handle ex-
change of events and messages during the execution of the
process. In turn, JMS relies on the transactional support of
the JBoss JavaEE container. At the JMS level, the deliv-
ery of a message may fail, for example because the receiver
did not respond quickly enough, or because a deadlock was
detected in the messages database. In all these cases, the
transaction, within which the delivery operation is enclosed,
is aborted, rollback actions are taken by the database, and
the operation being executed is rescheduled in the future.
This behavior confuses the engine, which reaches a satu-
ration stage very quickly. In such a state, lot of requests
accumulate, leading to a time-out failure, and the engine
becomes incapable of serving both old and new process in-
vocations.

Another evidence of this behavior is shown in Figure 5,
which depicts the trend of the response time during“Sequen-
tial” experiments with a “low” workload; in the figure, the
points of interest are surrounded with a dotted ellipse. After
the first peaks, which correspond to timed-out requests, the
server does not respond normally, and continues to stay in
a saturation condition.

5.5 Apache ODE
We do not include any result for this engine since all test

cases have failed, for both the versions we considered.
The stable version (ODE 1.3.3) failed to handle the test

case with the lowest load defined in our benchmark suite,
that is, the one with 10 clients and the think time taken
from a N (1, 0.5) distribution. The engine hung and threw
an exception after a low number of requests (about 30 in-
vocations of the workflow process) from each client. This
behavior is due to a known bug5, which has been corrected
in the beta version of the server.

However, also the beta version (ODE 2.0-beta2) could not
handle the same workload, resulting in a similar, faulty be-
havior: after about 75 requests from each client, the server

5https://issues.apache.org/jira/browse/ODE-647.

Table 3: jBPM Response Time Results

Test Wkl Max Min Avg Failure
ID [s] [s] [s] rate (%)

Sequential

L1 4.031 0.607 0.905 0
L2 30.025 0.947 5.908 7.1
L3 30.000 0.933 6.659 32.7
L4 30.032 0.636 6.808 23

FlowNoDep

L1 8.261 0.721 2.135 0
L2 28.612 1.481 7.976 0.1
L3 30.000 1.500 8.357 0.9
L4 30.000 1.318 9.111 1.6

Flow

L1 6.947 0.711 2.334 0
L2 30.000 1.087 8.365 0.04
L3 30.000 1.605 8.906 0.06
L4 30.000 1.434 9.500 1.9

While

L1 4.573 0.622 1.034 0
L2 30.000 0.633 4.487 0.08
L3 30.000 1.008 5.455 0.03
L4 30.000 0.964 5.676 0.07

hung and started to throw some exceptions. By analyzing
the stack trace, we have been able to identify the point where
the failure occurs; it is located in ODE and not in the code
of the application container. We have also discovered that,
when the server starts to saturate, old process instances are
never canceled; moreover, in the underlying database, they
remain marked as active forever.

5.6 Discussion
The results of the experiments performed with SOABench

allow us to answer the two research questions raised in Sec-
tion 1.

For the given experiments, on the given platform, Ac-
tiveVOS has been the engine with the lowest response time,
under different workloads. jBPM has higher response times
and can only deal with “low” workloads. Figure 4 displays
the comparison between these two engines, in terms of re-
sponse time.

In terms of scalability, ActiveVOS has a threshold equal
to 100 clients, before starting to experience significant de-
lays in replying to them, while jBPM supports at most 25
concurrent users.

As said above, no results can be provided for Apache
ODE. We regret to admit that both the stable and the de-
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Figure 5: jBPM Sequential Test Case Results

velopment version are only prototypes, which should not be
used in production systems.

Before executing the experiments, we expected good re-
sults for ActiveVOS, given the industrial quality of this mid-
dleware. However, we we were surprised by the fact that,
although jBPM is developed by the Red Hat company, its
poor performance makes it not usable in real settings. We
try to explain this by saying that its software house pushes
(and develops products for) another language, alternative to
BPEL, called jPDL.

5.7 Threats to Validity
Our empirical study may be subject to the following

threats:
1. The processes used in the experiment were very sim-

ple. We used four processes, each one being defined in terms
of one structured activity. Although such kind of processes
may be good for an initial study, e.g., to identify how dif-
ferently a BPEL engine deals with each of them, we believe
that using more complex processes, implementing real busi-
ness logics, would probably lead to more accurate results.

2. Network latency is not modeled and thus taken into
consideration during the experiments. The current imple-
mentation of SOABench is not capable of handling and mit-
igating network latency problems. We have tried to reduce
the network latency a priori, by conducting the experiments
in a controlled environment, with a dedicated network in-
frastructure. No other traffic than the one generated by
experiments was allowed through the network. Moreover,
network communication among the virtual machines hosted
on the same server has been handled by VMware through
memory sharing. Therefore, we are confident that the im-
pact of latency on the presented results is minor.

3. VMware has been used to run the server hosting the
SOA middleware. Experiments should be re-run on physi-
cal machines to deduce the impact of virtualization on the
results. However, VMware ESX is being currently used by
companies in industrial settings, so we feel confident that its
impact may be ignored.

4. Impact of other middleware components. In the experi-
ments, we did not measure the impact of additional middle-
ware components used by the evaluated engines. More than
one instance of the Axis2 service container could have been
used to reduce saturation impact of external services. More-
over, the DBMS used during the experiments could have
been replaced with a different one, with better performance,
such as Oracle Database or PostgreSQL.
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Figure 6: Comparison of the average response time

between ActiveVOS and jBPM

5. Java Virtual Machine version. We had to use a rather
old Java Virtual Machine for the experiments, since jBPM
does not run on newer versions. More advanced compiler op-
timizations provided by more recent virtual machines could
affect the outcome of our study.

6. RELATED WORK
To the best of our knowledge, the work presented here

is the first available framework for automating performance
assessment for service-oriented middleware, such as BPEL
engines and their extensions. Related work in the area shifts
the focus of the experimentation towards the services run-
ning in an SOA, dealing with testbed generation for Web
services.

For example, Genesis [10] is a testbed generator for com-
plex Web services that provides support for generating and
deploying the services, for simulating QoS metrics and steer-
ing the service execution by modifying execution parameters
and QoS parameters using a plug-in mechanism. Genesis can
be seen as a complement to SOABench, since it generates a
testbed of services that could execute when benchmarking
service-oriented middleware. However, Genesis lacks some
features, such as the generation of events (e.g., publication
of a new service in a registry, which may trigger dynamic
rebinding), accurate data analysis, and report generation.

Puppet [3] is a model-based generator of Web service
stubs, which can be used before the actual deployment of
a service, in order to test its behavior when interacting with
externals services that are not available for testing. The
automatically generated stub manifests the functional con-
tract of an external service encoded as a state machine and
its non-functional contract, as specified by an SLA written
in WS-Agreement. Because the tool support provided by
Puppet is limited to stub generation, deployment, test exe-
cution, and data analysis tasks cannot be automated.

Outside the realm of service-oriented computing, there
have been many proposals for automating experimentation
for distributed systems. For example, Weevil [19] is a frame-
work that provides model-based configuration of testbeds,
automated script construction, workload generation, exper-
iment deployment and execution. Splay [12] sports features
similar to Weevil and adds important extensions such as a
specialized language for coding distributed algorithms and
resource isolation in a sandbox environment. The design
of this type of systems emphasizes their intrinsic nature to
support experimentation with distributed algorithms, which
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however has different requirements than performance assess-
ment of (service-oriented) middleware, making their adop-
tion impracticable in the service-oriented computing do-
main. For instance, the Weevil model of a single test case
prepared for the case study consists of 118 input files, sum-
ming up to 3505 LOC. For this reason, we have decided
to build SOABench on top of Weevil, providing domain-
specific abstractions for service-based systems. This allows
engineers to write more compact, less error-prone models;
for example, the SOABench model for the same test case as
above, consists only of 5 files, summing up to 404 LOC.

The goal of promoting research in service-oriented com-
puting by providing a framework for automating experimen-
tation is also shared by the WorldTravel testbed [6]. It rep-
resents a single service-oriented application, which operates
on real data and can be invoked in order to experiment with
SOA technologies. In contrast, the focus of our research is
on automating performance assessment for service-oriented
middleware in a wide range of possible scenarios.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented SOABench, a framework

for assessing the performance of middleware components
in service-oriented environments, by means of automated
experimentation. In SOABench, testbeds are represented
with a conceptual model tailored to the domain of SOAs,
which captures the processes and the services composing
the system, the workload to generate, and the performance
metrics to compute. The experiments’ deployment/execu-
tion/data reporting cycle is then automatically performed
by SOABench, allowing engineers to focus on the analysis
data returned by the testbed.

As case study, we have evaluated the performance of dif-
ferent BPEL engines using a new benchmark suite based
on SOABench. We have explored the scalability limits of
each engine and used the gathered data to investigate criti-
cal parts in the engines’ implementations that were causing
performance problems under high workload.

Regarding future work, we plan to extend the modeling
capabilities for workloads and service mock-ups, by means
of Queuing Networks models, to support more aspects such
as network congestion or request bursts. Furthermore, we
intend to improve the configuration management of the mid-
dleware, by allowing for automatically exploring the space
of the configuration parameters and finding the best tun-
ing. Finally, we also plan to progressively add support for
other middleware components and/or vendors (e.g., for Or-
acle SOA Suite), for other performance metrics, as well as
for different analysis methods.
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